ANSWERS

TSEK37 AnAlog CMOS InTEGRATED Circuits

Date: 2012-04-13
Time:
14-16
Location: TER2
Aids:
Calculator, Dictionary
Teachers: Behzad Mesgarzadeh (5719)
Ali Fazli (2794)
Daniel Svärd (8946)

8 points are required to pass.

Please start each new problem at the top of a page! Only use one side of each paper!
1)
(a) For M_{1} to be in saturation we have:

$$
V_{G S 1}-V_{T H 1} \leq V_{D S 1} \Rightarrow V_{G S 1}-V_{T H 1} \leq V_{b}-V_{G S 2}
$$

For M_{2} to be in saturation we have:

$$
V_{G S 2}-V_{T H 2} \leq V_{D S 2} \Rightarrow V_{b}-V_{T H 2} \leq V_{G S 1}
$$

So combining these two expressions we get the following bounds on V_{b} :

$$
V_{G S 2}+\left(V_{G S 1}-V_{T H 1}\right) \leq V_{b} \leq V_{G S 1}+V_{T H 2}
$$

A solution to this relation only exists if

$$
V_{G S 2}+\left(V_{G S 1}-V_{T H 1}\right) \leq V_{G S 1}+V_{T H 2} \Rightarrow V_{G S 2}-V_{T H 2} \leq V_{T H 1}
$$

This means that we must size M_{2} such that its overdrive voltage is less than one threshold voltage.
(b) For M_{4} to be in saturation we have:

$$
V_{G S 4}-V_{T H 4} \leq V_{D S 4} \Rightarrow V_{b}-V_{T H 4} \leq V_{P}
$$

So for the lowest V_{P} and the lowest V_{b} we have:

$$
V_{P}=V_{b}-V_{T H 4}=V_{G S 2}+V_{G S 1}-V_{T H 1}-V_{T H 4}
$$

If $\mathrm{M}_{3}=\mathrm{M}_{1}$ and $\mathrm{V}_{\mathrm{GS} 4}=\mathrm{V}_{\mathrm{GS} 2}$, then:

$$
V_{P}=\left(V_{G S 3}-V_{T H 3}\right)+\left(V_{G S 4}-V_{T H 4}\right)
$$

So the minimum voltage headroom consumed by the current mirror is two overdrive voltages.
2) The figure below shows a general feedback system.

The closed-loop transfer function of this system can be found to be

$$
\frac{Y(j \omega)}{X(j \omega)}=\frac{H(j \omega)}{1+\beta H(j \omega)} .
$$

From the problem description we have that $\beta=1 / 4$ and

$$
H(j \omega)=\frac{A_{0}}{\left(1+j \frac{\omega}{\omega_{p 1}}\right)\left(1+j \frac{\omega}{\omega_{p 2}}\right)},
$$

where $\omega_{\mathrm{p} 1}=2 \pi \times 1 \mathrm{Mrad} / \mathrm{s}$ and $\omega_{\mathrm{p} 2}=2 \pi \times 450 \mathrm{Mrad} / \mathrm{s}$.
To find the phase margin we need to look at the loop transfer function $\beta \mathrm{H}(\mathrm{j} \omega)$. To make calculations easier we first rewrite the loop transfer function on complex exponential form:

$$
\begin{aligned}
& \beta H(j \omega)=\frac{\beta A_{0}}{\sqrt{1+\left(\frac{\omega}{\omega_{p 1}}\right)^{2}} \exp \left(j \arctan \frac{\omega}{\omega_{p 1}}\right) \sqrt{1+\left(\frac{\omega}{\omega_{p 2}}\right)^{2}} \exp \left(j \arctan \frac{\omega}{\omega_{p 2}}\right)}= \\
& =\frac{\beta A_{0}}{\sqrt{1+\left(\frac{\omega}{\omega_{p 1}}\right)^{2}} \sqrt{1+\left(\frac{\omega}{\omega_{p 2}}\right)^{2}}} \times \exp \left[-j\left(\arctan \frac{\omega}{\omega_{p 1}}+\arctan \frac{\omega}{\omega_{p 2}}\right)\right]
\end{aligned}
$$

We now look at the phase response to find the frequency $\left(\omega_{u}\right)$ at which the phase has shifted $60^{\circ}-180^{\circ}=-120^{\circ}$. Here we use the identity from the hint.

$$
\begin{aligned}
-\arctan \frac{\omega_{u}}{\omega_{p 1}}-\arctan \frac{\omega_{u}}{\omega_{p 2}} & =-120^{\circ} \Leftrightarrow-\arctan \left(\frac{\omega_{u}\left(\omega_{p 1}+\omega_{p 2}\right)}{\omega_{p 1} \omega_{p 2}-\omega_{u}^{2}}\right)=-120^{\circ} \\
& \Rightarrow \frac{\omega_{u}\left(\omega_{p 1}+\omega_{p 2}\right)}{\omega_{p 1} \omega_{p 2}-\omega_{u}^{2}}=-\sqrt{3}
\end{aligned}
$$

