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Lesson 6

Lesson Exercises: K9, K11, K12, K15, K16

Recommended Exercises: K8, K13, K14, K17, K18, K23, B15.16

Theoretical Issues: Filter synthesis. Signal Flowchart. Integrators using Opera-
tional Amplifiers.

Theoretical

• Filter Synthesis

Filter specification

Component values, , and structure (Filter order, filter type, etc.) are chosen, using

tables or computer tools. Naturally, several different methods can be used. Component values
are denormalized with

, , ,

Where  is the load resistance.  is the pass band stop angluar frequency.

• Continous-Time Filters

Consider the common transfer function for a linear system

Suppose that the number of poles is equal to the number of zeros. This does not affect the fol-
lowing discussion. The transfer function can be described by a signal flow chart as in the figure
below.
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In the flow chart a number of amplifiers is identified, , ,

, as well as summating integrators, .

The  coefficient can be eliminated in a number of differ-

ent ways, i.e., be propagated forward or backward in the flow
chart. The latter corresponds to the transformation of the trans-
fer function as

Which is shown in the flow chart as

The negative coefficients, , are kept in the graph until the true coefficient values are known

(simulations or tables). After that the flow chart may be transformed or relaxed further.

Scaling I

It will show that it is useful to be able to scale the signal level (or the peak value of the signal)
at the output or input of each integrator. In a real implementation we want the integrators to
work in their proper linear region. This helps the designer to estimate noise, distortion, band-
width, etc. By introducing a scaling constant, , to the input of each integrator or summation

node and a unscaling factor,  at the output, the level at a certain node can be changed, and

the transfer characteristics is still kept due to the linear behaviour of these kinds of circuits.
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• Leapfrog Filters

Consider a ladder fillter with impedances and admittances. Suppose the source has an inner
(output) resistance of , and that the load is a terminating resistance of .

Note that the structure of the ladder filter is dependent on . If  is odd the load resistance is

connected in parallel with . When  is even the load resistance is connected in series with

. In the examples given below,  is chosen to be odd.

KCL and KVL result in a number of equations for the currents in the circuit

, , ,

,

and analogously for the voltage

, , ,

By introducing a normating constant (resistance), , all equations can be rewritten as

, , ,

,
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and

, , ,

By introducing ‘voltage nodes’ (or variables);

, , , , , ,

The equation system can be described with a signal flow chart.
Compare the expressions for  and  with the flow charts to

the right. For the whole ladder filter this becomes

The flow chart describes a number of summating and amplifying elements. By introducing the
sign of the nodes and eliminate all inverters and some small notation changes, the flow chart
is transformed into

Note the change of sign of the voltage nodes and the amplifiers. If  is odd, the right-

most nodes (at the load of the ladder) are given by  and  (+ , +  etc.).

If  is even, the opposite is true.

Scaling II

Divide the net into a number of subnets. Every subnet will have a number of inputs and out-
puts. By scaling all the inputs with a factor , all internal nodes of the subnet will be scaled

with  as well. The outputs also have to be scaled by a factor  to “reset”.
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Ladder filters, contd.

Suppose that all  are kapacitances and all  are inductances. Example:

All amplifiers in the flow chart are now functioning as integrators (except those who are cor-
responding to the output resistance of the source and the load resistance).

Elliptic Leapfrog Filters

It is wanted to rewrite the signal flow grap so that only summating integrators are used. When
synthesizing elliptic leapfrog filters the flow graph has to be slightly transformed. Consider
the network below.

In the circuit we find the current  through the inductor . The nodal equations are

,

and

, ,

The  expression is rewritten as

 and
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which gives the well-known expressions. By eliminating  in the original equations, we have

 and

which gives

 and

The constants  and  are given by

 and

This is equivalent to the circuit below. An extra pair of voltage sources is used.

In the signal flow chart this is easily rewritten as
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• Integrators with Operational Amplifiers

Consider a common set up consisting of an operational amplifier
and a number of impedances. Suppose that the operational
amplifier is ideal, hence infinite high input impedance.

With KCL we have

which gives the voltage at the output to

Suppose that among the impedances,  is a capacitance and the others are chosen to be resist-

ances. This gives

By varying  and  we have an inverting, summating (and scaling) integrating link. A non-

inverting integrator is achieved by cascading the integrator with an additional invering buffer.

Transistors as resistors (MOSFET-C filter)

The resistance of a transistor in the linear region can be written as

By changing size and control voltage, the resistance value is changed. Note that the resistance
is signal dependent.

V0

V1

VN
Z0

Z1

ZN

V0

Z0
------

V1

Z1
------

V2

Z2
------ …

VN

ZN
-------+ + + 

 –=

V0

Z0

Z1
------V1–

Z0

Z2
------V2– …–

Z0

ZN
-------VN–=

Z0

V0
1

sR1C0
---------------V1–

1
sR2C0
---------------V2– …–

1
sRNC0
-----------------VN–=

Ri C0

V0

V1

VN
Z0

Z1

ZN
V20

R21

R22

R
1

µ0Cox W L⁄( ) VG VT– VD–( )
------------------------------------------------------------------------=

Analog Discrete-Time Integrated Circuits, TSTE80 Lesson 6

Elektronics Systems, http://www.es.isy.liu.se/ 36

Exercises

Exercise K9

GIC - Generalized impedance converter.

The gic can be used to realize on-chip inductances.
However, the circuit is area consuming and there are
some other drawbacks.

Derive the -matrix

where

, , ,

(If  links with -matrix  are cascaded, the total system can be described by the matrix

product .)

Assume that the OPamps are ideal. This implies that the voltage over the input must be zero.
This forces the potential in  to be equal to and , and further . With KCL,

and denoting the currents through  and  with  and , respectively, we have:

 which gives

 which gives

Due to the infinite input impedance, there can be no current flowing into the OPamps, and:

 which gives , or

From this we get

, , ,

If an impedance, , is terminating port two, the relation between output current and voltage
is given by
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 and

we have

which simulates an inductor.

Exercise Extra

Find a signal flow chart which describes a 4th order leapfrog filter. Or generally, an even order
leapfrog filter.

