

## **Exercises for Tutorial 1: Single Ended Amplifiers**

- 1. Problem 3.20 in the course book
- 2. Problem 3.21(h) in the course book
- 3. Problem 3.27 in the course book. Assume  $\mu_n C_{ox} = 200 \, \mu A/V^2$ ,  $V_{t0,n} = 0.5 \, V$ ,  $\left| 2\Phi_f \right| = 0.9 \, V$  and  $V_{DD} = 3 \, V$ . Also assume that in part (a) both transistors are in saturation region.
- 4. A two-stage single-ended amplifier is shown in Figure 1. Calculate the small-signal voltage gain and the output resistance. Assume  $g_m \gg 1/r_{o1}$  and  $R_D \ll r_{o2}$ . ( $\lambda \neq 0$  and  $\gamma = 0$ ).

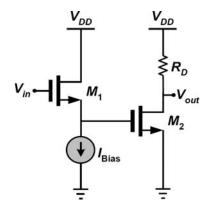



Figure 1 A two-stage amplifier

5. Using the small-signal model, calculate the voltage gain of the cascade stage shown in Figure 2 For both transistors we assume  $g_m \gg g_{mb}$  and  $r_o \to \infty$ .

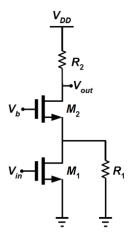



Figure 2 A cascode amplifier stage

2015 1/8