EXAMINATION IN

TSEK37/TEN1

ANALOG CMOS INTEGRATED CIRCUITS

Date: 2013-03-27

Time: 8-12

Location: U7-U10

Aids: Calculator, Dictionary

Teachers: Behzad Mesgarzadeh (5719)

Daniel Svärd (8946)

8 points are required to pass.

Please start each new problem at the top of a page! Only use one side of each paper! Electronic Devices, Department of Electrical Engineering

- 1) Figure 1 shows a differential amplifier. The amplifier is completely symmetric, i.e. $M_1=M_2$, $M_3=M_4$ and $M_5=M_6$. Assume $\lambda \neq 0$ and $\gamma = 0$.
- (a) Draw the low-frequency small-signal model of the circuit. (1 p)
- (b) Derive an expression for the DC gain. (1 p)
- (c) What kind of circuit element do M_5 and M_6 realize? (1 p)

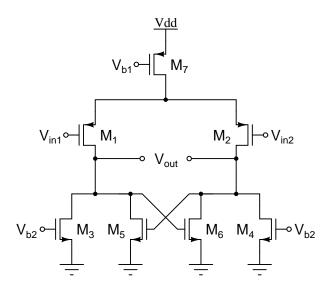


Fig. 1. Differential amplifier.

2) A cascode current mirror is shown in Fig. 2. If $V_Y=1$ V, determine V_b to have a perfect mirror ($I_{out}=I_{ref}$). Assume that all transistors are long channel transistors.

(3 p)

$$\begin{array}{c} \mu_n C_{ox} = 250 \; \mu A/V^2 \\ \lambda_n = 0.1 \; V^{-1} \\ \gamma_n = 0 \\ V_{t0n} = 0.5 \; V \\ V_{dd} = 2 \; V \\ \end{array} \qquad \begin{array}{c} \underline{Vdd} \\ M_3 \\ \hline\\ V_p \\ \hline\\ M_1 \\ M_2 \\ \hline\\ X \\ \end{array}$$

Fig. 2. Cascode current mirror.

- 3) Transimpedance amplifiers are commonly used in optical receiver circuits. This type of amplifier converts an input current, i_{in} , into a voltage, v_{out} . Figure 3 shows an example circuit implementation of such an amplifier. For all subproblems, neglect all capacitances except C_X and C_L ; and assume $\lambda \neq 0$ and $\gamma \neq 0$.
- (a) Draw the small-signal model of the amplifier. (1 p)
- (b) Derive an expression for the transfer function, $R(s) = v_{out}/i_{in}$, of the amplifier. Identify the DC transimpedance and the two poles. (2 p)
- (c) Calculate the DC transimpedance and the location of the poles given the bias conditions in Fig. 3. (2 p)

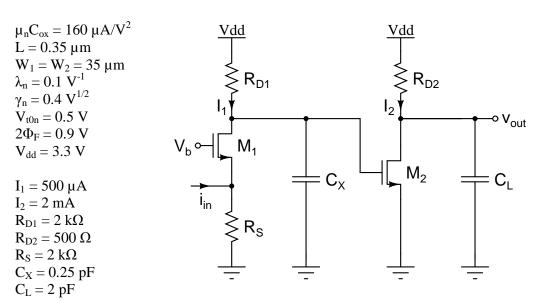


Fig. 3. Transimpedance amplifier.

4) Estimate the propagation delay of a 2-mm wire with a high-frequency characteristic impedance of 50 Ω and resistance per length of r=5 K Ω /m and dielectric constant $\varepsilon_r=4$.

Electronic Devices, Department of Electrical Engineering

5) A 3-stage ring oscillator is shown in Fig. 4. Assume that all of the transistors are identical and ignore their parasitics. Calculate the phase margin of this circuit. Assume R= 3.5 K Ω , C=1 pF, g_m =1 mA/V, and r_o = 10 K Ω . (4 p)

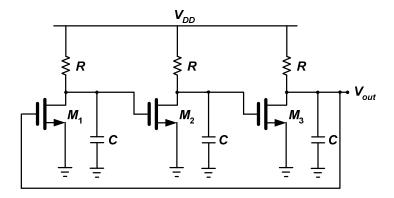
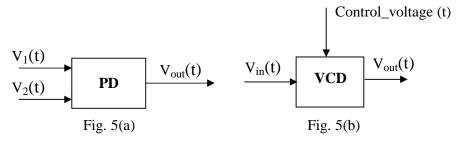
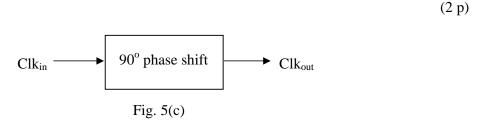


Fig. 4. A three-stage ring oscillator.