Exercise K11

Realize the filter having the transfer function

We rewrite the function as

Or

The flow graph is transformed. ,

 and . Note the insertion of
the inverter. This can now be used to implement the
active filter.

(Note that there is no inversion included in the
active RC filter implementation). Now the com-
ponent values have to be determined. Assume all
capacitances to be equal. We can see that the
intermediate node can be written as

Identifying this from the active implementation, we have

This gives

 and

We also see that the output can be written as
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Identifying this from the active implementation, we have

We also see that the implementation above is impossible. The intermediate node  isnot

transformed correctly. In fact, we have to inverse the voltage with a buffer.

Then we identify

 or

Set the capacitance to say F.
The equations give

, ,  and

.

We do some notations. The structure could be changed by letting  be positive using an
inverting buffer on the output signal instead. This decreases the number of opamps with one.
We thereby also conclude that we do not find the simplest structure by forcing all input argu-
ments to the summation nodes to be negative. We also see that we can use the inverting buffers
to scale signal levels and relaxing the size on . There are numerous way to implement the

filter. One can also soon realize that ,  and  can dependently be scaled and still main-

tain true transfer function, see next exercise.

Exercise K12

Realize the filter having the transfer function

The function is rewritten in the same manner as in the
previous exercise. In this case we however have a
slightly different structure. We assume that we feed
back the positive output (constant ) and we con-

struct with a negative intermediate node, :
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The active filter structure becomes

If we now directly set up the transfer function
for the active filter implementation, we have

which gives

We now identify the terms

, , ,

Suppose F, and . Then

, , ,

Choose  which gives  and

Exercise K15

Pass Band: kHz and dB

Stop Band kHz and dB

Passive Butterworthfilter, order is found in table to be
.

We choose a voltage driven -net with reflection

 for symmetry. Resistances are chosen to be

Component values are found in table to be:

,  and

These values are denormalized according table to

, , with krad/s.
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This gives

 and

A number of filter components have been found. Cre-
ate a signal flow chart for the circuit. The nodal volt-
ages for the circuit is found to be (normalized with

):

From these equations we find:

Modify the graph by propagating the inverters and denote negative voltage nodes:

We now have a number of integrators, . Realized with operational amplifiers we have a

structure according to
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We now have to determine the component values for this realization, This is done by compar-
ing the signal flow chart with the OPamp net:

Leapfrog Signal flow graph Result

Now we have several equations. Choose all capacitors to be equally large, maybe:

The values are chosen to be approximately equal to those found in the ladder filter realization,
which would give reasonable resistance values. From the equations we also find:
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 och

And this also gives

 and

For symmetry,  are chosen to be equal, which gives:

Finally, we have

.

The final value that has to be determined is the resistor value used in the invering buffer, .

Choose  to be equal to anyone of the other resistances, i.e., :

.

Exercise K16

Synthesize an active elliptic leapfrog filter. Termination resistances are . Specification
gives:

Pass band: krad/s, dB

Stop band: krad/s, dB

Order is found with table to be .

This gives following filter structure. Component
values are found to be

,  and

, and ,

.

Denormalized values are given by

 and  give , ,
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Introuduce a current, , through the inductor. The equations are modified:

 and

The  expression can be eliminated, and gives:

And correspondingly

This gives the structure with a pair of
“helping” voltage sources.

The equations are written as:

The signal flow chart is given by

V3
1

sC3
--------- I 2 I 4–( )= V3

1
sRC3
------------- RI2 RI4–( )=

I 4

V3

RL
------= RI4

R
RL
------V3=

I '2

RI2 RI2' sRC2 V1 V3–( )+= RI2'
R

sL2
-------- V1 V3–( )=

RI2

V1
1

sRC1
------------- RI0 RI2'– sRC2 V1 V3–( )–( ) ⇒=

V1
1

sR C1 C2+( )
------------------------------- RI0 RI2'–( )

C2

C1 C2+
-------------------V3+=

V3
1

sR C2 C3+( )
------------------------------- RI2' RI4–( )

C2

C2 C3+
-------------------V1+=

+

++

C1+C2 C2+C3

E

Ri

RL

L2

V
3C

2/
(C

1+
C

2)

V
1 C

2 /(C
2 +

C
3 )

RI0
R
Ri
----- E V1–( )=

V1
1

sR C1 C2+( )
------------------------------- RI0 RI2'–( )

C2

C1 C2+
-------------------V3+=

RI2'
R

sL2
-------- V1 V3–( )=

V3
1

sR C2 C3+( )
------------------------------- RI2' RI4–( )

C2

C2 C3+
-------------------V1+=

RI4
R
RL
------V3=
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Realization

The  terms can be realized by using capacitors instead of resistances. This realizes a nega-

tive and scaled signal flow.

Component values are found using the same manner as for the previous exercise. The resist-
ances can be implemented by using transistors.

R/Ri

R/Ri

-1/sR(C1+C2)
R/RL

R/sL2

-1/sR(C1+C2)

-V1

-RI2

V3

-a12 -a23

V0

aij
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Lesson 8

Lesson Exercises: K27, K28, K36, K37, K38

Recommended Exercises: K24, K25, K26, K30, K39, B10.1-5

Theoretical Issues: SC-filter, Laddningsanalys

Theoretical

• Switched-Capacitor Circuit Technique, SC

The advantages of not having to implement on-chip resistances are several. In the previous les-
son we saw that the resistance implemented with a transistor is signal dependent. There are
certain processes allowing special poly layers to implement resistors. There are however prob-
lems with matching and parasitic capacitances. The SC technique utilizes the fact that capac-
itor ratios are used. Then we only need to match capacitors.

To know all the principles of the SC technique, we have to consider the charge redistributiuon
that occurs in the circuits.

Charge redistribution analysis

Consider a capacitor. The charge is equalt to the voltage over the
plates times the capacitance value (constant):

By noting the amount of charge that is transferred between different capacitor plates, a flow
chart for the charge (and thereby voltages) can be constructed. By only allowing the charge to
move at certain time intervals, at discrete-time points, we can control the behaviour of the cir-
cuit.

Equivalent Resistance

Consider the capacitance and the switch at time . The charge on the
top plate is equal to

A certain amount of charge will flow from the input to the top plate.

