ANSWERS
 TSEK37 AnAlog CMOS Integrated Circuits
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Date:</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$2014-01-18$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Time:</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$8-12$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Location:</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">U1</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Aids:</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Calculator, Dictionary</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Teachers:</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Behzad Mesgarzadeh (5719)</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Daniel Svärd (8946)</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Date: | $2014-01-18$ |
| :--- | :--- |
| Time: | $8-12$ |
| Location: | U1 |
| Aids: | Calculator, Dictionary |
| Teachers: | Behzad Mesgarzadeh (5719) |
| | Daniel Svärd (8946) |</table-markdown></div>

8 points are required to pass.

Please start each new problem at the top of a page! Only use one side of each paper!

1)

(a)

At time $\mathbf{t}_{\mathbf{1}}$, transistors M1, M5 and M9 have the same bias point. The drain-source voltage drop is therefore equal for all three transistors. The source-gate voltage for transistor M2, M6 and M10 are therefore identical. With $(\lambda=\gamma=0)$, the current through the transistors M2, M6 and M10 will therefore be identical. I_{D} for $\mathrm{M} 10=\mathrm{I}_{\text {ref }}=>\mathrm{I}_{\mathrm{D}}$ for $\mathrm{M} 2=\mathrm{I}_{\mathrm{D}}$ for M5 $=\mathrm{I}_{\text {ref }}$. In a similar manner, transistor M4 and M8 will have identical bias points at time $\mathbf{t}_{\mathbf{2}}$, resulting in identical gate-source voltages for transistor M3 and $M 7$ giving that I_{D} for $M 3=I_{D}$ for $M 7=I_{D}$ for $M 6=I_{r e f}$.

So $I_{\text {out }}$ at time $t_{1}=-I_{\text {ref }}=-10 \mu \mathrm{~A}$ and $I_{\text {out }}$ for time $t_{2}=I_{\text {ref }}=10 \mu \mathrm{~A}$.
(b)

When the down signal is high, transistor M1 will be in the linear region. From (a) we know that the current I_{D} will be $10 \mu \mathrm{~A}$.

Transistor equation for a NMOS transitor in the linear region:

$$
\begin{aligned}
& I_{D}=\mu_{n} C_{o x} \frac{W}{L}\left(\left(V_{G S}-V_{T N}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right) \Rightarrow>V_{D S}=\left(V_{G S}-V_{T N}\right) \pm \sqrt{\left(V_{G S}-V_{T N}\right)^{2}-\frac{2 I_{D}}{\mu_{n} C_{o x} \frac{W}{L}}}=> \\
& V_{D S}=\left\{\begin{array}{l}
0.83 m V \\
(5.799 \mathrm{~V})
\end{array}\right.
\end{aligned}
$$

Transistor M10 is always in saturation. V_{GS} is then given from:

$$
I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T N}\right)^{2}\left(1+\lambda V_{D S}\right) \Rightarrow V_{G S}=\sqrt{\frac{I_{D}}{\left(1+\lambda V_{D S}\right)} \frac{2}{\mu_{n} C_{o x} \frac{W}{L}}}+V_{T N} \Rightarrow V_{G S}=0.4683 \mathrm{~V}
$$

which is also the V_{GS} for transistor M2.

Transistor M 2 is in saturation as long as $\left(\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{TN}}\right)$ and $\left(\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TN}}\right)$
$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TN}}=0.4683 \mathrm{~V}-0.4 \mathrm{~V}=68.3 \mathrm{mV}$
The minimum output voltage is then $\mathrm{V}_{\mathrm{DSM} 1}+\mathrm{V}_{\mathrm{DSM} 2}=0.83 \mathrm{mV}+68.3 \mathrm{mV}=69.1 \mathrm{mV}$

The same calculation as for transistor M1 gives for transistor M4:

$$
\begin{aligned}
& I_{D}=\mu_{p} C_{o x} \frac{W}{L}\left(\left(V_{S G}-\left|V_{T P}\right|\right) V_{S D}-\frac{V_{S D}^{2}}{2}\right)=>V_{S D}=\left(V_{S G}-\left|V_{T P}\right|\right) \pm \sqrt{\left(V_{S G}-\left|V_{T P}\right|\right)^{2}-\frac{2 I_{D}}{\mu_{p} C_{o x} \frac{W}{L}}} \\
& \Rightarrow V_{S D}=\left\{\begin{array}{l}
1.697 m V \\
(5.498 \mathrm{~V})
\end{array}\right.
\end{aligned}
$$

