Lesson 6 Analog Discrete-Time Integrated Circuits, TSTE80
Lesson 6
L esson Exer cises: K9, K11, K12, K15, K16

Recommended Exercises: K8, K13, K14, K17, K18, K23, B15.16

Theoretical |ssues: Filter synthesis. Signal Flowchart. Integrators using Opera-
tional Amplifiers.

Theoretical

* Filter Synthesis
Filter specification

| H© » A(w)=-10log|H()P

.

J1+82/

/ : N ‘ /
0 w o © 0 W o w
Component values}, L., C,, , and structure (Filter order, filter type, etc.) are chosen, using

tables or computer tools. Naturally, several different methods can be used. Component values
are denormalized with

By c=-tc o=amw

Ri,n = Romi,n' I-i = (“)0 i,n» i (‘OORO i,n»

WhereR, is the load resistanas, is the pass band stop angluar frequency.
* Continous-Time Filters

Consider the common transfer function for a linear system
Vo(s)  agtays+...+ay_sN-1+aysN
Vi(S)  by+bys+... +by_;sN-1+bysN

Suppose that the number of poles is equal to the number of zeros. This does not affect the fol-
lowing discussion. The transfer function can be described by a signal flow chart as in the figure
below.

H(s) =
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1/s 1/s

Vi(9)

In the flow chart a number of amplifiers is identifidg, a;
..., as well as summating integratotg,s . b 1/s

¢

The 1/by coefficient can be eliminated in a number of differ-
ent ways, i.e., be propagated forward or backward in the flow
chart. The latter corresponds to the transformation of the trans-
fer function as

(@a+b+¢/s

)

— BN+ .+ =
N ! N '
ag+a;s+... +as by by ayBN+.. +a,

H(s) = = =
(=) by +bys+... +bysN Ny Do sN+ ... +bY

Which is shown in the flow chart as

Va(s)

The negative coefficientsp; , are kept in the graph until the true coefficient values are known
(simulations or tables). After that the flow chart may be transformed or relaxed further.

Scaling |

It will show that it is useful to be able to scale the signal level (or the peak value of the signal)
at the output or input of each integrator. In a real implementation we want the integrators to
work in their proper linear region. This helps the designer to estimate noise, distortion, band-
width, etc. By introducing a scaling constaqt, , to the input of each integrator or summation
node and a unscaling factdr/k;  at the output, the level at a certain node can be changed, and
the transfer characteristics is still kept due to the linear behaviour of these kinds of circuits.
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* Leapfrog Filters

Consider a ladder fillter with impedances and admittances. Suppose the source has an inner
(output) resistance d®, , and that the load is a terminating resistafge of

Note that the structure of the ladder filter is dependeM on N . If  is odd the load resistance is
connected in parallel witd,, . Wheéw is even the load resistance is connected in series with

Yy - In the examples given beloM, is chosen to be odd.

KCL and KVL result in a number of equations for the currents in the circuit
lo = (E=V1)/Ry, 15 = Yy(Vi=V3), ...\
Ino1 = Ynoa(Vo2= V) I = VW RL

and analogously for the voltage
V1= Z4(Ig=12), Vg = Zo(la=1g) o Viy = Zy(Inoa=Tnea)

By introducing a normating constant (resistanée), , all equations can be rewritten as
R
Rly = ﬁo(E—vl), Rl, = RY,(V;=Vy), ...,

R

Riy_1 = RYy_1(VN_2=VN) Riysg = R_LVN
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and
Z; z, E -1V,
vV, = E(RIO—RIZ),V2 = E(Rlz—RI4),..., RIRy
Zy
Vy = —R_(RIN—l_RIN+1) Rlp
By introducing ‘voltage nodes’ (or variables); Vi
Rlg, V., RIl,, Vs, ...,V Rlysq Z4/R
The equation system can be described with a signal flow charig -1 Rl

Compare the expressions fal,  avig with the flow charts t
the right. For the whole ladder filter this becomes

The flow chart describes a number of summating and amplifying elements. By introducing the
sign of the nodes and eliminate all inverters and some small notation changes, the flow chart
is transformed into

Note the change of sign of the voltage nodes and the amplifiéks Hfl)/ 2 is odd, the right-
most nodes (at the load of the ladder) are giveAly  —Rid,,; Vy( RliyH etc.).

If (N +1)/2is even, the opposite is true.
Scaling Il

Divide the net into a number of subnets. Every subnet will have a number of inputs and out-
puts. By scaling all the inputs with a factor , all internal nodes of the subnet will be scaled
with k as well. The outputs also have to be scaled by a factor to “reset”.
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Ladder filters, contd.

Suppose thatall; = 1/sC  are kapacitances an¥alf 1/sL; are inductances. Example:

R LNZWL R
af o

All amplifiers in the flow chart are now functioning as integrators (except those who are cor-
responding to the output resistance of the source and the load resistance).

—

) 4

+

r'y

Elliptic Leapfrog Filters

It is wanted to rewrite the signal flow grap so that only summating integrators are used. When
synthesizing elliptic leapfrog filters the flow graph has to be slightly transformed. Consider
the network below.

In the circuit we find the current,  through the indudtgr . The nodal equations are

1 1

v, = sR—Cl(RIO—RIZ), Vg = ng(R|2—R|4)
and
Rly = —F%(VO—Vl), RI, = —%—L—;:—T—ll—](vl—ve)), Rl, = %V_,,
5G]
TheRI, expression is rewritten as
RI, = RI, +SRG(V;-V;) andRl, = EE<V1_V3)
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which gives the well-known expressions. By eliminating  in the original equations, we have

1

V, = qu(Rlo‘mz"SRCz(Vl‘VQ) and
1 :
Vs = §E€Z(Rl2 +sRG(V,—-V3) —Rl,)
which gives
1
V, = ——=—==(RIly—RI,) +a,,V; and
1 SR((:_I_+C2)( 0 2) 12V3
1
Vg = —=————(RI,—RIl,) +a,V
3 SR(CZ‘FCa)( 2 4) 2371
The constants,, ana,; are given by
C
_ 2 - 2
a, = S+ G, andayg C,+ G,

This is equivalent to the circuit below. An extra pair of voltage sources is used.