At time  the charge is given by

The charge floating from the output to the top plate is given by

From this we conclude that during a clock period, , a certain charge, , will flow from

Q CV=

t

q t( ) C v1 t( )⋅=

∆q t( ) q t( ) q t τ–( )– C v1 t( ) v2 t τ–( )–[ ]= =

t τ+

q t τ+( ) C v2 t τ+( )⋅=

∆q t τ+( ) C v2 t τ+( ) v1 t( )–[ ]=

T ∆q v1
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to . This charge must equal  the capacitance and change of voltage

between the terminals. If there is no difference, no charge will be transferred, etc. The average
current, , gives

 which gives the equivalent resistance

Parasitic capacitances

We can associate a parasitic capacitance with all terminals of the tran-
sistor, source, drain, gate, and bulk:

, , ,  and

The switching signal is considered to be ac grounded and  is cou-

pled in parallel with , as well as  with .

In most cases the influence of  is neglected, due to its low value.

When the switch is conducting,  is also considered to be replaced

with a short.

By noting these parasitics their influence on the total transfer function
can be analyzed.

Discrete-time Spectrum

The discrete-time signal can be written as

where  is the clock period. The output spectrum can be written as

Tips for charge redistribution

Charge can not disappear fron an unconnected plate

On a voltage controlled operational amplifier it is only the output that can add or
remove charge. The input is coupled to transistor gates, wherein no current can
flow.

The charge disappears from the capacticance if both plates are connected to the
same potential (short cut).

The charge redistribution is done in discrete events

If a capacitance is switched to a charged capacitance net, the charge will move and
eventually reach equilibrium. By using the tips above and use the knowledge of how
the charge is stored from one event to another, the transfer function can be derived.

v2 ∆q C V1 V2–( )⋅=

I q T⋅=

V1 V2–
T
C
---- I⋅= R

T
C
----≡

Cgd Cgs Cds Cdb Csb

Cgd

Cdb Cgs Csb

Cds

Cds

y t( ) y kT( ) u t kT–( ) u t k 1+( )T–( )–[ ]
k 0=

∞

∑=

T

Y ω( ) sinc ωT( ) Y ωT[ ]⋅=
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Example Charge I (K25)

Derive the transfer function and discuss the sensitivity
of the circuit. Values are

 and

Consider the start-up conditions at time . The charge

at  and  is

 and

 is coupled between ground and virtual ground

(OPamp input). The charge must be zero.

Time . Switches have changed.

 is charged by the voltage  and the output

of the OPamp, , that adds extra charge. The charge

at  becomes

Note the chosen sign of the charge. For  we have

.

On the negative plate, the charge is stored.

 dvs

(No charge can disappear from the input of the OPamp
if it is unconnected).

At time  the switches are closed.  is again

connected to ground and virtual ground, which empties
. The positive charge leaks down to ground, the neg-

ative charge is redistributed to the negative plate of .

The extra charge needed to compensate the positive
plate of  is taken from the OPamp output.

The charge at  and  must be

 and

Charge conservation gives (at the negative plate of )

This gives

We also see that

C1

C2

v1

v2

C1

C2

v1

v2

+
++

+ + +

+
++

- --

- --

- --

C1

C2

v1

v2

+
++

+ + +

- --

- --

C1 C2= C1 1.12C2=

t

C1 C2

q1 t( ) 0= q2 t( ) C2v2 t( )=

C1

t τ+

C1 v1 t τ+( )

v2

C1

q1 t τ+( ) C1 v1 t τ+( ) v2 t τ+( )–[ ]=

C2

q2 t τ+( ) C2v2 t τ+( )=

q2 t τ+( ) q2 t( )= v2 t τ+( ) v2 t( )=

t 2τ+ C1

C1

C2

C2

C1 C2

q1 t 2τ+( ) 0= q2 t 2τ+( ) C2v2 t 2τ+( )=

C2

q2 t 2τ+( )– q2 t τ+( )– q1 t τ+( )–( )+ q2 t( )– q1 t τ+( )–= =

C2v2 t 2τ+( ) C2v2 t( ) C1 v1 t τ+( ) v2 t τ+( )–[ ]+= =

C2v2 t τ+( ) C1 v1 t τ+( ) v2 t τ+( )–[ ]+=
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which gives

z-transform, with  and

which gives the transfer function

If the capacitances are equally large, , the circuit is a simple delay element, (sample-

and-hold)

In the second case, , the transfer function becomes

This is used to compensate for the sinc weighting of the signal.

Example parasitics I

The parasitic capacitances are associated with all nodes in the circuit. Consider the parasitic
capacitances,  through . They are the parasitic capacitances associated with the switches

as discussed earlier.

During clock phase , ,  and  are coupled in parallel. The same is true for ,

and .  is connected to the output of the OPamp.  is connected to the input signal. The

previous charge at the capacitances coupled in parallel will redistribute to .

During clock phase , ,  and  are coupled in parallel. The same is true for ,

and .  is coupled to virtual ground at the OPamp input.  is connected to ground. The

parallel capacitances will be charged and during next clock phase this charge redistribute and
affect the transfer function.

Note that  and  always are connected to ground or virtual ground and will therefore not

affect the transfer function. While the input signal is directly connected to  the capacitances

v2 t 2τ+( ) v2 t 3τ+( )=

C2v2 t 3τ+( ) C2v2 t τ+( )– C1v2 t τ+( )+ C1v1 t τ+( )=

t kT= 2τ T=

C2z3 2/ C2z1 2/– C1z1 2/+[ ] V2 z( ) C1z1 2/ V1 z( )=

H z( )
V2 z( )
V1 z( )
--------------

C1

C2
------ z1 2/

z3 2/ 1 C1 C2⁄–( )–
----------------------------------------------⋅

C1

C2
------ 1

z 1 C1 C2⁄–( )–
---------------------------------------⋅= = =

C1 C2=

H z( ) z 1–=

C1 1.12C2=

H z( ) 1.12
z 0.12+
-------------------=

Ca Cb Cc Cd

Ce Cf Cg Ch

φ2

Ca Cb+Cc+Cd

Ce

Cf+Cg+Ch

φ1

Ce+Cf+Cg

Ca+Cb+Cc Cd

Ch

Ca Ch

φ2 Cb Cc Cd C f Cg

Ch Ca Ce

C2

φ1 Ca Cb Cc Ce C f

Cg Cd Ch

Ch Cd

C1
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, , ,  will not affect the transfer function.

