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Overview

• Razavi: Chapter 12, mainly pp. 767-798.
–12.1     General considerations
–12.2 - 12.3 PA classes
–12.4 - 12.8 highlights: cascodes, matching, polar 
modulation, outphasing, Doherty  
(a few slides only).

• Lee: Chapter 15
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ADC Modulation
and DSP DAC Upconversion

Power
Amplifier

Baseband
Signal

RFBaseband

For	WLAN	using	65	nm	
CMOS,	Fritzin	&	
Johansson	(2006)

Power Amplifiers

• To transmit an RF signal, we need a power amplifier.
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Output Power and Voltage Swing
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• For a common-source (or common-emitter) stage to drive the load 
directly, a supply voltage greater than Vpp is required.

• If the load is realized as an inductor, the drain ac voltage exceeds VDD, 
even reaching 2VDD (or higher). But the maximum drain-source voltage 
experienced by M1 is still at least 20 V if the stage must deliver 1 W to a 
50-Ω load.

• It can be proven that the product of the breakdown voltage and fT of 
silicon devices is around 200 GHz·V.

•
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P =
Vp
2

2RL

Output Power and Voltage Swing

• Ex: 1 W (30 dBm) into a resistive 50 Ω load (e.g. antenna).

=> 10 Vp, Ip = 200 mA.

• How can we achieve this with nm-CMOS?
=> Impedance transformation: lower voltage, more current

• For high-power PAs: as high supply voltage as possible, and 
impedance transformation.
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PA: how to reach high power
• By using an inductive load, we can 

reach 2*VDD.
• By adding a matching network, we can 

increase output power with same 
supply (by increased transistor size).
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Matching Network
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• In order to reduce the peak voltage experienced by the output 
transistor, a matching network is interposed between the PA 
and the load. This network transforms the load resistance to a 
lower value, RT, so that smaller voltage swings still deliver the 
required power.
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Example 12.2

• The PA must deliver 1 W to RL = 50 Ω with a supply voltage 
of 1 V. Estimate the value of RT.

• The peak-to-peak voltage swing, Vpp, at the drain of M1 is 
approximately equal to 2 V.
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• The matching network must therefore transform RL down by a 
factor of 100. 

• Figure below shows an example, where a lossless transformer 
having a turns ratio of 1:10 converts a 2-Vpp swing at the drain of 
M1 to a 20-Vpp swing across RL.
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Example 12.2
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• Usually consists of 2-3 stages (integrated), to handle 
matching and gain, including interstage matching, but the 
output matching network is usually off-chip.
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High output power PAs
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PA bondwires (65 nm CMOS WLAN-PA) 
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PA package + bondwires 
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Example 12.4

• The	output	transistor	in	previous	example	with	a	
transformer	carries	a	current	varying	between	0	and	4	A	at	a	
frequency	of	1	GHz.		

• What	is	the	maximum	tolerable	bond	wire	inductance	in	
series	with	the	source	of	the	transistor	if	the	voltage	drop	
across	this	inductance	must	remain	below	100	mV?
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Example 12.4
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• Drain (collector) efficiency [%]

• Power-added efficiency [%]

• PAE can also be expressed as

• PAE: when gain is low, it takes some power to drive the PA, 
must be accounted for! 

• Efficiency: Assume 50 % efficiency  
=> 1 W Pout => 2 W from battery/supply!

�15

ηD =
PRF
PDC

PAE = PRF − PIN
PDC

PAE =ηD
G−1
G

PA: Efficiency
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EVM ACPR

PA characterization: Linearity

• Linearity in wireless systems requirements: EVM and 
ACPR, but takes long time to simulate.
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• During design work, P1dB compression point (one-tone) 
and intermodulation (two tones) give fast information! 
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PA characterization: Linearity
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• Simulating (and measuring) the AM-AM and AM-PM 
conversion are also fast methods to estimated linearity. 
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PA characterization: Linearity
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SE vs. Differential

• Possibly differential outputs 
from previous blocks in IC 
design.

• By cutting the PA in two 
halves, a factor of 4 better 
impedance/more output 
power (for same Z) is 
gained.

• But we need baluns on 
output and maybe also on 
the input => losses.
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SE vs. Differential

• With a differential design, some of the large currents 
will be internal, not external!
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Example 12.6

• Suppose a given balun design has a loss of 1.5 dB. 
In which one of the transmitters shown below does 
this loss affect the efficiency more adversely?
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Example 12.6

• In the figure left, the balun lowers the voltage gain by 
1.5 dB but does not consume much power. 