- **6)** Assume you have access to the following components:
 - An *ideal* Phase-Detector (PD), shown in Fig. 5(a).
 - Many ideal Voltage-Controlled Delay elements (VCD), such as the one shown in Fig. 5(b).

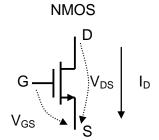


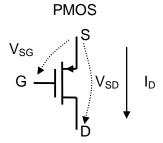
Use the abovementioned components and design a clock phase generator (Fig. 5(c)) which receives a periodic clock signal (Clk_{in}) with an arbitrary frequency, and generates a clock signal (Clk_{out}) with the same frequency but with 90 degree phase shift.



Page 5(6)

TRANSISTOR EQUATIONS





NMOS

• Cutoff:
$$I_D = 0 \qquad (V_{GS} < V_{TN})$$

• Linear mode:

$$I_D = \mu_n C_{ox} \frac{W}{L} \left((V_{GS} - V_{TN}) V_{DS} - \frac{V_{DS}^2}{2} \right)$$
 (V_{GS} > V_{TN}) and (V_{DS} < V_{GS} - V_{TN})

• Saturation mode:

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TN})^2 (I + \lambda V_{DS}) \qquad (V_{GS} > V_{TN}) \text{ and } (V_{DS} > V_{GS} - V_{TN})$$

PMOS

• Cutoff:
$$I_D = 0 \qquad (V_{GS} < |V_{TP}|)$$

• Linear mode:

$$I_D = \mu_p C_{ox} \frac{W}{L} \left(\left(V_{SG} - |V_{TP}| \right) V_{SD} - \frac{V_{SD}^2}{2} \right)$$
 (V_{GS} > |V_{TP}|) and (V_{SD} < V_{SG} - |V_{TP}|)

• Saturation mode:

$$I_D = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{SG} - |V_{TP}|)^2 (I + \lambda V_{SD}) \qquad (V_{GS} > |V_{TP}|) \text{ and } (V_{SD} > V_{SG} - |V_{TP}|)$$

TRANSMISSION LINE EQUATIONS

• Complex characteristic impedance

$$Z_c = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

• Inductance voltage-current relation:

$$V = L \frac{dI}{dt}$$

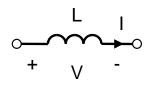
• Characteristic impedance for lossless TL:

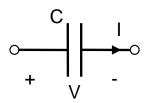
$$Z_0 = \sqrt{\frac{L}{C}}$$

• Capacitance voltage-current relation:

$$I = C \frac{dV}{dt}$$

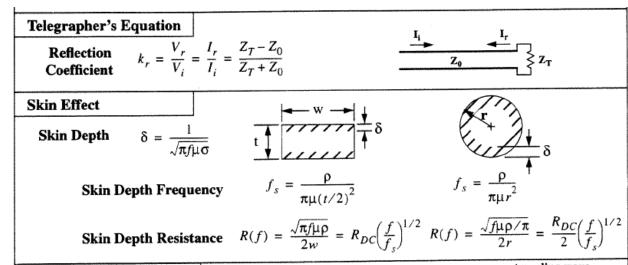
Page 6(6)



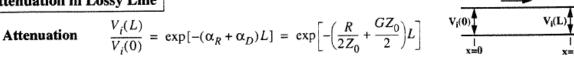


• Mutual inductance:

$$V_{mn} = L_{mn} \frac{dI_n}{dt}$$
 where m \neq n



Attenuation in Lossy Line



Conductor Loss
$$\alpha_R(f) = \frac{R_{DC}}{4Z_0} \left(\frac{f}{f_s}\right)^{1/2}$$
(Round) $\alpha_R(f) = \frac{R_{DC}}{2Z_0} \left(\frac{f}{f_s}\right)^{1/2}$ (Strip)

Dielectric Loss (Homogeneous)
$$\alpha_D(f) = \frac{\pi\sqrt{\varepsilon_r}\tan\delta}{c}f$$
 Dielectric Loss Tangent $\tan\delta = \frac{G}{\omega C} = \frac{\sigma_{Diel}}{\omega\varepsilon_r}$

$R,\!C,\!Z_0$ for Various Geometries (Homogeneous Dielectric, L = $\epsilon\mu/C$)