Example Charge II (K26)

Consider time . Charge at  and  is

 and

At  is charged with

 conserves its charge

At time  is switched

The charge at  is redistributed between  and

in such a way that the total charge is conserved

At time . The charge at  is conserved.

This is concluded into

Let  and , z-transform

This gives the transfer function

 must be much larger than , , to achieve a sample-and-hold cirucit

Ce C f Cg Ch

C1

C2

V1

V2

C1

C2

V1

V2

t C1 C2

q1 t( ) C1v2 t( )= q2 t( ) C2v2 t( )=

t τ+ C1 v1 t( )

q1 t τ+( ) C1v1 t τ+( )=

C2

q2 t( ) C2v2 t( ) q2 t τ+( ) C2v2 t τ+( )= = =

t 2τ+ C1

q1 t 2τ+( ) C1v2 t 2τ+( )=

C1 C2 C1

q1 t 2τ+( ) q2 t 2τ+( )+ q1 t τ+( ) q2 t τ+( )+=

C1v2 t 2τ+( ) C2v2 t 2τ+( )+ =

C1v1 t τ+( ) C2v2 t τ+( )+ C1 C2+( )v2 t 2τ+( )= =

t 3τ+ C2

v2 t 3τ+( ) v2 t 2τ+( )=

C1 C2+( )v2 t 3τ+( ) C2v2 t τ+( )– C1v1 t τ+( )=

t kT= T 2τ=

z3 2/ C1 C2+( ) z1 2/ C2–( )V2 z( ) C1z1 2/ V1 z( )=

H z( )
V2 z( )
V1 z( )
--------------

C1

z C1 C2+( ) C2–
---------------------------------------

C1 C1 C2+( )⁄
z C2 C1 C2+( )⁄–
-------------------------------------------= = =

C1 C2 C1 C2»

H z( ) z 1–=
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Example parasitics II

Consider the parasitic capacitances  through .

During clock phase , ,  and  are coupled in parallel.

The same is true for ,  and .  is short and  is con-

nected to the input signal.

The charge on the parallel capacitances will redistribute to .

During clock phase , ,  and  are coupled in parallel.

The same is true for ,  and .  is coupled to the input

of the OPamp.  is connected to the output of the OPamp.

Now note that , ,  and  always are connected to

ground or virtual ground, hence always short and will not affect
the transfer function. The charge on ‘s plate connected to the

input of the OPamp determines the transfer function. While the
input signal is directly connected to  neither will the capaci-

tances , , , or  affect the transfer function.

Ca Cb Cc Cd

Ce Cf Cg Ch

φ1

φ2

Ca Cb+Cc+Cd

Ce

Cf+Cg+Ch

Ce+Cf+Cg

Ca+Cb+Cc

Cd

Ch

Ca Ch

φ2 Cb Cc Cd

C f Cg Ch Ca Ce

C2

φ1 Ca Cb Cc

Ce C f Cg Cd

Ch

Ca Cb Cc Cd

C1

C1

Ce C f Cg Ch
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Exercises

Exercise K36

Derive the transfer function .

At time  the charge at the transistors is written as

At ,  and  are completely shorted.

The total charge on  and  must however be

conserved, while no charge can disappear from the
input of the OPamp. Changes of the input signal
will determine how the charge is distributed
between  and :

At  we use the same result. No charge disap-
pears from the OPamp input. It has to redistribute to
the other (previously discharged) capacitances:

This gives

Let  and . z-transform and the transfer function is

which is an inverting amplifier. The pole is cancelled by the zero.

C1

C2

αC1 αC2

V1 V2

C1

C2

αC1 αC2

V1 V2

C1

C2

αC1 αC2

V1 V2

+ + +
+ + + + + +

+ + +

- --- --

- --

- --

+
++

+
++

- --

+ + + + + +

- --

- --

- --

H z( )

t

q1 t( ) C1v1 t( )=

q2 t( ) C2v2 t( )=

qα1 t( ) αC1v1 t( )=

qα2 t( ) αC2v2 t( )=

t τ+ αC1 αC2

C1 C2

C1 C2

q1 t τ+( ) q2 t τ+( )+ q1 t( ) q2 t( )+=

qα1 t τ+( ) qα2 t τ+( ) 0= =

t 2τ+

q1 t τ+( ) q2 t τ+( )+ =

q1 t 2τ+( ) q2 t 2τ+( )+ +=

qα1 t 2τ+( ) qα2 t 2τ+( )+ +

q1 t( ) q2 t( )–=

C1v1 t( ) C2v2 t( )+ 1 α+( )C1v1 t 2τ+( ) 1 α+( )C2v2 t 2τ+( )+=

t kT= 2τ T=

H z( )
V2 z( )
V1 z( )
--------------

C1

C2
------ 1 α+( )z 1–

1 α+( )z 1–
-----------------------------⋅–

C1

C2
------

z
1

1 α+
-------------–

z
1

1 α+
-------------–

---------------------⋅–
C1

C2
------–= = = =
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Exercise K27

At time  the charge is discribed by

At time :

Charge at  and

 is charged with the input voltage

At time :

Total charge on the three capacitances is

where

The total charge must be conserved, no charge
disappears from the input of the OPamp:

Use the charge expression, and we have

which gives

Let  and . z-transform

C3

C1

C2

V2

V1

C3

C1

C2

V2

V1 + + +

+ + +

- --

- --

+ + + - --

+ + + - --

+ + + - --

C3

C1

C2

V2

V1

+++-- -

t

q1 t( ) C1v1 t( )=

q2 t( ) C2v2 t( )=

q3 t( ) C3v2 t( )=

t τ+

C1 C2

q1 t τ+( ) q1 t( )=

q2 t τ+( ) q2 t( )=

C3

q3 t τ+( ) C3v1 t τ+( )=

t 2τ+

q1 t 2τ+( ) q2 t 2τ+( ) q3 t 2τ+( )+ +

q1 t 2τ+( ) C1v1 t 2τ+( )=

q2 t 2τ+( ) C2v2 t 2τ+( )=

q3 t 2τ+( ) C3v2 t 2τ+( )=

q1 t 2τ+( ) q2 t 2τ+( ) q3 t 2τ+( )+ + =

q1 t τ+( ) q2 t τ+( ) q3 t τ+( )+ += =

q1 t( ) q2 t( ) q3 t τ+( )+ +=

C2 C3+( )v2 t 2τ+( ) C1v1 t 2τ+( )+ C1v1 t( ) C2v2 t( ) C3v1 t τ+( )+ +=

v2 t 2τ+( )
C2

C2 C3+
-------------------v2 t( )–

C1

C2 C3+
------------------- v1 t( )