' Lo
R Vil Vs g

In the signal flow chart this is easily rewritten as
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* Integrators with Operational Amplifiers

Consider a common set up consisting of an operational amplifigr
and a number of impedances. Suppose that the operationad

amplifier is ideal, hence infinite high input impedance. 1 ]
With KCL we have o — w Yo

V

Vo i, Ve, Vg I

z, [z, 7z, z0
which gives the voltage at the output to

_ % Zy Zy
Vg = _z_lvl_z_zvz_"' —Z—NvN

Suppose that among the impedan@gs,  is a capacitance and the others are chosen to be resist-

ances. This gives

1 1 1
- V,— Vo—...— \Y%
SRCy ! SRC, 2 SRCo M

Vo =

By varyingR, andC, we have an inverting, summating (and scaling) integrating link. A non-
inverting integrator is achieved by cascading the integrator with an additional invering buffer.

VL‘:'T

Z

: R
CH— )
pr— } Vo T } Vao

Transistors as resistors (MOSFET-C filter)

The resistance of a transistor in the linear region can be written as

1
R =
HoCox(W/ L)(Vg -V —=Vp)

By changing size and control voltage, the resistance value is changed. Note that the resistance
is signal dependent.
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Exercise K9

Exercises

GIC - Generalized impedance converter
The gic can be used to realize on-chip inductances.
However, the circuit is area consuming and there are
some other drawbacks. !

Derive theK -matrix

-l

where
_ Vv

Vl
v,

c="h

A= )
V,=0 Vs

, B
J4,=0 -1

(If N links with K-matrix K; are cascaded, the total system can be described by the matrix
productKqr = K{Ky... Ky )
Assume that the OPamps are ideal. This implies that the voltage over the input must be zero.
This forces the potential \, to be equaMg and V,, and furthev, = V, . With KCL,
and denoting the currents through  ahd  with bpd |, respectively, we have:
V,-1,Z,-1,,Z, = V, = V; which givesl,, = -1,Z,/Z,
Vo—1,Z,=1,3Z3 =V

x = V, which givesl ;53 = —1,Z,/Z,

Due to the infinite input impedance, there can be no current flowing into the OPamps, and:
: . ZyZ4
Iz, = =l,3 which gives-1,2,/Z, = 1,2,/Z5 , 0, = -l ,5~—=
2,73
From this we get
2,2,

A:l’B:O’CZO’D:Z—-ZS

If an impedanceZ , is terminating port two, the relation between output current and voltage
is given by

V, =-l,Z

Equationsv, = V, and, = 22402 gi
quationsV, =V, an 1—21—23 v give
7 = Vi _ vV, Z,Z3
- E - Z2Z4DV_2 - 2,2,
Z.Z5 Z
Suppose
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Z=Zl=23=22=Rand24=§:

we have
Z,, = sCR =sL
which simulates an inductor.

Exercise Extra

Find a signal flow chart which describes a 4th order leapfrog filter. Or generally, an even order
leapfrog filter.

Exercise K11

Realize the filter having the transfer function
1x10°

2+ 3x10° 5+ 6x10°

We rewrite the function as

H(s) =

Y(9 [[s2+ 3x10° [+ 6x10°7] = 1x10° CX(9)
Or

3x10° 6x10° 1x10°
Y(9 = 2 (9- TS V(9+ T X(9

The flow graph is transformedA = —6x10° ,

B = —3x10° andD = —-1x10° . Note the insertion of
the inverter. This can now be used to implement
active filter.

(Note that there is no inversion included in the
active RC filter implementation). Now the com-
ponent values have to be determined. Assume all g,
capacitances to be equal. We can see that-thr—3—
intermediate node can be written as

Vi = Sov(9+ 2 (9

Identifying this from the active implementation, we have

=__1 1
Vy = SR.C ¥ (9 SR.C X(s)
This gives
=1 - _gacf =1 - _pacf
A= R,C 6x10" andD R,C 1x10

We also see that the output can be written as

37 Elektronics Systems, http://www.es.isy.liu.se/

Analog Discrete-Time Integrated Circuits, TSTE80 Lesson 6

Y(9 = %D/M+§D((s)

Identifying this from the active implementation, we have
1 5
B = —— = -3x10
RgC
We also see that the implementation above is impossible. The intermediaté podeot is

transformed correctly. In fact, we have to inverse the voltage with a buffer.

Then we identify

i = 1‘ orzZ = l

sZC s C
Set the capacitance to s&/ = 1u
The equations give

1 1 10
RA:é,RD:i,RBZE and
Z = R= 1x10°,

We do some notations. The structure could be changed by létting  be positive using an
inverting buffer on the output signal instead. This decreases the number of opamps with one.
We thereby also conclude that we do not find the simplest structure by forcing all input argu-
ments to the summation nodes to be negative. We also see that we can use the inverting buffers

to scale signal levels and relaxing the sizeZon . There are numerous way to implement the
filter. One can also soon realize tiyf R,  @d can dependently be scaled and still main-
tain true transfer function, see next exercise.