The same calculation as for transistor M10 gives for M7
$I_{D}=\frac{1}{2} \mu_{p} C_{o x} \frac{W}{L}\left(V_{S G}-\left|V_{T P}\right|\right)^{2}\left(1+\lambda V_{S D}\right)=>V_{S G}=\sqrt{\frac{I_{D}}{\left(1+\lambda V_{S D}\right)} \frac{2}{\mu_{p} C_{o x} \frac{W}{L}}}+\left|V_{T P}\right|=>$
$V_{S G}=0.6466 \mathrm{~V}$ which is also the V_{SG} for transistor M3.
Transistor M3 is in saturation as long as $\left(\mathrm{V}_{\mathrm{GS}}>\left|\mathrm{V}_{\mathrm{TP}}\right|\right)$ and $\left(\mathrm{V}_{\mathrm{SD}}<\mathrm{V}_{\mathrm{SG}}-\left|\mathrm{V}_{\mathrm{TP}}\right|\right)$
$\mathrm{V}_{\mathrm{SD}}=\mathrm{V}_{\mathrm{SG}}-\left|\mathrm{V}_{\mathrm{TP}}\right|=0.6466 \mathrm{~V}-0.55 \mathrm{~V}=96.6 \mathrm{mV}$
The maximum output voltage is then $\mathrm{V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{SDM} 4}-\mathrm{V}_{\mathrm{DSM} 3}=3.3-1.697 \mathrm{mV}-96.6 \mathrm{mV}=$ 3.202 V

The output range of the charge pump is thus $69.1 \mathrm{mV}<\mathrm{V}_{\text {out }}<3.202 \mathrm{~V}$.

2)

Start by deriving an expression for each output voltage, $\mathrm{V}_{\text {out1 }}$ and $\mathrm{V}_{\text {out2 }}$, as a function of the input voltages $\mathrm{V}_{\mathrm{in} 1}$ and $\mathrm{V}_{\text {in2 }}$.

$$
\begin{aligned}
& V_{\text {out } 1}=-g_{m 1} R_{D}\left(V_{\text {in1 }}-V_{P}\right) \\
& V_{\text {out } 2}=-g_{m 2} R_{D}\left(V_{\text {in } 2}-V_{P}\right)
\end{aligned}
$$

The voltage at node P is equal to the voltage drop over R_{SS} generated by the total drain current of the two transistors.

$$
\begin{aligned}
& V_{P}=\left(I_{D 1}+I_{D 2}\right) R_{S S}=g_{m 1}\left(V_{i n 1}-V_{P}\right) R_{S S}+g_{m 2}\left(V_{i n 2}-V_{P}\right) R_{S S} \Rightarrow \\
& V_{P}=\frac{g_{m 1} V_{i n 1}+g_{m 2} V_{i n 2}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1} R_{S S}
\end{aligned}
$$

The voltages at outputs, $\mathrm{V}_{\text {out1 }}$ and $\mathrm{V}_{\text {out2 }}$, can then be found by substituting V_{P} for the expression above and simplifying:

$$
\begin{aligned}
& V_{\text {out } 1}=-g_{m 1} R_{D}\left(V_{\text {in1 }}-V_{P}\right)=-\frac{g_{m 1} R_{D}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1}\left(V_{\text {in1 }}+\left(V_{\text {in } 1}-V_{\text {in } 2}\right) g_{m 2} R_{S S}\right) \\
& V_{\text {out } 2}=-g_{m 2} R_{D}\left(V_{\text {in } 2}-V_{P}\right)=-\frac{g_{m 2} R_{D}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1}\left(V_{\text {in } 2}+\left(V_{\text {in } 2}-V_{\text {in } 1}\right) g_{m 1} R_{S S}\right)
\end{aligned}
$$

Now we need to find the gain for the two different input configurations shown below:

Differential mode: $A_{D M-D M}=\frac{V_{\text {odm }}}{V_{\text {idm }}}=\frac{V_{\text {out } 1}-V_{\text {out } 2}}{V_{i n 1}-V_{\text {in } 2}}$
We insert $\mathrm{V}_{\text {in } 1}=\mathrm{V}_{\text {idm }} / 2$ and $\mathrm{V}_{\text {in } 2}=-\mathrm{V}_{\mathrm{idm}} / 2$ into the expressions for $\mathrm{V}_{\text {out1 }}$ and $\mathrm{V}_{\text {out } 2}$ above to get:

$$
\begin{aligned}
& V_{\text {out } 1}=\frac{V_{\text {odm }}}{2}=-\frac{g_{m 1} R_{D}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1}\left(1+2 g_{m 2} R_{S S}\right) \frac{V_{\text {idm }}}{2} \\
& V_{\text {out } 2}=-\frac{V_{\text {odm }}}{2}=\frac{g_{m 2} R_{D}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1}\left(1+2 g_{m 1} R_{S S}\right) \frac{V_{i d m}}{2}
\end{aligned}
$$