C3

C1
------v1 t τ+( ) v1 t 2τ+( )–+=

t kT= T 2τ=

H z( )
V2 z( )
V1 z( )
--------------

C1

C2 C3+
-------------------

1
C3

C1
------z1 2/ z–+

z
C2

C2 C3+
-------------------–

----------------------------------
C1

C2 C3+
-------------------

z 1
C3

C1
------z1 2/+ 

 –

z
C2

C2 C3+
-------------------–

---------------------------------------–= = =
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We now see that the output signal is affected by the input signal at each half clock period. Two
ways can be used to design a first-order all pass filter.

1) Eliminate  by assuming  which gives

2) Eliminate  by assuming  which gives

this gives

 or

For an all pass filter, if the pole is given by , the zero is given by . This gives

 or

Exercise K28

At time  the lower  is charged

The upper is shorted.

At time  the upper  is charged

The lower is shorted. The charge will however
redistribute to the negative plate at . The posi-

tive plate at  will get extra charge from the out-

put of the OPamp. The charge at  is written as

At time  the operation is practical the same due to the symmetrical capacitances.

We see that the input signal is delayed and switched to the output at every half clock cycle.
We have

And the transfer function is

z1 2/ v1 t( ) v1 t τ+( )= z1 2/ V1 z( ) V1 z( )=

z1 2/ v1 t τ+( ) v1 t 2τ+( )= z1 2/ V1 z( ) zV1 z( )=

H1 z( )
C1

C2 C3+
-------------------

z
C1 C3+

C1
-------------------–

z
C2

C2 C3+
-------------------–

----------------------------⋅–= H2 z( )
C1

C2 C3+
------------------- 1

C3

C1
------– 

 
z

1
1 C3 C1⁄–
--------------------------–

z
C2

C2 C3+
-------------------–

----------------------------------⋅–=

z p= z 1 p⁄=

C1 C3+

C1
-------------------

C2 C3+

C2
-------------------= C2⇒ C1= 1

C3

C1
------–

C2

C2 C3+
-------------------= C1⇒ C2 C3+=

+ + + - --

+++-- -

+ + + - --

+ + + - --

+++-- -

C2

C2

C1

C1

t C1

qN1 t( ) C1v1 t( )=

qU1 t( ) 0=

t τ+ C1

qU1 t τ+( ) C1v1 t τ+( )=

C2

C2

C2

q2 t τ+( ) C2v2 t τ+( ) q2 t( ) qN1 t( )+= = =

C2v2 t( ) C1v1 t( )+=

t 2τ+

q2 t 2τ+( ) C2v2 t 2τ+( ) q2 t τ+( ) qU1 t τ+( )+ C2v2 t τ+( ) C1v1 t τ+( )+= = =

v2 t 2τ+( ) v2 t( )
C1

C2
------ v1 t τ+( ) v1 t( )+[ ]+=
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If we now once again assume that  or , then

 or

Exercise K38

General transfer function for bilinear integrator:

At time  the charge distribution is

 (shorted)

At time  is coupled in parallel with  and

will take charge from  and :

The charge distribution will be

At time  the total charge at  and  is conserved. It will though redistribute due to

the change of input voltage.

Concludingly, we have

, i.e.,

which gives

Suppose , hence a sample-and-hold circuit at the input, which eliminated

the -term in the transfer function. Let  and . z-transform

H z( )
C1

C2
------ z1 2/ 1+

z 1–
------------------⋅=

v1 t( ) v1 t τ+( )= v1 t τ+( ) v1 t 2τ+( )=

H z( )
C1

C2
------ 2z 1–

1 z 1––
----------------⋅= H z( )

C1

C2
------ 1 z 1–+

1 z 1––
----------------⋅=

C1

C3

C2

H z( ) K
z 1–
z 1+
-----------⋅=

t

q1 t( ) C1v1 t( )=

q2 t( ) C2v2 t( )=

q3 t( ) 0=

C1

C3

C2
t τ+ C3 C1

C2 C1

q1 t τ+( ) C1v1 t τ+( )=

q2 t τ+( ) C2v2 t τ+( )=

q3 t τ+( ) C3v1 t τ+( )=

q1 t τ+( ) q2 t τ+( ) q3 t τ+( )+ + q1 t( ) q2 t( )+=

t 2τ+ C1 C2

q1 t τ+( ) q2 t τ+( )+ q1 t 2τ+( ) q2 t 2τ+( )+=

q1 t( ) q2 t( )+ q3 t τ+( ) q1 t 2τ+( ) q2 t 2τ+( )+ +=

C1v1 t( ) C1v1 t 2τ+( )– C3v1 t τ+( )– C2 v2 t 2τ+( ) v2 t( )–[ ]=

v2 t 2τ+( ) v2 t( )–
C1

C2
------ v1 t 2τ+( )

C3

C1
------v1 t τ+( ) v1 t( )–+–=

v1 t( ) v1 t τ+( )=

z1 2/ t kT= 2τ T=

H z( )
V2 z( )
V1 z( )
--------------

C1

C2
------

z C3 C1⁄ 1–( )+

z 1–
---------------------------------------⋅–= =
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Choosee  and we have

Exercise K37

At time . The upper capacitor is shorted between
ground and virtual ground and the lower capacitor is
charged with the input voltage:

 and

 has the charge:

At time . The upper capacitor is charged.

The lower capacitor is shorted, all charge is lost to the ground.