Exercise K12

< [
Realize the filter having the transfer function
6
H(s) = —1x10°(s—1) .
$2+3x10° (5 + 6x10

The function is rewritten in the same manner as in th
previous exercise. In this case we however have
slightly different structure. We assume that we fe

back the positive output (constaAt ) and we con-
struct with a negative intermediate nod¥,,

6 6
1x10 1x10
-9 X

5
v(9 = 20

Y(9

6
6x10
SRea(C)

With

A = 6x10°, B = —3x10°, D = 1x10° andE = -1x10°
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The active filter structure becomes

If we now directly set up the transfer function
for the active filter implementation, we have

_ 1 1 Ra2
~Vm = SCRJDXJrSCRL\l EA3

=y Ly 1
Y= -seR V) SCREX SCF§3Y

which gives

1 Y—————l'————[lﬁ——RAzD{— X+ ——X
sCR;'  $2C?R,R Ra;  SCR™  S2C?RR,

1 1

Y =

We now identify the terms

1 5 1 Raz 1 6 1 6
s5—= = 3x107, h—=6><10,—=1><10,—=1><10
RgC C2R,R Raz CRe C?RR,

SupposeC = 1p F,anR,, = Ry3 . Then
6
ChooseR,; = 1000 which giveRy; = 290 ari, = 1000

Exercise K15
X A(6)=-10log|HE) 2

A

Pass Band0< f <3.5 kHz an4,,, =1 dB

Stop Bandf > 10 kHz and\ .. = 20 dB Aminl /S

min

\

Passive Butterworthfilter, order is found in table to be
N = 3.

We choose a voltage drivem -net with reflection
r = 1 for symmetry. Resistances are chosen to be Ama

R = R =Ry = 1kQ 0 % @ w’

Component values are found in table to be:
Csy=1,L,,=2andCy, =1
These values are denormalized according table to
C

L ;
c=—" L= R(‘j) D with wy = e N = @ [109TAne— 1] N = 27 s5kradis.
0

wWoRy’
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This gives
C, = C; = 36.3nF andL, = 72.6mH

A number of filter components have been found. C
ate a signal flow chart for the circuit. The nodal vol&
ages for the circuit is found to be (normalized with

R):
Iy = E;ivl Rlg = gi(E—vl)
v, %10042) v, = s%{(mo—mz)
I, = \%2\/3 RI, = S%(vl—vs)
v, = %30244) v, = ﬁ(mz-m‘l)
I, = \RLS RI, = RBLV3

—
Vi V| =Vg

RIR

We now have a number of integratol@1 . Realized with operational amplifiers we have a

§
structure according to
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R R
-V Sz B vEy

E Rl2 Ry Rio

We now have to determine the component values for this realization, This is done by compar-
ing the signal flow chart with the OPamp net:

Leapfrog Signal flow graph Result
1 E R E E
[V = SGR, [Vile = g D-E = SRG, C4R, = CiR;
1
1V _R, Vi _ V1
Vily, =56/, Vi, " RP5Rg ™ sRe, @R =GR
1 Rl
[_Vl]_m2 = _S_Céli [_Vl]_R|2 = SRC_L( RIZ) C4R6 = C1R
. G A = R =
[Riy, =~ Br [Rldy, = 5o (V) CsR; = L/R
- (D) Ys - R -
[-RI], = —& y [-RIJ,, = §—|_2V3 CeRg = L,/R
1 Rl
Vda, =R M, " SRC3( RI,) CeRy = C3R
__1Vs -1 R, _
[Vdly, = "SGRy [Valy, = —gﬁ’GS'RT_Vs = SC%R CeRyp = C3R,

Now we have several equations. Choose all capacitors to be equally large, maybe:
C, = C5 = C¢ = 30nF

The values are chosen to be approximately equal to those found in the ladder filter realization,
which would give reasonable resistance values. From the equations we also find:
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b _ i _ 36.3nF (LkQ C3R.
R,=Rg = . = aonF = 1.21kQ ochRy, = c L = 1.2kQ

And this also gives

Ry = Ry = X andR, = Ry = -2
s—Rg—'@—a” 7= R = ER
For symmetryR; = R, = Rg = Ry are chosen to be equal, which gives:
2 — L C4 _
R c CSD R = ,/L,/C; = 1000/ 72.6¢ 36.% 1.41kQ
Finally, we have
Rg = R; = Rg = Ry = 1.2101.4kQ =1.71kQ.
The final value that has to be determined is the resistor value used in the inveringrbuffer,
Chooser to be equal to anyone of the other resistances, i.e., :
r=Rg = L71kQ.

Exercise K16
Synthesize an active elliptic leapfrog filter. Termination resistanceskie . Specification
gives:
Pass bandd<w<2m krad/#y,,,, = 0.1 dB
Stop bandw > 41t krad/sh,,;,>20 dB

Order is found with table to bd = 3

This gives following filter structure. Component
values are found to be

C, = C5 = 0.874C, C, = 0.2411and
L, = 0.908¢, and R =R =1kQ,
=1.
Denormalized values are given by

C
C=— andL = R—°|_n giveC; = C3=139.InF C,=38.4nF L,=144.6nH
WoRy Wy

Set up the equations:

_E-V; _ R
Iy = R Rly = ﬁi(E—vl)
1
v, = g_C_l(|o_|2) V, = sRCl(RI0 Rl,)
| (V,-V,) Rl,=—PR (v _v,
™ IIC s 27 sl/(1+82,C,) 3
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Analog Discrete-Time Integrated Circuits, TSTE80

Lesson 6
_ 1
V3 S_C3(|2_|4) V3 = SRC‘G(RIZ Rly,)
_ Vs _R
Iy = R_L Rl, = —RT_VB

Introuduce a current,, , through the inductor. The equations are modified:

RI, = Rl +SRG(V; —V;) andRl, = i(vl—ve,)

