ANSWERS

TSEK37 ANALOG CMOS INTEGRATED CIRCUITS

Date:	2013-03-27
Time:	8-12
Location:	U7-U10
Aids:	Calculator, Dictionary
Teachers:	Behzad Mesgarzadeh (5719)
	Daniel Svärd (8946)

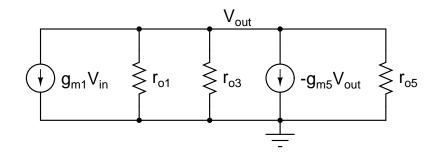
8 points are required to pass.

Please start each new problem at the top of a page! Only use one side of each paper!

Page 2(7)

1)

(a) Small-signal model:



(b) Find the DC gain:

KCL at Vout:

$$g_{m1}V_{in} + (g_{ds1} + g_{ds3} + g_{ds5} - g_{m5})V_{out} = 0 \Longrightarrow$$

$$\frac{V_{out}}{V_{in}} = -\frac{g_{m1}}{g_{ds1} + g_{ds3} + g_{ds5} - g_{m5}} = -\frac{g_{m1} \frac{r_{o1} r_{o3} r_{o5}}{r_{o1} r_{o3} + r_{o3} r_{o5} + r_{o1} r_{o5}}}{1 - g_{m5} \frac{r_{o1} r_{o3} r_{o5}}{r_{o1} r_{o3} + r_{o3} r_{o5} + r_{o1} r_{o5}}} = -\frac{g_{m1} (r_{o1} || r_{o3} || r_{o5})}{1 - g_{m5} (r_{o1} || r_{o3} || r_{o5})}$$

(c) What kind of circuit element do M_5 and M_6 realize?

Answer: From (b) we can see that M5(M6) realize a negative resistor. If sized properly this can be used to increase the gain of the circuit.

2)

To have a perfect mirror $V_{DS1} = V_{DS2} = V_Y = 1$ V. Thus $V_{DS3} = V_{DD}$ - $V_{DS2} = 2 - 1 = 1$ V

$$I_{D2} = I_{D3} \Longrightarrow (1 - 0.5)^2 (1 + 0.1 \times 1) = 4 \times (V_{GS3} - 0.5)^2 (1 + 0.1 \times 1) \Longrightarrow V_{GS3} = 0.75 \text{ V}$$

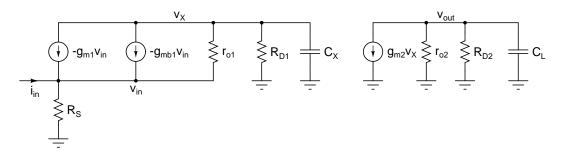
So: $V_b = 1 + V_{GS3} = 1.75$ V.

Answer: $V_b = 1.75 V.$

Page 3(7)

3)

(a) Small-signal model:

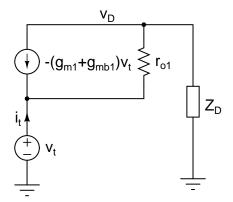


(b) Derive the transfer function. Find expressions for the DC transimpedance and the two poles.

We can divide the transfer function into three separate transfer functions:

$$R(s) = \frac{v_{out}}{i_{in}}(s) = \frac{v_{in}}{i_{in}} \frac{v_X}{v_{in}} \frac{v_{out}}{v_X}(s)$$

The first one is the input impedance of the circuit. It is the parallel combination of the source resistance R_s and the impedance looking into the source of the transistor. To find the latter, we use the following model of the first stage transistor:



We see that
$$i_t = \frac{v_D}{Z_D}$$
 where $Z_D = \left(R_{D1} \| \frac{1}{sC_X} \right) = \frac{R_{D1}}{1 + sC_X R_{D1}}$.
And $Z_{in,M1} = \frac{v_t}{i_t} = \frac{v_t}{v_D} Z_D$ (1)

KCL at v_D:

$$\left(\frac{1}{Z_D} + \frac{1}{r_{o1}}\right) v_D = \left(g_{m1} + g_{mb1} + \frac{1}{r_{o1}}\right) v_t \Longrightarrow \frac{v_t}{v_D} = \frac{\frac{1}{Z_D} + \frac{1}{r_{o1}}}{g_{m1} + g_{mb1} + \frac{1}{r_{o1}}}$$
(2)

So from (1) and (2):

_

$$Z_{in,M1} = \frac{1 + \frac{Z_D}{r_{o1}}}{g_{m1} + g_{mb1} + \frac{1}{r_{o1}}} = \frac{r_{o1} + Z_D}{1 + (g_{m1} + g_{mb1})r_{o1}} = \frac{r_{o1} + R_{D1}}{\underbrace{1 + (g_{m1} + g_{mb1})r_{o1}}_{Z_0}} \frac{1 + sC_X(R_{D1}||r_{o1})}{1 + sC_XR_{D1}}$$
(3)

The input impedance is the parallel combination of R_s and $Z_{in,M1}$

$$Z_{in} = \frac{v_{in}}{i_{in}} = \frac{R_s Z_{in,M1}}{R_s + Z_{in,M1}} = \frac{R_s Z_0}{R_s + Z_0} \frac{1 + s C_x \left(R_{D1} \| r_{o1}\right)}{1 + s C_x \frac{R_s R_{D1} + Z_0 \left(R_{D1} \| r_{o1}\right)}{R_s + Z_0}}$$
(4)

The second transfer function, from v_{in} to v_x is easily found from (2).