The charge in  is conserved since no charge can disappear from the input of the OPamp.

 dvs  dvs

Time . The upper capacitor is discharged, but its charge will be redistributed over the

lower capacitor and . The redistribution is determined by the input voltage. We have

, ,

and

Which gives

The input signal is sampled-and-held as

which gives

z-transform

and

The circuit is an inverting amplifier. Practically, however, a pole on the unit circle can not be

C3 2C1=

H z( )
C1

C2
------ 1 z 1–+

1 z 1––
----------------⋅–=

V1

V2

C2

C1

C1

q1u

q1n

q2t

q1u t( ) 0= q1n t( ) C1v1 t( )=

C2

q2 t( ) C2v2 t( )=

t τ+

q1u t τ+( ) C1v1 t τ+( )=

q1n t τ+( ) 0=

C2

q2 t τ+( ) q2 t( )= C2v2 t τ+( ) C2v2 t( )= v2 t τ+( ) v2 t( )=

t 2τ+

C2

q1u t 2τ+( ) 0= q1n t 2τ+( ) C1v1 t 2τ+( )= q2 t 2τ+( ) C2v2 t 2τ+( )=

q1n t 2τ+( )– q2 t 2τ+( )–( )+ q1u t τ+( )– q2 t τ+( )–( )+=

C1v1 t 2τ+( ) C2v2 t 2τ+( )+ C1v1 t τ+( ) C2v2 t τ+( )+ C1v1 t τ+( ) C2v2 t( )+= =

v1 t τ+( ) v1 t( )=

C1v1 t 2τ+( ) C2v2 t 2τ+( )+ C1v1 t( ) C2v2 t( )+=

C1 z 1–( ) V1 z( )⋅ ⋅ C2 1 z–( ) V2 z( )⋅ ⋅=

H z( )
V1 z( )
V2 z( )
--------------

C2

C1
------ z 1–

z 1–
-----------⋅–

C2

C1
------–= = =
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cancelled by a zero. The circuit has to be used in a feedback loop.

Exercise B10.2

At time , switch  is conducting. The charges at  and  are given by

 and

At time , switch  is conducting. The charges at  and  are given by

 and

Note that the positive and negative plates of  are connected. The charge will cancel them-

selves, therefore

At time , switch  is conducting. Now we will have a redistribution of the charge at

the negative plate of  (the one connected to virtual ground at the OPamp input).

,  and

This gives

where . z-transforming the equation gives

which is a invering and scaling integrator.

Exercises B10.3 - 4 are very suitable for calculation.

t φ1 C1 C2

q1 t( ) C1 v1 t( )⋅= q2 t( ) C2 v2 t( )⋅=

t τ+ φ2 C1 C2

q1 t τ+( ) 0= q2 t τ+( ) C2 v2 t τ+( )⋅=

C1

q2 t τ+( ) q2 t( )=

t 2τ+ φ1

C2

q1 t 2τ+( ) C1 v1 t 2τ+( )⋅= q2 t 2τ+( ) C2 v2 t 2τ+( )⋅=

q1 t 2τ+( )– q2 t 2τ+( )–( )+ q2 t τ+( )– q2 t( )–= =

C1 v1 t T+( )⋅ C2 v2 t T+( )⋅+ C2 v2 t( )⋅=

T 2τ=

V2 z( )
V1 z( )
-------------- H z( )

C1

C2
------ z

1 z–
-----------⋅

C1

C2
------ 1

1 z 1––
----------------⋅–= = =
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Lesson 9

Lesson Exercises: B10.5 - B10.10, K31, K32, K33, K34, K40

Recommended Exercises: K29, K35

Theoretical Issues: SC-filter

Theoretical

• SC-filter

Leapfrogfilter

In many cases we use a continous-time analog reference filter to find the specifications on the
SC filter. The filter is transformed with LDI or bilinear transformation into a suitable discrete-
time representation.

Lossless Discrete Integrator, LDI transformation

Let the transformation be given by

Or using integration notation

Let

 and

which gives

 or

where  is the continous-time angular frequency and  is the discrete-time. Due to the LDI
mapping we see that

From that we conclude that the filters to be transformed must be narrow banded. This is a
drawback with the LDI transformation.

We also find that

s s0 z1 2/ z 1 2/––[ ] s0
1 z 1––
z 1 2/–

---------------- s0
z 1–
z1 2/
----------- s0

1 z 1––
z 1 2/–

----------------⋅= = = =

1
s
---

1
s0
---- z 1 2/–

1 z 1––
----------------⋅=

s jω= z ejΩ=

ω 2s0
Ω
2
---- 

 sin= s0
ω

2 Ω 2⁄( )sin
---------------------------=

ω Ω

ω 2s0<

z 1 2/– e jΩ 2⁄– Ω
2
----cos j

Ω
2
----sin⋅–= =
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Example Exercise K40

Synthesize an LDI filter. Transformation
give

The specification on the reference filter
angular cut-off frequency is chosen to be

rad/s

Since sampling frequency is kHz

we have the discrete-time cut-off frequency
as

and the discrete-time stop-band frequency as

From this we have

krad/s

We find the

krad/s

Design an elliptic filter. Order is found to be . Suppose the resistors are equal, or

 and choose

The normated values on the components are

,  and

These are denormalized with

 and

1.5 2.5

1.25

28

1/2T=20

1.25

28

1.25

28

[kHz]

π0.2356 0.3927

Rekonstruerad
specifikation

Samplad
specifikation

Referensfilter-
specifikation

ω0 ωs

LDI

Poisson

s s0
z 1–
z1 2/
-----------=

ωc 2π 1500⋅=

f s 40=

Ωc
1.5k
40k
---------- 2π⋅ 0.2356≈=

Ωs
2.5k
40k
---------- 2π⋅ 0.3927≈=

s0

s0

ωc

2 Ωc 2⁄( )sin
------------------------------= =

3000π
2 0.2356 2⁄( )sin
--------------------------------------- 40.093≈=

ωs

ω0 2s0 Ωs 2⁄( )sin ≈=

2 40.093 0.3927 2⁄( )sin⋅ ⋅≈ ≈

15.643≈

N 3=

κ2 1= Ri R0 1kΩ= =

C1n C3n 1.9314= = C2n 0.3781= L2n 0.7571=

Li

R0

ω0
------Lin= Ci

1
ω0R0
-------------Cin=
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Which gives