TheRI, expression can be eliminated, and gives:

vV, = SRCl(Fu0 Rl —SRG(V,;-V,)) O
1 Realization
V; = === (RIyg—RIl,) + —==V;
17 sK G+Cy) o Cy+ C The a; terms can be realized by using capacitors instead of resistances. This realizes a nega-
And correspondingly tive and scaled signal flow.
Vy= =L (RLJ-RIp+—2 v,
s SRG ey N2 R E e
This gives the structure with a pair of 5
“helping” voltage sources. é
The equations are written as: c\gi ]
>
R E R
Rl = ﬁi(E—vl) CHC,  CptCy -
V, = 1 RI,—RIL) + < —V;
1‘sR(q+C)( o~ RI2) C,+GC,
Rl = I_2(V1 Vj)
Y RIy =RI) + C2 v
3= SF\’( g +C )( 2 4) C3 1
R
Rl, = R_|_V3
The signal flow chart is given by L I — I — .
Component values are found using the same manner as for the previous exercise. The resist-

ances can be implemented by using transistors.
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Lesson 8
L esson Exer cises: K27, K28, K36, K37, K38
Recommended Exercises: K24, K25, K26, K30, K39, B10.1-5
Theoretical |ssues: SC-filter, Laddningsanalys
Theoretical

» Switched-Capacitor Circuit Technique, SC

The advantages of not having to implement on-chip resistances are several. In the previous les-
son we saw that the resistance implemented with a transistor is signal dependent. There are
certain processes allowing special poly layers to implement resistors. There are however prob-
lems with matching and parasitic capacitances. The SC technique utilizes the fact that capac-
itor ratios are used. Then we only need to match capacitors.

To know all the principles of the SC technique, we have to consider the charge redistributiuon
that occurs in the circuits.

Charge redistribution analysis
, _ , <> %| %
Consider a capacitor. The charge is equalt to the voltage over the o [o_d=p
plates times the capacitance value (constant): ® ©
Q=cCVv
By noting the amount of charge that is transferred between different capacitor plates, a flow
chart for the charge (and thereby voltages) can be constructed. By only allowing the charge to

move at certain time intervals, at discrete-time points, we can control the behaviour of the cir-
cuit.

Equivalent Resistance
o—

Consider the capacitance and the switch at time . The charge on the
top plate is equal to

q(t) = COv(t) I

A certain amount of charge will flow from the input to the top plate.
Ag(t) = g(t) —a(t—T1) = Clvy(t) —v,(t-T1)] —0
Attime t + T the charge is given by
q(t+1) = COun(t+T)
The charge floating from the output to the top plate is given by I
Bq(t+1) = Cluy(t + 1) =vy(V)] -

From this we conclude that during a clock peridd, , a certain chaege, , will flowfrom
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to v, . This charge must equalg = C{V,-V,) the capacitance and change of voltage
between the terminals. If there is no difference, no charge will be transferred, etc. The average
current,l = q LT , gives

I
c

Parasitic capacitances

We can associate a parasitic capacitance with all terminals of the tran-. L

sistor, source, drain, gate, and bulk: / ﬁ \
ng, Cgs, Cys» Cyp andCyy

The switching signal is considered to be ac groundecC@gd is col I

O which gives the equivalent resistarRe T

Vl_VZ = C

pled in parallel withCy,, , as well &, willl,,

In most cases the influence Gf;  is neglected, due to its low value.

When the switch is conductinG,;; s also considered to be replace? %
with a short.

By noting these parasitics their influence on the total transfer functiorI I

can be analyzed. =

Discrete-time Spectrum

The discrete-time signal can be written as

o

y() = 5 y(kD[u(t—kT)-u(t—(k+1)T)]
K=0

whereT is the clock period. The output spectrum can be written as
Y(w) = sing(wT) O¥[wT]

Tips for charge redistribution
Charge can not disappear fron an unconnected plate

On a voltage controlled operational amplifier it is only the output that can add or
remove charge. The input is coupled to transistor gates, wherein no current can
flow.

The charge disappears from the capacticance if both plates are connected to the
same potential (short cut).

The charge redistribution is done in discrete events

If a capacitance is switched to a charged capacitance net, the charge will move and
eventually reach equilibrium. By using the tips above and use the knowledge of how
the charge is stored from one event to another, the transfer function can be derived.
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Example Charge | (K25)

Derive the transfer function and discuss the sensitivity 4""{
of the circuit. Values are

C, = C, andC; = 1.12C,
Consider the start-up conditions at time . The charge C;

atC, andC, is
ay(t) = 0 andgy(t) = Cpvy(t) V1

C, is coupled between ground and virtual ground
(OPamp input). The charge must be zero.

Timet + T . Switches have changed.

C, is charged by the voltagg(t+1)  and the output

of the OPampy, , that adds extra charge. The charg o—
atC, becomes Cl -
O (t+ 1) = Covy(t+T1)—Vvy(t +1)] N =
Note the chosen sign of the charge. Egr ~ we havev, I
Oy(t+1) = Covy(t+1).

On the negative plate, the charge is stored.
Oo(t+T) = gp(t) dvsvy(t+T) = vy(t)

(No charge can disappear from the input of the OPam
if it is unconnected).

At time t + 2t the switches are close@, is again Cy|_-_
connected to ground and virtual ground, which empties o =
C, . The positive charge leaks down to ground, the neg-

yTx

ative charge is redistributed to the negative plaeof .
The extra charge needed to compensate the positive
plate ofC, is taken from the OPamp output.

The charge a€; an@, mustbe
gy (t+21) = 0 andg,(t+21) = Cyv,(t +21)
Charge conservation gives (at the negative pla@,of )
ot +21) = —qp(t+ 1) + (—qy(t +71)) = —0p(t) — Gt + 1)
This gives
Covy(t+21) = Cyvy(t) + Cy[vy(t+T) —vy(t+T)] =
= CoVp(t+ 1) + Cy[ vy (t+T) —Vy(t + T)]

We also see that
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V,(t+21) = v,(t+31)
which gives
Covy(t+31) —Covy(t +T) + Cyvy(t + 1) = Cyvy(t+71)
z-transform, witht = kT an@t = T
[C,28/2—C,2 2+ C 7V ,(2) = C 242V (2)
which gives the transfer function
Vy(2) _ C 7112 C, 1

H@) =33 ~ ¢, Bri-cycy) = G, F-(1-c,/c)
If the capacitances are equally lar@g, = C, , the circuit is a simple delay element, (sample-
and-hold)
H(z) = 21
In the second cas€,; = 1.12C, , the transfer function becomes
H() = zi.(:)L.212

This is used to compensate for the sinc weighting of the signal.