Solving this equation for ω_{u} and plugging in the values for the poles gives:

$$
\omega_{u}=\frac{\left(\omega_{p 1}+\omega_{p 2}\right) \pm \sqrt{\left(\omega_{p 1}+\omega_{p 2}\right)^{2}+12 \omega_{p 1} \omega_{p 2}}}{2 \sqrt{3}}=\left\{\begin{array}{r}
1646834563 \mathrm{rad} / \mathrm{s} \\
-10787536.48 \mathrm{rad} / \mathrm{s}
\end{array}\right.
$$

Since the second solution is negative, we use the first solution for the frequency of -120 degrees phase shift. Now we can look at the magnitude of the loop transfer function to find the value of A_{0} that yields a unity gain frequency of ω_{u}.

$$
|\beta H(j \omega)|=\frac{\beta A_{0}}{\sqrt{1+\left(\frac{\omega_{u}}{\omega_{p 1}}\right)^{2}} \sqrt{1+\left(\frac{\omega_{u}}{\omega_{p 2}}\right)^{2}}}=1
$$

Solving this equation for A_{0} and plugging in the values for $\beta, \omega_{\mathrm{u}}, \omega_{\mathrm{p} 1}$ and $\omega_{\mathrm{p} 2}$ gives:

$$
A_{0}=\frac{1}{\beta} \sqrt{1+\left(\frac{\omega_{u}}{\omega_{p 1}}\right)^{2}} \sqrt{1+\left(\frac{\omega_{u}}{\omega_{p 2}}\right)^{2}} \approx 1213
$$

The DC gain of the amplifier must therefore be $1213 \mathrm{~V} / \mathrm{V}$ or 61.7 dB .
3)
(a) The half-circuit and corresponding small-signal model is shown below.

Writing two KCLs at nodes V_{X} and Vout and noting that $\mathrm{g}_{\mathrm{ds}}=\mathrm{ro}^{-1}$ we get: at node V_{X} :

$$
\begin{equation*}
g_{\mathrm{m} 1} \operatorname{Vin}+\left(g_{\mathrm{ds} 1}+g_{\mathrm{m} 2}+g_{\mathrm{ds} 2}\right) \mathrm{V}_{\mathrm{x}}=0 \Rightarrow \frac{\mathrm{~V}_{\mathrm{x}}}{\operatorname{Vin}}=\frac{-g_{\mathrm{m} 1}}{g_{\mathrm{ds} 1}+g_{\mathrm{ds} 2}+g_{\mathrm{m} 2}} \tag{1}
\end{equation*}
$$

at node $\mathrm{V}_{\text {out }}$:

$$
\begin{equation*}
g_{\mathrm{m} 4} \mathrm{Vx}+\left(\mathrm{g}_{\mathrm{ds} 4}+\mathrm{g}_{\mathrm{ds} 5}\right) \text { Vout }=0 \tag{2}
\end{equation*}
$$

Combining (1) and (2) we obtain

$$
\begin{equation*}
\Rightarrow \quad \text { DCgain }=\frac{\text { Vout }}{\text { Vin }}=\frac{g_{\mathrm{m} 1}}{g_{d s 1}+g_{d s}+g_{\mathrm{m} 2}} \cdot \frac{g_{\mathrm{m} 4}}{g_{\mathrm{ds} 4}+g_{d s} 5} \tag{3}
\end{equation*}
$$

(b) The half-circuit and corresponding small-signal model is shown below.

Due to transistor M_{3}, two more terms appers in equation (1) as given

$$
g_{\mathrm{m} 1} \operatorname{Vin}+\left(\mathrm{g}_{\mathrm{ds} 1}+\mathrm{g}_{\mathrm{m} 2}+\mathrm{g}_{\mathrm{ds} 2}+\mathrm{g}_{\mathrm{ds} 3}-\mathrm{g}_{\mathrm{m} 3}\right) \mathrm{V}_{\mathrm{x}}=0 \Rightarrow
$$

$$
\begin{equation*}
\frac{V_{x}}{V \text { in }}=\frac{-g_{m 1}}{g_{d s 1}+g_{d s 2}+g_{m}+g_{d s 3}-g_{m 3}} \tag{4}
\end{equation*}
$$

at node $\mathrm{V}_{\text {out }}$: similar to part (b)

$$
\begin{equation*}
g_{m 4} \mathrm{Vx}+\left(\mathrm{g}_{\mathrm{ds} 4}+\mathrm{g}_{\mathrm{ds} 5}\right) \text { Vout }=0 \tag{5}
\end{equation*}
$$

Combining (4) and (5) we obtain

$$
\begin{equation*}
\Rightarrow \quad \text { DCgain }=\frac{\text { Vout }}{\text { Vin }}=\frac{g_{m 1}}{g_{d s 1}+g_{d s 2}+g_{m 2}+g_{d s 3}-g_{m 3}} \cdot \frac{g_{m 4}}{g_{d s 4}+g_{d s 5}} \tag{6}
\end{equation*}
$$