The filter is transformed. The constant
used in the figure is given by

Setting up the wellknown equations for
currents and voltages in the filter, we
have

,

,

etc. With this the signal flow graph becomes

LDI transform by setting

Ri R0

C1

C2

C3

L2

I

V1 V3

I2’
I1 I4

I2

C1 C3 204.9nF= =

L2 80.3mH=

C2 40.1nF=

++

Ri C1+C2 C3+C2

L2

V3 C2/α1 V1C2/α1 R0

I0α1 C1 C2+ C2 C3+= =

RI0 RIi
R
Ri
-----V1–=

V1
1

sRC1
------------- RI0 RI2–( )= RI2

R
sL2( ) 1 sC2⁄( )||---------------------------------------- V1 V3–( )=

V3
1

sRC3
------------- RI2 RI4–( )= RI4

R
R0
------V3

R
R0
------VL= =

R

R
Ri
----- R

R0
------

1
sRα1
------------–

R
sL2
--------

1
sRα2
------------–

C2 α1⁄– C2 α1⁄–

-V1

I0

V3=VL

-RI2’

s s0
z 1–
z1 2/
-----------⋅=
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Elminate  in the integrators by propagating backwards.

We now though have  terms in the outer feedback amplifiers. This is practically not pos-

sible to implement. One way to implement this is simply to remove the  term in the
expression:

We could assume that the original  and  have the expressions

 and

As discussed earlier,  naturally contains valuable frequency information

R

R
Ri
----- R

R0
------1

s0Rα1
--------------- z 1 2/–

1 z 1––
----------------–

R
s0L2
----------- z 1 2/–

1 z 1––
----------------

C2 α1⁄– C2 α1⁄–

-V1

I0

V3=VL

-RI2’

1
s0Rα2
--------------- z 1 2/–

1 z 1––
----------------–

z 1 2/–

z 1 2/– R

R
Ri
-----z 1 2/– R

R0
------z 1 2/–1

s0Rα1
--------------- 1

1 z 1––
----------------–

R
s0L2
----------- z 1–

1 z 1––
----------------

C2 α1⁄– C2 α1⁄–

-V1

I0

V3=VL

-RI2’

1
s0Rα2
--------------- 1

1 z 1––
----------------–

z 1 2/–

z 1 2/–

R
RL
------ z 1 2/–⋅

RL Ri

RL RL z 1 2/–⋅= Ri Ri z 1 2/–⋅=

z 1 2/–

z 1 2/– j
ω

2s0
--------– 1

ω
2s0
-------- 

  2
–+=
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Thereby

Which is realized by a frequency dependent resistance in series
with an inductance, or more useful in this filter implemenation, as a frequency dependet resist-
ance in parallel with a capacitor.

Suppose that  is coupled in parallel with  and correspondingly

for the inner source resistance  is in parallel with . This is corrected by letting the com-

ponents have the values

 and

We still have an error that is caused by the fact that we will not implement a frequency depend-
ent resistance. This error is considered to be acceptable. The realization of the filter is given
by the flow graph

RL(ω)

-LL

RL

RL z 1 2/–⋅ RL j
ω

2s0
--------– 1

ω
2s0
-------- 

  2
–+= =

RL 1
ω

2s0
-------- 

  2
– jω

RL

2s0
--------– RL ω( ) jωLL–= =

RL(ω) CL

RL

RL z 1 2/–⋅
RL ω( ) jωLL–( ) RL ω( ) jωLL+( )

RL ω( ) jωLL+
---------------------------------------------------------------------------------= =

RL
2 1⋅

RL 1 ω 2s0⁄( )2– jωRL 2s0⁄+
----------------------------------------------------------------------------= =

1
1

RL 1 ω 2s0⁄( )2–⁄
----------------------------------------------- 1

RL jω 2s0⁄( )⁄
----------------------------------+

---------------------------------------------------------------------------------------- RL ω( ) CL||= =

CL C3

Ci C1

C1' C1 Ci– C1
1

2s0Ri
-------------– C1

1
ω0Ri
------------

Ω0T

2
----------- 

 sin–= = =

C3' C3 CL– C3
1

2s0RL
---------------– C3

1
ω0RL
-------------

Ω0T

2
----------- 

 sin–= = =

z 1 2/– R

R
Ri
----- R

R0
------1

s0Rα'1
---------------- 1

1 z 1––
----------------

R
s0L2
----------- z 1–

1 z 1––
----------------

C2 α'1⁄– C2 α'1⁄–

-V1

I0

V3=VL

-RI2’

1
s0Rα'1
---------------- 1

1 z 1––
----------------
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The two integrators (inverting amplifiers with and without delay)
are replaced with their corresponding SC circuits.

The transfer function of the summing integrator is given by

Check: No direct signal path from input to the output.

The transfer function of the summing and inverting integrator is
given by

Check: Direct signal path from input to the output.

(Charge that is directed to  is given by a linear combination of

the input signals  and .)

Integrators are used in the realization. The sizes of the capacitors
have to be identified. This is done by comparing signal paths in the SC realization with those
of the signal flow graph:

SC filter Signal Flow Graph Result

For the feedback we have:

We assume that

V2

V1

V2

V3

V3

C1

C2

C3

C1

C2

C3

V1

V3 z( ) z 1–

1 z 1––
----------------

C1

C3
------ V1 z( )⋅

C2

C3
------ V2 z( )⋅+⋅=

V3 z( ) 1
1 z 1––
----------------

C1

C3
------ V1 z( )⋅

C2

C3
------ V2 z( )⋅+⋅–=

C3

v1 t( ) v2 t( )

V1–[ ]
E

C4

C7
------ z 1 2/–

1 z 1––
----------------–= V1–[ ]

E
1

s0Rα1'
---------------- z 1 2/–

1 z 1––
----------------⋅–=

C4

C7
------ 1

s0Rα1'
----------------=

V1–[ ]
RI2'–

C6

C7
------ 1

1 z 1––
----------------–= V1–[ ]

RI2'–
1

s0Rα1'
----------------–=

C6

C7
------ 1

s0Rα1'
----------------=

V1–[ ]
V1–

C5

C7
------ 1

1 z 1––
----------------–= V1–[ ]