Example parasitics |

Cy+Cet+Cy CatCp*Ce ch
, 1 1
®2 ¢
Q+Cg+ch Ce+Cf+Cg
Ch 1

The parasitic capacitances are associated with all nodes in the circuit. Consider the parasitic
capacitances;, throudl, . They are the parasitic capacitances associated with the switches
as discussed earlier.

I
i
|

During clock phasep, C, C. and,; are coupled in parallel. The same is trGg f@g ,
andC,, .C, is connected to the output of the OPa@)p.  is connected to the input signal. The
previous charge at the capacitances coupled in parallel will redistribGte to

During clock phasep; C, C, and. are coupled in parallel. The same is trGg f@;
and Cy-Cqy is coupled to virtual ground at the OPamp inByt. is connected to ground. The

parallel capacitances will be charged and during next clock phase this charge redistribute and
affect the transfer function.

Note thatC,, andC, always are connected to ground or virtual ground and will therefore not
affect the transfer function. While the input signal is directly connect€gd to  the capacitances
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Ce: Ct, Cg, Cy, will not affect the transfer function.

Example Charge Il (K26)

Consider timg . Charge &, a@j is }?2
g, (t) = Cyvy(t) andgy(t) = Cyvy(t) m
At t+1 C, is charged withv,(t) - Cy 2

g (t+1) = Cyvy(t+71)

C, conserves its charge

g,(t) = Covy(t) = gy(t+1) = Covy(t+1) 4{ }?

Attimet+ 2t C; is switched o

g, (t+21) = Cyvy(t+21) = Vs,
The charge aC; is redistributed betwegn  @nd =

in such a way that the total charge is conserved v
Q20 +ap(t+20) = e+ +pt41) 2o o

Cyvy(t+21) + Covy(t + 21) =

= Cvy(t+T1) + Covy(t+1) = (Cp+ Cy)vy(t +21)

Attimet+3t. The charge &, is conserved.

Vy(t+31) = v,(t+21)
This is concluded into

(CL+Covy(t+31) —Covy(t+T1) = Cyvy(t+1)
Lett = kT andT = 21 , z-transform

(B%(Cy + C,) —ZL2C,)V,(2) = C122/2V4(2)
This gives the transfer function
Vy(2) (o) _ C/(Cy+Cy)

H() = V,@ " ZAGC+C,)-C, z-GC/(C,+Cy

C, must be much larger tha, C,»C, , to achieve a sample-and-hold cirucit

H(z) = z1
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Example parasitics Il
Consider the parasitic capacitan€zs throGgh

During clock phase, C, C. andy are coupled in parallel. Lo
Thesameistruefa®; G, a@, C, isshortahd s con-”
nected to the input signal. !

The charge on the parallel capacitances will redistribu@;to

During clock phase; C, C, and. are coupledin parallél; oI | TeTe
The same is true fc€, G; ar@, Cy is coupled to the input -~ L

of the OPampC,, is connected to the output of the OPamp. L | L

Now note thatC, C, C. an€y always are connected to Ce[C] TCq[Ch
ground or virtual ground, hence always short and will not affect
the transfer function. The charge@p ‘s plate connected to the- Ca T | TC6*Ce*Ca

input of the OPamp determines the transfer function. While the ’ @
input signal is directly connected @,  neither will the capaci- Cr+CgtCh
tancesC, C; ,Cg , 0C,, affect the transfer function. Ce II T
—
— 1 1%
CatCytCe = Yy
CetCrtCy
S
1 I
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Exercises

Exercise K36

Derive the transfer functiohl (z)

Attimet the charge at the transistors is written as
gy(t) = Cyvy(t)
ga(t) = Cyvy(t)
Qg1 (t) = aCyvy(t)
Jgo(t) = aCyvy(t)

At t+1, aC; andaC, are completely shorted-——

The total charge o€, and, must however b

conserved, while no charge can disappear from tl
input of the OPamp. Changes of the input signal
will determine how the charge is distributed

betweenC, anc, :
g (t+ 1) +gy(t+71) = gq(t) +ay(t) }7

qul(t+r) = quz(t+r) = 0

At t + 21 we use the same result. No charge disip?
pears from the OPamp input. It has to redistribute t aCy
the other (previously discharged) capacitances:

Ou(t+ 1) +a(t+1) =
=y (t+21) + gyt + 21) +
+ (g (t+27) +qqo(t + 27)
= q(t) —gy(t)
This gives —=
Cyvy(t) + Covy(t) = (1+a)Cqvy(t+21) + (1 +a)Cyv,y(t +21)

Lett = KT and2t = T . z-transform and the transfer function is

1
H(z) = Vod - G (1+a)z—1 _ G FTva _ G
Vi@~ G @raz-1 G, 1 G

which is an inverting amplifier. The pole is cancelled by the zero.

59 Elektronics Systems, http://www.es.isy.liu.se/

Analog Discrete-Time Integrated Circuits, TSTE80 Lesson 8

Exercise K27

—e

Attime t the charge is discribed by C,
a(®) = Cyvy() o]
a(t) = Cov,(t)
as(t) = Cavy(t)

Attimet+T1:

Charge aC, and,
Ay(t+1) = gy(t)
Ao(t+ 1) = gy(t) A

C, is charged with the input voltage

O3(t+1) = Cavy(t+71)

Attimet+2t:

Total charge on the three capacitances is
G (t+21) + 0yt + 21) +gg(t + 21)

where
gq(t+21) = Cyvy(t+21)

gy(t+21) = Covy(t+21)
g5(t +21) = Cav,(t+21)

The total charge must be conserved, no char
disappears from the input of the OPamp:

gy (t+21) +oy(t+21) +gg(t + 21) = B

Qu(t+ 1) +a(t+1) +ga(t+1) =

0y (t) +gp(t) +qg(t+1)