Now we find the differential gain as:

$$
A_{D M-D M}=\frac{V_{\text {out } 1}-V_{\text {out } 2}}{V_{\text {idm }}}=-\frac{R_{D}}{2} \frac{g_{m 1}+g_{m 2}+4 g_{m 1} g_{m 2} R_{S S}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1}
$$

Common mode: $A_{C M-D M}=\frac{V_{\text {odm }}}{V_{\text {icm }}}=\frac{V_{\text {out } 1}-V_{\text {out } 2}}{V_{\text {icm }}}$
We insert $\mathrm{V}_{\text {in } 1}=\mathrm{V}_{\text {in } 2}=\mathrm{V}_{\text {icm }}$ into the expressions for $\mathrm{V}_{\text {out1 }}$ and $\mathrm{V}_{\text {out2 }}$ above to get:

$$
\begin{aligned}
& V_{\text {out } 1}=-\frac{g_{m 1} R_{D}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1} V_{\text {icm }} \\
& V_{\text {out } 2}=-\frac{g_{m 2} R_{D}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1} V_{\text {icm }}
\end{aligned}
$$

Now we find the common-mode gain as:

$$
A_{C M-D M}=\frac{V_{\text {out } 1}-V_{\text {out } 2}}{V_{\text {icm }}}=-\frac{\left(g_{m 1}-g_{m 2}\right) R_{D}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1}=-\frac{\Delta g_{m} R_{D}}{\left(g_{m 1}+g_{m 2}\right) R_{S S}+1}
$$

So the common-mode rejection ratio is:
$C M R R=\left|\frac{A_{D M-D M}}{A_{C M-D M}}\right|=\frac{g_{m 1}+g_{m 2}+4 g_{m 1} g_{m 2} R_{S S}}{2 \Delta g_{m}}$
3)
(a) Small-signal model:

Write the nodal equations for the circuit:
KCL @ V_{X} :

$$
g_{m 1} V_{i n}+g_{m 3} V_{X}+s C_{X} V_{X}=0 \Rightarrow V_{X}=-\frac{g_{m 1}}{g_{m 3}+s C_{X}} V_{i n}
$$

KCL @ $\mathrm{V}_{\text {out }}: \quad g_{m 5} V_{X}+s C_{L} V_{\text {out }}+\frac{V_{\text {out }}}{R_{L}}=0 \Rightarrow V_{\text {out }}=-\frac{g_{m 5} R_{L}}{1+s C_{L} R_{L}} V_{X}$

The transfer function is then found to be:

$$
H(s)=\frac{V_{o u t}}{V_{i n}}(s)=\frac{g_{m 1} g_{m 5} R_{L}}{g_{m 3}} \cdot \frac{1}{1+s C_{L} R_{L}} \cdot \frac{1}{1+s \frac{C_{X}}{g_{m 3}}}
$$

(b) We rewrite the transfer function in terms of the DC gain, A_{0}, and the two poles $\omega_{\mathrm{p} 1}$ and $\omega_{\mathrm{p} 2}$.

$$
H(s)=A_{0} \cdot \frac{1}{1+\frac{s}{\omega_{p 1}}} \cdot \frac{1}{1+\frac{s}{\omega_{p 2}}}
$$

where $\quad A_{0}=\frac{g_{m 1} g_{m 5} R_{L}}{g_{m 3}}=6000 g_{m 1} \quad \omega_{p 1}=\frac{1}{C_{L} R_{L}}=\frac{2}{30} \mathrm{Grad} / \mathrm{s} \quad \omega_{p 2}=\frac{g_{m 3}}{C_{X}}=3.28 \mathrm{Grad} / \mathrm{s}$
The unity gain frequency, $\omega_{u}=2 \mathrm{Grad} / \mathrm{s}$, occurs when $\left|H\left(j \omega_{u}\right)\right|=1$.

$$
\begin{aligned}
& \left|H\left(j \omega_{u}\right)\right|=A_{0} \cdot \frac{1}{\sqrt{1+\left(\frac{\omega_{u}}{\omega_{p 1}}\right)^{2}}} \cdot \frac{1}{\sqrt{1+\left(\frac{\omega_{u}}{\omega_{p 2}}\right)^{2}}}=1 \\
& \Rightarrow A_{0}=\sqrt{1+\left(\frac{2 \times 30}{2}\right)^{2}} \cdot \sqrt{1+\left(\frac{2}{3.28}\right)^{2}} \approx 35.1 \Rightarrow g_{m 1}=5.85 \mathrm{mS}
\end{aligned}
$$

The phase margin is defined as $P M=180^{\circ}+\angle \beta H\left(j \omega_{u}\right)=180^{\circ}+\angle H\left(j \omega_{u}\right)$ if $\beta=1$.