V1–
1

s0Rα1'
---------------- R

Ri
-----– 1

s0Riα1'
------------------–= =

C5

C7
------ 1

s0Riα1'
------------------=

RI2'–[ ]
V1–

C8

C10
--------- z 1–

1 z 1––
----------------= RI2'–[ ]

V1–
R

s0L2
----------- z 1–

1 z 1––
----------------=

C8

C10
--------- R

s0L2
-----------=

RI2'–[ ]
V3

C9

C10
--------- z 1–

1 z 1––
----------------= RI2'–[ ]

V3

R
s0L2
----------- z 1–

1 z 1––
----------------=

C9

C10
--------- R

s0L2
-----------=

V3[ ]
RI2'–

C11

C13
--------- 1

1 z 1––
----------------⋅–= V3[ ]

RI2'–
R
RL
------ 1

s0RC3
---------------- 1

1 z 1––
----------------⋅ ⋅–=

C11

C13
--------- 1

s0RLα3'
-------------------=

V3[ ]
V3

C12

C13
--------- 1

1 z 1––
----------------–= V3[ ]

V3

R
RL
------ 1

s0RC3
---------------- 1

1 z 1––
----------------⋅ ⋅–=

C12

C13
--------- 1

s0RLα3'
-------------------=

V1–[ ]
V3

C14

C7
---------–= V1–[ ]

V3

C2

α1'
-------–=

C14

C7
---------

C2

α1'
-------=

V3[ ]
V1–

C15

C13
---------–= V3[ ]

V1–

C2

α3'
-------–=

C15

C13
---------

C2

α3'
-------=

Ri RL R= =



Lesson 9 Analog Discrete-Time Integrated Circuits, TSTE80

73 Elektronics Systems, http://www.es.isy.liu.se/

Further, the correction term gives

 and

Which yields

,

 and

With values we have

Choose the integrators’ capacitors all equal

C4

C5

C6

C7

C8 C9

C10

C11

C13

C12

C14 C15

RI0 Multiplication of RI0 with z-1/2 givesRI0z which
also gives a phase shift of -180 degrees, which

changes the sign of all nodes in the filter.

-VL

s0

ωc

2 Ωc 2⁄( )sin
------------------------------= Ci' Ci 1 2s0R⁄–=

C4

C7
------

C5

C7
------

C6

C7
------

ωcR C1 C2+( )
2 Ωc 2⁄( )sin

----------------------------------- R
2R
-------–

1–
= = =

C11

C13
--------

C12

C13
--------

ωcR C3 C2+( )
2 Ωc 2⁄( )sin

----------------------------------- R
2R
-------–

1–
= =

C8

C10
--------

C9

C10
--------

2R Ωc 2⁄( )sin

ωcL2
----------------------------------= =

C14

C13
--------

C2

C2 C1

Ωc 2⁄( )sin

Riωc
--------------------------–+

----------------------------------------------------=
C15

C13
--------

C2

C2 C3

Ωc 2⁄( )sin

RLωc
--------------------------–+

----------------------------------------------------=

C4

C7
------

C5

C7
------

C6

C7
------

C11

C13
--------

C12

C13
-------- 2π 1500 1000 204.9n 40.1n+( )⋅ ⋅ ⋅

2 0.2356 2⁄( )sin
-------------------------------------------------------------------------------------- 1

2
---–

1–
0.1072≈= = = = =

C8

C10
--------

C9

C10
--------

2 1000 0.2356 2⁄( )sin⋅ ⋅
3000π 80.3m⋅

------------------------------------------------------------ 0.3106≈= =

C14

C13
--------

C15

C13
--------

40.1n

40.1n 204.9n 0.2356 2⁄( )sin
1000 3000π⋅

------------------------------------–+
------------------------------------------------------------------------------- 0.1725≈= =
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nF

From this we have the values of all other capacitors.

Scaling:

Scale the filter so that the relation between the OPamp outputs and the input signal is unity
( -norm). We are scaling the filter to keep the signal levels at wanted levels. The principle

of scaling can be described by dividing the net into subnets. The subnets have a number of
inputs and outputs. If the inputs are scaled with a constant  all nodes of the subnet will be

scaled with a factor , as well as we have to scale all outputs with .

In this case the signal after the first node is scaled to , the second with  and finally

the third (the output) with . By changing the values of the capacitances we now can

realize the scaling. At  we use  instead. For , ,

, , ,  etc.

C7 C10 C13 47= = =

C4

C5

C6

C7

C8 C9

C10

C11

C13

C12

C14 C15

X1

X2

X3

k1

k2

k3

1/k2

1/k3

1/k2

k2

1/k3

k3

-VL

L∞

ki

ki 1 ki⁄

k1X1 k2k1X2

k3k2k1X3

C4 k1C4 C6 C6 k2⁄→ C8 C8 k2⋅→

C14

C14

k2k3
----------→ C15 C15 k2k3⋅→ C9 C9 k3⁄→ C11 C11 k3⋅→
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Exercises

Exercise K35

Third order low pass filter with an elliptic ref-
erence filter. The specification gives

, dB,

,

Normalized values from table are:

, , ,

LDI transformation gives

 where

Denormalize the values.

Compensate for the LDI transformation errors.

Find the flow graph

Use standard SC integrators.

Identify the values

Exercise K34

Due to the fact that

we know that the dc gain is

You can also see that the filter is realizing a third order elliptic low pass filter. Suppose that
the maximum output value is given by dc voltage. This implies that we directly can choose the
scaling parameter  in such a way that all nodes in the net become scaled with a factor two,

hence .

Exercise K33

The order is found to be . Values are

, ,  and

Ri

R0

C1C3

C2

L2

f c 3.4kHz= Amax 0.02=

f sample 128kHz=

Ri R0 1kΩ= = C1 n, C3 n, 0.5275= = C2 n, 0.1921= L2 n, 0.7700=

s s0
1 z 1––
z 1 2/–

----------------⋅= s0

ωac

2 ωcT 2⁄( )sin
---------------------------------=

R Ri RL= =

1 2⁄

k1

k1 2=

+

C1C3

L2Ri
RLN 3=

C3n 1= L2n 2= C1n 1=

Ri RL 1kΩ= =
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