Use the charge expression, and we have
(Cy+ Cy)Vy(t+21) + Cyvy (1 +21) = Cyvy(t) + Covy(t) + Cavy(t+1)

which gives

c, c, Cs
Vat+ 20~ ) = e )+ gt D vt 20

Lett = kKT andT = 2t . z-transform

Cs c
3102 _ Z3,1/4]
V,() ¢, 1T ? S Moxant
i) = 229 1 1 _ 1 1
V.0 GG G GG G
Cy+Cy Cy+Cy
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We now see that the output signal is affected by the input signal at each half clock period. Two

ways can be used to design a first-order all pass filter.
1) Eliminatez/2 by assuming,(t) = v,(t+1) which give'2V,(z) = V,(2)

2) Eliminatez!/2 by assuming, (t +T) = v,(t+21) which give¥/2v,(2) = zV,(2)

this gives
c,+C
Cy - lCl ) 1 C@Z_ﬁs/cl
B R iy e o ey
C+Cy Cy+Cy
For an all pass filter, if the pole is givenby= p , the zero is given byl/p . This gives
Clc;l%: C252C3D c,=¢C, orl—g—i’:CZCTZCSD C, = C,+Cy
Exercise K28

Attimet the lowerC, is charged 1_{
qu(t) = Clvl(t)
The upper is shorted.
qua(t) =0 i)(
Attimet+T the uppeC, is charged -
Qui(t+1) = Cyvy(t+1) T
The lower is shorted. The charge will howeverf—{
redistribute to the negative plate@j . The posi-
tive plate atC, will get extra charge from the out-
put of the OPamp. The chargeGy is written as

Oo(t+T) = Coup(t+1) = gp(t) +qyy(t) =
= Cyvy(t) + Cyvy(t)
At time t + 21 the operation is practical the same due to the symmetrical capacitances.
Oyt +21) = Covp(t+21) = gyt +T) +quq(t+T) = Covp(t+ 1) + Covy(t+71)

We see that the input signal is delayed and switched to the output at every half clock cycle.

We have
Vy(t+21) = vy(t) + %[vl(t +1) + v, ()]

And the transfer function is
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C 1/2
CRIE =
2

If we now once again assume thaft) = v,(t+1)  voft + 1) = vy(t+21) , then
C, 1
HE) = & D—Z—Z—:—orH(z)——— tz
1- 2 1-z71
Exercise K38
G
General transfer function for bilinear integrator: C, ﬁ
— /|
H(z) = K (B=X 1 '
z+1 Cy +
Attimet the charge distribution is j—{ }—1
gy(t) = Cyva(t) = = =
Ga(t) = Cyvy(t)
gs(t) = O (shorted)
Attime t+1 C; is coupled in parallel wite; and C,

will take charge fronC, an€,

C,
Qt+T) = Cyy(t+1) HC
Qo(t+71) = Cyovuy(t+1) 3

ga(t+1) = Cavy(t+1)
The charge distribution will be = = =

Ga(t+ 1) +ap(t+ 1) + a5t + 1) = qy(t) +ay(t)
Attime t + 2t the total charge &, ar@, is conserved. It will though redistribute due to
the change of input voltage.

Ay(t+T1) +0y(t+1) = qy(t+21) +gy(t + 21)

Concludingly, we have
Gy(t) +0p(t) = ag(t+1) +qy(t+21) + gyt +21), ie.,
Cyvq(t) =Cpvy(t+21) = Covy(t+1) = Cyv,y(t +21) —vy(1)]

which gives
c C,
Vy(t+21) —vy(t) = ——[vl(t +21) + S, (t+T) —vl(t)J
CZ Cl

Supposev, (t) = v,(t+1) , hence a sample-and-hold circuit at the input, which eliminated

the 212 -term in the transfer function. Let= kT ad = T . z-transform
Vy(2) Cy 7+(Cy/Cyi—1)
_ O

V(2 C, z-1

H(z) =
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ChooseeC; = 2C; and we have

C, 1+71
H(2) = —=
@ = 0

Exercise K37

At time t. The upper capacitor is shorted between C1 gy T G2 c
ground and virtual ground and the lower capacitor is 2
charged with the input voltage: Vy

C
Ay(t) = 0 andgy,(t) = Cyvy(t) t Gn

C, has the charge: i i

Go(t) = Cyvy(t) -
Attime t + . The upper capacitor is charged.
Oy (t+1) = Cvy(t+1)
The lower capacitor is shorted, all charge is lost to the ground.
gy(t+1) =0

The charge irC, is conserved since no charge can disappear from the input of the OPamp.

Oy(t+ 1) = gy(t) dvsCyvy(t+T) = Covy(t) dvsvy(t+T) = vy(t)
Time t + 21 . The upper capacitor is discharged, but its charge will be redistributed over the
lower capacitor an€, . The redistribution is determined by the input voltage. We have
Oy (t+21) = 0, gy(t+21) = Cyvy(t+21), go(t +21) = Cyvy(t +21)
and
— Gyt + 21) + (~p(t + 21))
Which gives
Cyvq(t+21) + Covy(t +21) = Covy(t+T1) + Covy(t+ 1) = Cyvy(t+T1) + Cyvy(t)

=0y (t+7) + (=go(t + 1))

The input signal is sampled-and-held as

Vi(t+1) = vy(t)
which gives

Cyvy(t+21) + Covy(t + 21) = Cyvy(t) + Covy(t)
z-transform

C,z-1)Vy(2) = C,H1-2) V,(2)

and

Vi@ _ G721 G
A =9,m " SR <,

The circuit is an inverting amplifier. Practically, however, a pole on the unit circle can not be
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cancelled by a zero. The circuit has to be used in a feedback loop.