$$
\angle H\left(j \omega_{u}\right)=-\arctan \left(\frac{\omega_{u}}{\omega_{p 1}}\right)-\arctan \left(\frac{\omega_{u}}{\omega_{p 2}}\right)=-\arctan \left(\frac{2 \times 30}{2}\right)-\arctan \left(\frac{2}{3.28}\right) \approx-119.5^{\circ}
$$

So the phase margin is

$$
P M=180^{\circ}-119.5^{\circ}=60.5^{\circ}
$$

4)

The total delay $D=m t_{p}+m\left[0.38\left(\frac{d}{m}\right)^{2} r c\right]=m t_{p}+0.38 \frac{d^{2}}{m} r c$
For optimum delay we should have $\frac{d D}{d m}=t_{p}-0.38 \frac{d^{2}}{m^{2}} r c=0$
$m_{\text {opt }}=\sqrt{\frac{0.38 r c d^{2}}{t_{p}}}$

Replacing the values for $r c, d$ and t_{p} results in:

$$
m_{o p t}=\sqrt{\frac{0.38 \times 960 \times 10^{-6}\left(2 \times 10^{-3}\right)^{2}}{50 \times 10^{-12}}}=5.4
$$

Since the line is non-inverting then we choose $m=6$.

5)

a) Initially we assume that $V_{\text {out }}=0$ and there is no charge on $C . M_{3}$ is off and M_{2} is on and M_{1} charges the capacitor. Then $\mathrm{V}_{\mathrm{DS} 1}=3$ and $\mathrm{V}_{\mathrm{GS} 1}-\left|\mathrm{V}_{\mathrm{t}}\right|=1.5$ and M_{1} is in saturation:
$I_{1}=\frac{1}{2} \times 50 \times 40 \times 10^{-6} \times(2-0.5)^{2}=2.25 \mathrm{~mA}$
M_{1} will be in saturation region until $\mathrm{V}_{\mathrm{DS} 1}=\mathrm{V}_{\mathrm{GS} 1}-\left|\mathrm{V}_{\mathrm{t}}\right|=1.5 \mathrm{~V}$ or the voltage on capacitor is 1.5 V which is the switching threshold for the coming stage. To get this point:

$$
\Delta t=\frac{C \cdot \Delta V}{I_{1}}=\frac{150 \times 10^{-15} \times 1.5}{2.25 \times 10^{-3}}=100 \mathrm{ps}
$$

From this point on, after $200+225=425 \mathrm{ps} \mathrm{V}_{\text {out }}$ goes 1 . Now we should calculate the time in which the output of the first stage reaches to V_{DD}. When M_{1} enters the linear region, to have a rough estimation about the charging time we can assume that the capacitor is charged with a constant current which is the average of the currents in the beginning and end of the transition. Then:
$I_{1}\left(V_{c}=1.5\right)=50 \times 40 \times 10^{-6} \times\left(1.5^{2}-\frac{1.5^{2}}{2}\right)=2.25 \mathrm{~mA}$
$I_{1}\left(V_{c}=3\right)=50 \times 40 \times 10^{-6} \times\left(1.5 \times 0-\frac{0^{2}}{2}\right)=0 \mathrm{~mA}$
$\Delta t=\frac{C \cdot \Delta V}{I_{\text {lavg }}}=\frac{150 \times 10^{-15} \times 1.5}{1.125 \times 10^{-3}}=200 \mathrm{ps}$
Since 200 ps is less than the total propagation delay in the second and third stages (425 ps) then the voltage at the output of the first stage reaches V_{DD} before the next transition.

When $V_{\text {out }}$ goes high, M_{3} is on and M_{2} is off and C is discharged by M_{4}. To reach $V_{D D} / 2$ which is the switching point for the coming stage:
$I_{4}=\frac{1}{2} \times 200 \times 20 \times 10^{-6} \times(2-0.5)^{2}=4.5 \mathrm{~mA}$
M_{4} will be in saturation region until $\mathrm{V}_{\mathrm{DS} 4}=\mathrm{V}_{\mathrm{GS} 4}-\mathrm{V}_{\mathrm{t}}=1.5 \mathrm{~V}$ or the voltage on capacitor is 1.5 V which is the switching threshold for the coming stage. To get this point:
$\Delta t=\frac{C \cdot \Delta V}{I_{4}}=\frac{150 \times 10^{-15} \times 1.5}{4.5 \times 10^{-3}}=50 \mathrm{ps}$

From this point on, after $425 \mathrm{ps} \mathrm{V}_{\text {out }}$ goes low. Using a similar method we can be sure that the capacitor is completely discharged before the next transition. Then $\mathrm{V}_{\text {out }}$ is $425+50=475 \mathrm{ps}$ at high and $425+100=525 \mathrm{ps}$ at low. The period is $475+525=1000 \mathrm{ps}=1$ ns and the oscillation frequency is 1 GHz .
6)

