TSEK37 Analog CMOS Integrated Circuits

Examination (TEN1)

Time: $\quad 1$ April 2016 at 8.00-12.00

Place: G32

Responsible teacher: Martin Nielsen-Lönn, ISY, 070-361 5244 (martin.nielsen.lonn@liu.se)
Will visit exam location at 9 and 11.

Number of tasks: 6

Number of pages: 6

Allowed aids: Calculator, dictionary
Total points: 20

Notes:
Remember to indicate the steps taken when solving problems.
Please start each new problem at the top of a page!
Only use one side of each paper!
Exam presentation: 8 April 2016 at 12:00-13:00 in 3D:535, B-building

Grade	Points
U	<8
3	$8-<12$
4	$12-<16$
5	$16-20$

Questions

1) Consider the circuit shown in Fig. 1.

Figure 1: Schematic of a single-ended amplifier.
(a) Draw the equivalent small-signal model and derive the expression for the transfer function and from that transfer function identify the DC voltage gain and pole(s). Neglect channel-length modulation and body effect $(\lambda=0, \gamma=0)$. Ignore all parasitic capacitances.
(b) Assume that a parasitic pole $\omega_{p 2}$ appears in the circuit shown in Fig. 1 and the unity-gain frequency $\omega_{u g}=20 \mathrm{krad} / \mathrm{s}$, the dominant pole $\omega_{p 1}=2 \mathrm{krad} / \mathrm{s}$ and the phase margin $\mathrm{PM}=60^{\circ}$. Determine the value of this non-dominant pole $\omega_{p 2}$ caused by parasitics. Assume that the poles are well separated.
2) Consider the fully differential amplifier shown in Fig. 2. The amplifier is completely symmetric. Neglect body effect $(\gamma=0)$. However, channel-length modulation must be considered $(\lambda \neq 0)$. The parasitic capacitance $C_{g s}$ of the MOSFETs at nodes X, Y and the load capacitance C_{L} must be considered. Ignore other parasitic capacitances. Assume that $g_{m} \gg g_{d s}$.

Figure 2: A fully differential amplifier.
(a) Draw the small-signal model of the amplifier shown in Fig. 2 and derive the transfer function.
(b) Derive the expressions for the DC gain, the two pole frequencies and the unity-gain frequency. It is assumed that the dominant pole is formed by the load capacitor C_{L}.
(c) If the width of M_{4} increases, how will this change the non-dominant pole and the unity-gain frequency? It is assumed that the dominant pole is formed by the load capacitor C_{L}.
3) In Fig. 3 a current mirror circuit is shown. The aim is to copy the reference current $I_{\text {ref }}$ to $I_{\text {out }}$. This requires a high output impedance and preferably a low voltage headroom.

Figure 3: A wide-swing cascode current mirror.
(a) Derive the bounds for $V_{\text {bias }}$ such that both M_{1} and M_{2} are in the saturation region. Give the answers in terms of $V_{g s 1}, V_{g s 2}, V_{t h 1}$ and $V_{t h 2}$.
(b) Using the lowest value for $V_{\text {bias }}$ derived in part 1, determine the minimum allowable voltage at the output node to keep both M_{3} and M_{4} in the saturation region. Assume that $M_{3}=M_{1}$ and $V_{g s 4}=V_{g s 2}$. Give the answer in terms of $V_{g s 3}, V_{g s 4}, V_{t h 3}$ and $V_{t h 4}$.
4) Figure 4 shows a lossless interconnect circuit. At $t=0$ the voltage step V_{0} goes high and propagates a $t_{d, Z_{x}}$ is the delay through transmission line Z_{x}. Assume that the inverters have a infinite (high) input impedance.
$R_{0}=150 \Omega, Z_{0}=150 \Omega, Z_{1}=75 \Omega, Z_{2}=50 \Omega, t_{d, Z_{0}}=2 \mathrm{~ns}, t_{d, Z_{1}}=3 \mathrm{~ns}$ and $t_{d, Z_{2}}=4 \mathrm{~ns}$.