Exercise B10.2
Attime t, switchg, is conducting. The charge<Cat énd are given by
gy(t) = C, Ory(t) anday(t) = C, Oiy(t)
Attime t + 1, switchg, is conducting. The chargeCat ~ énd are given by
g,(t+1) = 0 andgy(t+1) = C,Osy(t+1)
Note that the positive and negative plate€of are connected. The charge will cancel them-
selves, therefore
Go(t+T1) = gy(t)
At time t + 21, switch@, is conducting. Now we will have a redistribution of the charge at
the negative plate c€, (the one connected to virtual ground at the OPamp input).
gq(t+21) = C; Ory(t+21), gy(t +21) = C, Ory(t+21) and
=0y (t+21) + (=0t + 21)) = —Go(t+T) = —,(1)
This gives
C,On(t+T)+C,0n(t+T) = C, Or(t)
whereT = 21 . z-transforming the equation gives

Vy(2) _ Gz .G 1
G I A i o =1

which is a invering and scaling integrator.

Exercises B10.3 - 4 are very suitable for calculation.

Elektronics Systems, http://www.es.isy.liu.se/ 64



Lesson 9 Analog Discrete-Time Integrated Circuits, TSTE80

Lesson 9

L esson Exer cises: B10.5- B10.10, K31, K32, K33, K34, K40
Recommended Exercises: K29, K35
Theoretical |ssues: SC-filter

Theoretical

* SC-filter

Leapfrodfilter

In many cases we use a continous-time analog reference filter to find the specifications on the
SC filter. The filter is transformed with LDI or bilinear transformation into a suitable discrete-
time representation.

Lossless Discrete Integrator, LDI transformation

Let the transformation be given by
1-z1 z-1 -z1
= 12_51/2) = g =—£~ — 2721 _
s = slz Tz]_soz-l/z ‘5021/2‘50[&'2372'
Or using integration notation
1/2
1_1,z777
s s 1-z1t
Let
s = jwandz = &9
which gives
= 25 sin20 =@
W = 28%8IN50 0% = 550077
wherew is the continous-time angular frequency@nd is the discrete-time. Due to the LDI
mapping we see that
W< 2s

From that we conclude that the filters to be transformed must be narrow banded. This is a
drawback with the LDI transformation.
We also find that

712 = g2 = cos%—j Esin%

67 Elektronics Systems, http://www.es.isy.liu.se/

Analog Discrete-Time Integrated Circuits, TSTE80 Lesson 9
Example Exercise K40
Synthesize an LDI filter. Transformation a
give Rekonstruera
specifikation
- g2zl 28
T VA

7

The specification on the reference filter
angular cut-off frequency is chosen to be 4 5g

W, = 2m1500rad/s

AN

_ , _ 15 25 1/2T=20
Since sampling frequency i§; = 40 kHz

we have the discrete-time cut-off frequency Poisson
as R
Q. = 20K [Pmt=0.235€ Z ‘
and the discrete-time stop-band frequency a&3 / /
2.5k -
Qg = == [Pr=0.3927 /
40k
1.254
From this we have,

/ [kHz]

Samplad
specifikation

7

0.2356 0.3927, Tt

W, ‘

% ZsnQ/2)

LDI
_ 3000m - a
= stin(0.235fY 3 40.09krad/s -

We find thewg ;

0 = 25,5IN(Qy/2) = L8 /

=~ 2 [40.093(sin( 0.3927 P= 7R
= 15.643krad/s “o s

e

v

Referensfilter
specifikation

Design an elliptic filter. Order is found to e = 3 . Suppose the resistors are equal, or

k2 = 1 and choos&®; = Ry = 1kQ
The normated values on the components are
Cyy = Ca, = 1.9314, C,, = 0.3781andL,, = 0.7571

These are denormalized with

Ry 1

L = (‘T()Lin andC; = SRy

Cin
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Which gives
C, = C; = 204.9F
L, = 80.3mH
C, = 40.InF

The filter is transformed. The constant
used in the figure is given by

YN
L,
0, = C;+C, = C,+Cy lo
Setting up the wellknown equations forQ) ] Vs Coloy ViCrlay ROD

currents and voltages in the filter, we

have R C1+Cy CstCy

Rly = RI, -2V,

R
V, = =~ (RI,=Rl,),Rl, = —— R (v, -V
1~ SRCl 0 2/ 2~ (SLQ)”(l/SCZ) 1 3
1 R R
V, = —=—=(RI,—RI,),Rl, = =V, = ==V
3 SRQ 2 4 4 RO 3 RO L
etc. With this the signal flow graph becomes
—
_Vl‘ V3=VL

()¢
142G Jal

[ 1 -Rly
| R

LDI transform by setting

S = SD[L:L

712
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Do

R

712R I
|

0

We now though have1/2  terms in the outer feedback amplifiers. This is practically not pos-

sible to implement. One way to implement this is simply to removezth@ term
expression:

B rl/2
L

We could assume that the origirgl ~ @d  have the expressions
R = R x'2andR = R [zl

As discussed earliez;1/2  naturally contains valuable frequency information

12 = _; W /_EI&DZ
z- 1230+ 1 EES(}]
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_ A nwo? -
R 12 =R|-jo—+ [1-H— =
L {25, " s

R (w)
R —>
S P AToTu P NS jwL - L
AN e _J‘*’ZSO— L () —jwl L

Which is realized by a frequency dependent resistance in series
with an inductance, or more useful in this filter implemenation, as a frequency dependet resist-
ance in parallel with a capacitor.