$$\frac{v_{X}}{v_{in}} = \frac{g_{m1} + g_{mb1} + \frac{1}{r_{o1}}}{\frac{1}{Z_{D}} + \frac{1}{r_{o1}}} = \frac{\left[1 + \left(g_{m1} + g_{mb1}\right)r_{o1}\right]R_{D1}}{r_{o1} + R_{D1}}\frac{1}{1 + sC_{X}\left(R_{D1}\|r_{o1}\right)}$$
(5)

The third transfer function, from v_x to v_{out} , can be found from KCL at v_{out} :

$$\left(\frac{1}{r_{o2}} + \frac{1}{R_{D2}} + sC_L\right) v_{out} = -g_{m2}v_x \Longrightarrow \frac{v_{out}}{v_x} = -\frac{g_{m2}(R_{D2} || r_{o2})}{1 + sC_L(R_{D2} || r_{o2})}$$
(6)

(4), (5) and (6) then gives the final transfer function as

$$\frac{v_{out}}{i_{in}} = \frac{v_{in}}{i_{in}} \frac{v_x}{v_{in}} \frac{v_{out}}{v_x} = R_0 \frac{1}{1 + \frac{s}{\omega_{p1}}} \frac{1}{1 + \frac{s}{\omega_{p2}}}$$

where,

$$R_{0} = -\frac{g_{m2}(R_{D2} || r_{o2})[1 + (g_{m1} + g_{mb1})r_{o1}]R_{D1}}{[1 + (g_{m1} + g_{mb1})r_{o1}]R_{S} + r_{o1} + R_{D1}} \cdot R_{S}$$
$$\omega_{p1} = \frac{1}{C_{L}(R_{D2} || r_{o2})}$$
$$\omega_{p2} = \frac{1}{C_{X}(R_{D1} || [(1 + (g_{m1} + g_{mb1})r_{o1})R_{S} + r_{o1}]])}$$

(c) Calculate the value of the DC transimpedance and the poles found in (b).

We need to find the values for g_{m1} , g_{mb1} , r_{o1} , g_{m2} and r_{o2} . We have:

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda_n V_{DS})$$
$$V_{TH} = V_{i0n} + \gamma \sqrt{V_{SB} + 2\Phi_F}$$

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}(1+\lambda_{n}V_{DS})}$$

$$g_{mb} = \frac{\partial I_{D}}{\partial V_{BS}} = g_{m}\left(-\frac{\partial V_{TH}}{\partial V_{BS}}\right) = g_{m}\left(\frac{\partial V_{TH}}{\partial V_{SB}}\right) = g_{m}\frac{\gamma}{2\sqrt{V_{SB}+2\Phi_{F}}}$$

$$g_{ds} = \frac{1}{r_{o}} = \frac{\partial I_{D}}{\partial V_{DS}} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{GS}-V_{TH})^{2}\lambda_{n} = \frac{\lambda_{n}I_{D}}{1+\lambda_{n}V_{DS}}$$

We calculate the parameters we need to find V_{DS1} , V_{SB1} and V_{DS2} .

$$V_{DS1} = V_{dd} - I_1 (R_{D1} + R_s) = 1.3 \text{ V}$$
$$V_{SB1} = I_1 R_s = 1 \text{ V}$$
$$V_{DS2} = V_{dd} - I_2 R_{D2} = 2.3 \text{ V}$$

Plugging in the values gives:

$g_{m1} = 4.25 \text{ mS}$	$g_{m2} = 8.87 \text{ mS}$
$g_{mb1} = 0.62 \text{ mS}$	$r_{o2} = 6.15 \text{ k}\Omega$
$r_{o1} = 22.6 \text{ k}\Omega$	

Using the expressions from (b) yields the following values for the DC transimpedance and the poles:

 $R_0 = -7385 \ \Omega$

 $\omega_{p1} = 1.08 \text{ Grad/s} = 172.1 \text{ MHz}$

 $\omega_{p2} = 2.02 \text{ Grad/s} = 320.9 \text{ MHz}$

Page 6(7)

$$R = r \cdot d = 5 \times 10^3 \times 2 \times 10^{-3} = 10 < 2Z_0 \times \ln(2) = 2 \times 50 \times 0.69 = 69$$

Then the wire is an LC wire:

$$t_d = \frac{d}{v} = \frac{d}{\frac{C_0}{\sqrt{\varepsilon_r}}} = \frac{2 \times 10^{-3}}{\frac{3 \times 10^8}{\sqrt{4}}} = 13.4 \text{ ps}$$

5)

The stage gain is $-g_m R_{tot}$, where $R_{tot} = R//r_o$. Circuit has three poles as:

$$\omega_{p1} = \omega_{p2} = \omega_{p3} = \frac{1}{R_{tot}C}$$

Open-loop transfer function: $H(s) = \frac{(-g_m R_{tot})^3}{(1 + R_{tot} Cs)^3}$

To calculate the phase margin, we solve $|H(j\omega_u)| = 1$ to find the unity-gain frequency. Thus:

$$\frac{g_m^3 R_{tot}^3}{\left|1 + j\omega_u R_{tot} C\right|^3} = 1 \rightarrow \omega_u = 9.2 \times 10^9 \text{ rad/s}$$

The phase of open-loop transfer function is:

$$-3\tan^{-1}(R_{tot}C\omega_u) = -\tan^{-1}(2.4) = -202^{\circ}$$

Thus the phase margin is $-202 + 180 = -22^{\circ}$. Due to this negative phase margin, the feed-back loop is unstable and it oscillates.

6)

A DLL does the job. We need $360^{\circ}/90^{\circ} = 4$ voltage controlled delay elements (VCDs) in the voltage controlled delay line. The block diagram is shown below.