Figure 4: Transmission line circuit.

Figure 5: 3-stage ring oscillator
5) (a) In Fig. 5 a 3 -stage ring oscillator is shown. What is the maximum phase of $V_{\text {out }}$ this circuit can have when $\omega \rightarrow \infty$? Divide the phase shift into DC phase shift and frequency dependent phase shift.
(b) Given the Barkhausen criteria,

$$
\begin{aligned}
& \left|H\left(j \omega_{0}\right)\right| \geq 1 \\
& \angle H\left(j \omega_{0}\right)=180^{\circ}
\end{aligned}
$$

and the pole frequency ω_{p} and DC-gain A_{0} for each stage. At what frequency will the circuit oscillate? And what gain is required for each stage? Assume that all stages are equal.
Hint: $\tan \left(60^{\circ}\right)=\sqrt{3}$.
(c) Derive the total transfer function for the system first in terms of DC-gain, A_{0}, and poles, $\omega_{p 1}$ and then with the circuit components R_{D}, C_{L}, g_{m} and $g_{d s}$. Identify the DC-gain and pole location in the second transfer function. Assume that all stages are equal, that parasitic capacitances can be neglected and $1 / g_{d s} \gg R_{D}$.
6) (a) An XOR gate is used as a phase dector in a DLL. Assume that the phase difference between the input and output of the DLL is 225°. Draw the input and output waveforms of the XOR ($D L L$ In, DLL Out and XOR Out). Also calculate the average output voltage of the phase detector. Assume that the waveforms are ideal square waves with a swing between 0 V and 1 V .
(b) A PLL type I can be used to multiply a frequency. Assume that the PLL is supposed to generate a frequency of 1 GHz from a 250 MHz clock. Draw the block diagram for this kind of PLL.

Transistor equations

NMOS

Cutoff $\quad I_{D}=0 \quad\left(V_{G S}<V_{T N}\right)$
Linear mode
$I_{D}=\mu_{n} C_{o x} \frac{W}{L}\left(\left(V_{G S}-V_{T N}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right) \quad\left(V_{G S}>V_{T N}\right)$ and $\left(V_{D S}<V_{G S}-V_{T N}\right)$
Saturation mode
$I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T N}\right)^{2}\left(1+\lambda V_{D S}\right) \quad\left(V_{G S}>V_{T N}\right)$ and $\left(V_{D S}>V_{G S}-V_{T N}\right)$

PMOS

$$
\text { Cutoff } \quad I_{D}=0 \quad\left(V_{S G}<\left|V_{T P}\right|\right)
$$

Linear mode
$I_{D}=\mu_{p} C_{o x} \frac{W}{L}\left(\left(V_{S G}-\left|V_{T P}\right|\right) V_{S D}-\frac{V_{S D}^{2}}{2}\right) \quad\left(V_{S G}>\left|V_{T P}\right|\right)$ and $\left(V_{S D}<V_{S G}-\left|V_{T P}\right|\right)$
Saturation mode
$I_{D}=\frac{1}{2} \mu_{p} C_{o x} \frac{W}{L}\left(V_{S G}-\left|V_{T P}\right|\right)^{2}\left(1+\lambda V_{S D}\right) \quad\left(V_{S G}>\left|V_{T P}\right|\right)$ and $\left(V_{S D}>V_{S G}-\left|V_{T P}\right|\right)$

Transmission line equations

Complex characteristic impedance

$$
Z_{c}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}
$$

Inductance voltage-current relation

$$
V=L \frac{d I}{d t}
$$

Mutual inductance

$$
V_{m n}=L_{m n} \frac{d I_{n}}{d t} \text { where } m \neq n
$$

Characteristic impedance for lossless TL

$$
Z_{0}=\sqrt{\frac{L}{C}}
$$

Capacitance voltage-current relation

$$
I=C \frac{d V}{d t}
$$

