EXAMINATION IN

TSEK37/TEN1

ANALOG CMOS INTEGRATED CIRCUITS

Date:	2012-04-13
Time:	14-18
Location:	TER2
Aids:	Calculator, Dictionary
Teachers:	Behzad Mesgarzadeh (5719)
	Ali Fazli (2794)
	Daniel Svärd (8946)

8 points are required to pass.

Please start each new problem at the top of a page! Only use one side of each paper!

1) A current mirror circuit is shown in Fig. 1. If properly sized, this circuit can realize accurate mirroring with a high output impedance while consuming low voltage headroom.

Fig. 1. Current mirror.

- (a) Derive the bounds on V_b such that M_1 and M_2 are in the saturation region. Determine the restriction on the sizing of M_2 for this to be possible. Give the answers in terms of V_{GS1} , V_{GS2} , V_{TH1} and V_{TH2} . (2 p)
- (b) Using the lowest value of V_b from (a), determine the minimum allowable voltage at node P to keep M_3 and M_4 in saturation. Assume that $M_3=M_1$ and that the transistors are sized such that $V_{GS4}=V_{GS2}$. Give the answer in terms of V_{GS3} , V_{GS4} , V_{TH3} and V_{TH4} . (1 p)
- **2)** An amplifier with a DC gain of A_0 and poles at 1 MHz and 450 MHz is connected in a feedback loop with a gain of 4 (i.e. the feedback factor (β) is 1/4). Compute the value of A_0 such that the phase margin is 60°. (2 p)

Hint:
$$\arctan u + \arctan v = \arctan\left(\frac{u+v}{1-uv}\right) \pmod{\pi}, \quad uv \neq 1$$

3) A fully differential current-mirror amplifier is shown in Fig. 2. The bias current of the device M_4 is mirrored *B* times to the output stage, i.e. $I_{D4} = B \times I_{D2}$. A local positive feedback composed of transistors M_3 and M_{3b} is used to enhance the DC gain.

Fig. 2. Current mirror amplifier.

- (a) Disregard the positive feedback containing M_3 - M_{3b} devices and draw the smallsignal model. Determine the DC gain in terms of the transconductance g_m , the conductance g_{ds} , and the mirroring ratio *B*. Assume that $\gamma = 0$. (2 p)
- (b) Consider the positive feedback and derive the DC gain expression. How can the DC gain be enhanced by sizing of the transistors M₃ and M_{3b}?
 (2 p)
- (c) Consider the current-mirror amplifier as a two-pole system and that it is frequency compensated by the load capacitor C_L , rather than miller capacitor. Also, assume that the second pole (non-dominate) occurs in the gate of the transistors M_2 , M_{3b} , and M_4 . Derive the approximate expressions for the two poles. (1 p)
- 4) A lossless interconnect is shown in Fig. 3. At time 0, the voltage step of V_0 drives a transmission line that is splitted into different sections, each driving an inverter with a high impedance input. With the impedance given below, calculate the voltage at A, B and C at the time instant 7.5 ns.

 $R_0 = 75 \Omega, Z_0 = 75 \Omega, Z_1 = 150 \Omega, and Z_2 = 50.$ (4 p)

Fig. 3. A transmition-line circuit.

5) Assume that the output of a voltage-controlled oscillator (VCO) is a sinusoidal as it is shown in Fig. 4. In this figure, ω_0 is the output frequency when V_{cont}=0, K_{VCO} is the gain of the VCO, and V_{cont} is the control voltage of the VCO. Now Assume that we apply a small sinusoidal control voltage to this VCO (i.e., $V_{cont} = V_m \cos(\omega_m t)$). If V_m is small enough to satisfy $K_{VCO}V_m \ll \omega_m$ and $\omega_m < \omega_0$, draw the output spectrum of the VCO. Motivate your answer by presenting the details of your calculations. We can assume that the VCO characteristic is linear. (4 p)

Fig. 4. A voltage-controlled oscillator.

6) A PLL type I with $\zeta = 0.1$ is utilized to generate a 200-MHz carrier frequency. If $\omega_{LPF} = 2\pi \times 28.6 \ KHz$ and the output is to be changed from 201 MHz to 201.5 MHz, how long does it take in the worst-case for the PLL to settle within 100 Hz of its final value? (2 p)

Hint: The step response of a PLL type I with underdamped response is as:

$$\omega_{out}(t) = \left\{ 1 - \frac{1}{\sqrt{1 - \zeta^2}} \cdot e^{-\zeta \omega_n t} \sin\left(\omega_n \sqrt{1 - \zeta^2} t + \theta\right) \right\} \Delta \omega u(t)$$
where

where

 $2\zeta\omega_n = \omega_{LPF}$

Page 5(6)

V_{TN})

TRANSISTOR EQUATIONS

NMOS

٠

٠

 $\textbf{Cutoff:} \qquad \qquad I_D = 0 \qquad (V_{GS} < V_{TN})$

Linear mode:

$$I_D = \mu_n C_{ox} \frac{W}{L} \left((V_{GS} - V_{TN}) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

$$(V_{GS} > V_{TN})$$
 and $(V_{DS} < V_{GS}$ - $V_{TN})$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TN})^{2} (1 + \lambda V_{DS}) \qquad (V_{GS} > V_{TN}) \text{ and } (V_{DS} > V_{GS} - V_{TN})$$

PMOS

- Cutoff: $I_D = 0 \qquad (V_{GS} < |V_{TP}|) \label{eq:ID}$
- Linear mode:

$$I_{D} = \mu_{p} C_{ox} \frac{W}{L} \left(\left(V_{SG} - |V_{TP}| \right) V_{SD} - \frac{V_{SD}^{2}}{2} \right) \qquad (V_{GS} > |V_{TP}|) \text{ and } (V_{SD} < V_{SG} - |V_{TP}|)$$

• Saturation mode:

Saturation mode:

$$I_{D} = \frac{1}{2} \mu_{p} C_{ox} \frac{W}{L} (V_{SG} - |V_{TP}|)^{2} (1 + \lambda V_{SD}) \qquad (V_{GS} > |V_{TP}|) \text{ and } (V_{SD} > V_{SG} - |V_{TP}|)$$

TRANSMISSION LINE EQUATIONS

• Complex characteristic impedance

$$Z_c = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

• Inductance voltage-current relation:

$$V = L \frac{dI}{dt}$$

• Characteristic impedance for lossless TL:

$$Z_0 = \sqrt{\frac{L}{C}}$$

• Capacitance voltage-current relation:

$$I = C \frac{dV}{dt}$$

С

LINKÖPING UNIVERSITY **Ex** Behzad Mesgarzadeh Ali Fazli, Daniel Svärd Electronic Devices, Department of Electrical Engineering

Mutual inductance:

$$V_{mn} = L_{mn} \frac{dI_n}{dt}$$
 where m \neq n

