

Exercises for Tutorial 4: Frequency Response and Stability

1) Problem 10.1 in the course book.

 $A_0 = 31.3 \text{ dB (Using linear approximation} = 29.9 \text{ dB)}$

- 2) Problem 10.9 in the course book. In part (b) assume that the gain crossover point is the same as that of part (a). Also assume $\mu_n C_{ox} = 134~\mu A/V^2$, $\lambda_n = 0.1~V^{-1}$ and $\lambda_p = 0.2~V^{-1}$. All transistors are in saturation region.
 - a) $PM = 60.8^{\circ}$ (Using linear approximation = 56.3°)
 - b) $C_{Ymax} = 516 \text{ fF (Using linear approximation} = 434 \text{ fF)}$
- 3) Figure 8 shows an amplifier schematic. For simplicity we can ignore all parasitics of M_1 and M_2 . Also, we assume $g_{m1} \gg 1/r_{o1}$ and $\gamma = 0$.
 - a) Determine the transfer function of the amplifier.

$$H(s) = \frac{g_{m1}}{g_{m1} + sC_1} \frac{-g_{m2}(R \parallel r_{o2})}{1 + s(R \parallel r_{o2})C_2}$$

b) If $g_{m1}=g_{m2}=1$ mA/V, $R=r_{o2}=20$ $k\Omega$ and $C_1=C_2=1$ pF, calculate the phase margin of the circuit.

$$PM = 59.3^{\circ}$$

c) Use the assumptions in part (b) to calculate the AC gain, if the input frequency is $f = \frac{1}{2\pi} \times 10^8 \ Hz.$

$$A_{ac} = 7$$

Figure 8 An amplifier schematic.

2015 8/14

- 4) Figure 9 shows an amplifier schematic. For simplicity we can ignore all parasitics of M_1 and M_2 . Also we assume $\lambda=0$.
 - a) Determine the transfer function of the amplifier.

$$H(s) = -\frac{g_{m1}(1 + sRC_1)}{s^2RC_1C_2 + s(C_1 + C_2) + g_{m2}}$$

- b) If the amplifier behaves like a single-pole system, show $g_{m2}R=1$.
- c) If $g_{m1}=g_{m2}=0.32~mA/V$, $R=5~k\Omega$, $C_1=0.2~pF$ and $C_2=1~pF$, calculate the phase shift yhrough the amplifier circuit for an input signal with f=143.3~MHz.

Phase shift =
$$72.4^{\circ}$$

Figure 9 An amplifier schematic.

5) An amplifier circuit has two poles at $100 \, Mrad/s$ and $500 \, Mrad/s$, with no zeros. Calculate the DC gain of the amplifier to get a phase margin of 90° .

$$A_0 = 2.7$$

2015 9/14

- 6) Figure 10 shows a source-follower circuit. For simplicity we can ignore all parasitics. Also we assume $\lambda=0$.
 - a) Determine the transfer function of the circuit.

$$H(s) = \frac{g_{m1} + sC_1(1 + g_{m1}R)}{s^2RC_1C_2 + s(g_{m1}RC_1 + C_1 + C_2) + g_{m1}}$$

b) If $g_{m1}=1$ mA/V, R=10 $k\Omega$, $C_1=1$ pF and $C_2=0.1$ pF, calculate the AC gain and the phase shift through the source-follower circuit for an input frequency of 5 Grad/s.

$$A_{ac} = 0.9$$

Phase shift = 22.3°

Figure 10 Source follower.

2015 10/14