As can be seen from (6), the transistor M_{3} can be sized such that the transconductance $\mathrm{g}_{\mathrm{m} 3}$ to be $70-80 \%$ of the term $\mathrm{g}_{\mathrm{ds} 1}+\mathrm{g}_{\mathrm{ds} 2}+\mathrm{g}_{\mathrm{m} 2}+\mathrm{g}_{\mathrm{ds} 3}$. This method enhances the DC gain.
(c) The dominate pole due to load capacitance C_{L} :

$$
\begin{equation*}
\mathrm{P}_{1}=\frac{1}{2 \pi \cdot\left(\mathrm{r}_{\mathrm{o} 4} / / \mathrm{r}_{\mathrm{o} 5}\right) \cdot \mathrm{C}_{\mathrm{L}}} \tag{7}
\end{equation*}
$$

The 2 nd pole due to parasitic capacitance C_{C} at the gate of M_{2}, M_{3}, and M_{4}, mainly because of the gate-source capacitance of the devices.

$$
\begin{equation*}
P_{2}=\frac{1}{2 \pi \cdot\left(1 / g_{\mathrm{m} 2}\right) \cdot \mathrm{C}_{\mathrm{C}}}=\frac{\mathrm{g}_{\mathrm{m} 2}}{2 \pi \cdot \mathrm{C}_{\mathrm{C}}} \tag{8}
\end{equation*}
$$

4)

From A:

$$
\Gamma_{\mathrm{r}, \mathrm{~A}}=\frac{\mathrm{Z}_{1} / / \mathrm{Z}_{2}-\mathrm{Z}_{0}}{\mathrm{Z}_{1} / / \mathrm{Z}_{2}+\mathrm{Z}_{0}}=-1 / 3, \quad \mathrm{~T}_{\mathrm{A}}=1+\frac{\mathrm{Z}_{1} / / \mathrm{Z}_{2}-\mathrm{Z}_{0}}{\mathrm{Z}_{1} / / \mathrm{Z}_{2}+\mathrm{Z}_{0}}=+2 / 3
$$

From B:

$$
\Gamma_{\mathrm{r}, \mathrm{~B}}=\frac{\mathrm{Z}_{0} / / \mathrm{Z}_{2}-\mathrm{Z}_{1}}{\mathrm{Z}_{0} / / \mathrm{Z}_{2}+\mathrm{Z}_{1}}=-2 / 3 \quad, \quad \mathrm{~T}_{\mathrm{B}}=1+\frac{\mathrm{Z}_{0} / / \mathrm{Z}_{2}-\mathrm{Z}_{1}}{\mathrm{Z}_{0} / / \mathrm{Z}_{2}+\mathrm{Z}_{1}}=+1 / 3
$$

From C:

$$
\Gamma_{\mathrm{r}, \mathrm{C}}=\frac{\mathrm{Z}_{0} / / \mathrm{Z}_{1}-\mathrm{Z}_{2}}{\mathrm{Z}_{0} / / \mathrm{Z}_{1}+\mathrm{Z}_{2}}=0, \quad \mathrm{~T}_{\mathrm{C}}=1+\frac{\mathrm{Z}_{0} / / \mathrm{Z}_{1}-\mathrm{Z}_{2}}{\mathrm{Z}_{0} / / \mathrm{Z}_{1}+\mathrm{Z}_{2}}=1
$$

at $7.5 \mathrm{~ns}: \mathrm{V}_{\mathrm{A}}=2 / 3 \mathrm{~V}_{0}, \mathrm{~V}_{\mathrm{B}}=4 / 3 \mathrm{~V}_{0}$ and $\mathrm{V}_{\mathrm{C}}=2 / 3 \mathrm{~V}_{0}$
5)

See example 14.17 in the text book and also lecture notes. Spectrum consists of a carrier tone at ω_{0} and two tones at $\omega_{0}-\omega_{m}$ and $\omega_{0}+\omega_{m}$.
6)

The PLL expereinces a frequency step of 0.5 MHz and the final value of the PLL output frequency change should be within 100 Hz from 0.5 MHz . For the worst-case, we can put the sine function equal to 1 . Then:
$\omega_{\text {out }}(t)=\left\{1-\frac{1}{\sqrt{1-\zeta^{2}}} \cdot e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}}+\theta\right)\right\} \Delta \omega u(t)$
$\frac{1}{\sqrt{1-\zeta^{2}}} \approx 1 \Rightarrow$
$0.5 \times 10^{6}-100=\left(1-e^{-\zeta \omega_{n} t_{s}}\right) \times 0.5 \times 10^{6} \Rightarrow e^{-\zeta \omega_{n} t_{s}}=\frac{100}{0.5 \times 10^{6}}$
$e^{-\zeta \omega_{n} t_{s}}=2 \times 10^{-4} \Rightarrow \zeta \omega_{n} t_{s}=8.5 \Rightarrow t_{s}=\frac{17}{\omega_{L P F}}=94.6 \mu \mathrm{~s}$

