DAC input/output

The digital input to a DAC is given in a binary representation

B =
$$\langle b_1, b_2, b_3 \rangle = b_1 2^{-1} + b_2 2^{-2} + ... + b_N 2^{-N}$$

Minimum input change is 1 LSB = 2^{-N}

The converter translates this to an analog output as

$$V_{out} = B \cdot V_{ref}$$

where V_{ref} often is a constant voltage, but could be current or charge

Minimum output change is $V_{LSB} = 2^{-N} \cdot V_{ref}$

Ex: Converter with N = 3 bit, V_{ref} = 1.0 V \Rightarrow

$$V_{out} = \left(b_1 \frac{1}{2} + b_2 \frac{1}{4} + b_3 \frac{1}{8}\right) \cdot 1.0 \text{ V}$$

Min value is given by B = <0, 0, 0> = 0 V Max value is given by B = <1, 1, 1> = 7/8 V V_{LSB} is $1/8 \cdot V_{ref}$

DAC transfer curve

Ideal 2-bit DAC

DAC performance

Offset and gain error

Resolution is the number of input bits

Accuracy is the effective number of bits

 $\underline{\underline{Ex}}$: N-bit resolution corresponds to 2^N analog output levels M-bit accuracy corresponds to Error $< V_{ref} \cdot 2^{-M}$

<u>Integral nonlinearity</u> (INL) is the transfer function's deviation from a straight line

<u>Differential nonlinearity</u> (DNL) is the deviation of a transfer function step from an ideal 1 LSB step

(<u>Monotonicity</u> of a DAC is when the output always increases for increasing input)

Settling time τ is the time it takes for a DAC output to settle within a ½ LSB

Sampling rate $f_{sample} = 1/\tau$

R-2R-based converters

R-2R ladder

Resistance in nodes

$$R'_4 = 2R$$

$$R_4 = 2R || 2R = R$$

$$R'_3 = R + R_4 = 2R$$

$$R_3 = 2R \parallel R'_3 = R$$

. . .

i.e.,
$$R'_i = 2R$$
 for all i

Currents

$$I_1 = V_{ref} / 2R$$

$$I_2 = V_{ref} / 4R = I_1 / 2$$

$$I_3 = V_{ref} / 8R = I_2 / 2$$

. . .

i.e.,
$$I_i = I_{i-1}/2$$