(R (w) —jool )R (w) +jwl,) _

R (z1/2 = .
L R (0) + jwL
B RP [ R
CL

R JI—(0/25,)2+ jwR /25,

- I 1 I - RL(Q)) ”CL
+ -
R/ J1—(w/2s5)? R/ (10/2) R.(®)

Suppose tha€, is coupled in parallel wih and correspondingly

for the inner source resistanGe  is in parallel W@th . This is corrected by letting the com-
ponents have the values

. _ 1 _ 1 . ol
C, =C,-C = Cl_é‘s;ﬁ = Cl_Eo;ES'”BETE
1 1

C3 = C3—CL = Ca—m = Ca_QTRL
We still have an error that is caused by the fact that we will not implement a frequency depend-
ent resistance. This error is considered to be acceptable. The realization of the filter is given
by the flow graph

Ll
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The two integrators (inverting amplifiers with and without delay)
are replaced with their corresponding SC circuits.

The transfer function of the summing integrator is given by

=

_ ! C, C, C,
Vs@ = 7= [[Cs Vi) + D/z(z)} -
2
Check: No direct signal path from input to the output. Vio \. ./ o
Vo

The transfer function of the summing and inverting integrator is —=
given by

G

Vy(2) = ——LEF—lD/ (@ + 21V @]
3 1_2_1 CB 1 C3 2
Check: Direct signal path from input to the output.

(Charge that is directed ©;  is given by a linear combinatiorvgf ICZ
the input signals,(t) and,(t) .) T,
Integrators are used in the realization. The sizes of the capacitors

have to be identified. This is done by comparing signal paths in the SC realization with those

of the signal flow graph:

SC filter Signal Flow Graph Result
Cy 112 1 712 Cy 1
[_V1]E == [_Vl]E = g - g
Cr1-71 SoRay 1-71 C;  spRay
Co_ 1 1 Ce 1
[Vl g =& [NVl gy = = = d
;T Cii-z1 ; syRay C7  sRay
C C
5 1 1 R 1 5 1
[Vl == Vi, = s = . = = d
v G-zt t SRayR sRay G ospRioy
C 1 1 C
[-RI,] ,, = 2% [-RI,] ,, = R _z -8 - R
Vi Cyol-z? Vi slp1-zt Cio  Solz
C 1 1 C
[-RI,], = =X [-RI], = R _z -0 - R
Vs Cyol-z1 Vs splol-z1 Cio  Solaz
Cu_ 1 Ryl 1 Cu 1
Vo s = €A Ve " RGRG A G wRos
Ci2 1 R~ 1 1 Cip 1
Vv = 12— Vv = = [—— 1z -
(Valy, Cp1-71 Valy, R $RC; 1-71 Ciz SoRag

For the feedback we have:

_ G % Cu_ G
iy, = ¢, iy, = 5 T
Vi, = Cis Vi, = & Cis = S

Vi Cyg ~ioag Ciz a3

We assume that
R =R =R
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+ =\ Cl;( /- +
Tl L TT
= Cia i ICis =
< Gy 1 } G {i
[ [
Rl Multiplication of Rly with Z*/2 givesRlgz which

/ »E/\ also gives a phase shift of -180 degrees, which
= changes the sign of all nodes in the filter.

Further, the correction term gives

(*)c
= ————— andC' = C,-1/25,R
% = 2sin(Q/2) T S0
Which yields

Ca_Cs_ G [M‘BT Cu_ S [M‘BT
c, C, (4 2sin(Q./2) 2R] 'Cy;3 Cyg 2sin(Q./2) 2R
Cg _ Cy _ 2Rsin(Q./2)
Cwo Cuo Wlp
C C C C
e S o O
Ci3 sin(Q./2) Ci3 sin(Q./2)

C,+Cj — e Cr+Cy———s—

R;w, R w,

With values we have

Cs_Cs_Cs_Cu_Cup_ [21151500510001 2048+40.1n) 1

2sin(0.2356’ 2 2
Cg _ Co _ 2[M000Lsin( 0.2358 2. 03106

Cio Cio 3000 (80.3m
C C
novi 40'12in(0 7356/ 3 0172
13 13 _ 2INV.2990 9
40.In+204.5 - 7555730061
Choose the integrators’ capacitors all equal
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C; = Cyg = Cy3 = 47nF
From this we have the values of all other capacitors.
Scaling:

Scale the filter so that the relation between the OPamp outputs and the input signal is unity
(L, -norm). We are scaling the filter to keep the signal levels at wanted levels. The principle
of scaling can be described by dividing the net into subnets. The subnets have a number of
inputs and outputs. If the inputs are scaled with a conktant  all nodes of the subnet will be

scaled with a factok; , as well as we have to scale all outputslwith

In this case the signal after the first node is scalé&gXq , the secorid kyixy, and finally
the third (the output) wittk;k,k; X5 . By changing the values of the capacitances we now can
realize the scaling. AtC, we usk,C, instead. FOf — Cg/k, Cg - Cglk, ,

C

14
Cia~ feer Cas = Cas ks, Cg = Co/ky, Cy = Cry kg et

Elektronics Systems, http://www.es.isy.liu.se/ 74



Lesson 9 Analog Discrete-Time Integrated Circuits, TSTE80

Exercises

Exercise K35

Third order low pass filter with an elliptic ref-
erence filter. The specification gives

fo = 3.4kHz, A, = 0.02dB,

fsamme = 128kHz,

Normalized values from table are:

R = Ry = 1kQ, C; , = C3,, = 0.527E,C, ,, = 0.1921,L, , = 0.770C
LDI transformation gives
— D]_-—Z_l _ Wjyc
ERRF=T wheres, = 2sin(w,T/2)
Denormalize the values.

Compensate for the LDI transformation errors.
Find the flow graph

Use standard SC integrators.
Identify the values
Exercise K34
Due to the fact that
R=R =R_
we know that the dc gain &/ 2

You can also see that the filter is realizing a third order elliptic low pass filter. Suppose that

the maximum output value is given by dc voltage. This implies that we directly can choose the
scaling parametek; in such a way that all nodes in the net become scaled with a factor two,
hencek, = 2 .

Exercise K33

The order is found to bd = 3 . Values are

T kR
c?ﬁ CTT

Can=1,Ly, =2,Cpy = 1 and
R = R_= 1kQ
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