• For example, if the power delivered by the 
upconverter to the PA is around 0 dBm, then a balun 
loss of 1.5 dB translates to a heat dissipation of 0.3 
mW. 
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Example 12.6

• In the figure right, the balun experiences the entire 
power delivered by the PA to the load, dissipating 
substantial power. 

• For example, if the PA output reaches 1 W, then a 
balun loss of 1.5 dB corresponds to 300 mW. The TX 
efficiency therefore degrades more significantly in the 
latter case. 
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!

class-A/AB/B/C (linear) inverter-based class-D (switched) 

class-E (switched) class-F (switched) 

PA-classes
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• Output power delivered to RL.
• A “big fat” inductor (BFL) feeds DC power to the drain. It is 

big enough to create a constant current.
• BFC prevents DC dissipation in the load.
• The tank absorbs the 
    parasitics of the transistor. 
• LC tank filters out of  

band emissions created by non- 
linearities in the transistor.

• Different gate-biases  
=> linear class A, AB, B, C.
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The linear classes A to C PAs

Vin
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BFL
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Vout
BFC
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• Since BFL presents a DC short, the drain voltage (which is the 
sum of DC and the signal voltage) has a symmetrical swing 
around VDD. 

• The drain voltage and current has a 180° phase difference.
• The product of drain current and voltage is positive; the transistor 

always dissipates power.
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VDD

VDS

t

IDC

iD

t

Class A
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Class A

• Device biased to ~ Imax/2 to never switch off.
• Good linearity.
• Efficiency <= 50 %.
• Vx swings up to 2 x VDD and the peak drain current is 2VDD/RL. 

The device must be able to manage this stress! 
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Class B

• Gate is typically biased to VTH. The 
transistor will be switched off half 
of the time.

• The traditional class B PA employs 
two parallel stages each of which 
conducts for only 180°, thereby 
achieving a higher efficiency than 
the class A counterpart.

• This can also be achieved using a 
differential design + transformer.

• The efficiency can be up to π/4 
(~79 %).
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Class AB

• In a class A amplifier, the device conducts 100 % of the 
time, and in a class B, it conducts 50 % of the time.

• A class AB amplifier is something in-between; the 
device conducts between 50 % and 100% of the time.

• The efficiency and the linearity are intermediate 
between a class A and class B amplifier. 

• Due to these trade-offs, class AB power amplifiers are 
popular in many applications.
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Conduction angle

• When gate-bias is lowered, the transistor will be off for a 
part of the period. This changes the properties of the 
amplifier, the "class".
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• In a class C power amplifier, the time in which the 
transistor conducts is decreased to less than half period.

• The drain current consists of a periodic train of pulses, 
which can be approximated by the top pieces of a sine 
wave. 

�31

Class C
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• The drain efficiency can be determined as:

• Efficiency of 100 % as θ approaches zero.
• Pout falls to zero as θ approaches zero.

�32

Class C
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S. Cripps, "RF 
Power Amplifiers 
for Wireless 
Communications", 
2nd ed, 2006. 

Linear PAs (A, AB, B, C)
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S. Cripps, "RF 
Power Amplifiers 
for Wireless 
Communications", 
2nd ed, 2006. 

Linear PAs (A, AB, B, C)
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• When input signal (swing) is reduced, the efficiency for linear PAs 
drops fast (PAE).

• WLAN 11ac uses OFDM, which has high PAPR (about 8 dB) => 
average output power and efficiency becomes very low with 
modulated signals. 
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Efficiency with modulated signals

maximum linear peak power
average linear power

average power efficiency
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Vdrive
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Class D

• An ideal switch does not dissipate any power because there 
is either zero voltage across it or zero current through it.

• For this reason, implementing PA based on switching 
property of a device can provide a 100 % efficiency. 

• Class D PAs explores this idea, e.g. using two switches.
• M1 and M2 are behaving as
    switches, ideally dissipating
    no power.
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Class D

• Historically, low switching speed, therefore mostly 
used in audio applications (also integrated in 
CMOS for mobile phones).

• Recently, applied with CMOS for PAs.
• Switch is now a CMOS inverter (a chain of).
• Modulation can be done by out-phasing or by 

switching banks of smaller PA elements on/off
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Fritzin et al., 2010, 2011Class D
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The transistor as a switch
• Operate the output transistor as switch, "on/off"!
• We can achieve 100 % efficiency if:

1. M1 sustains a small voltage when it carries current
2. M1 carries a small current when it sustains a finite voltage, 
3. the transition times between on/off states are minimized 
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• Output matching: the switched transistor is not a current source, 
as in the class A-C amplifiers.

• In class E amplifiers, higher order networks for the load are used 
to create freedom to shape the switch voltage to have zero 
voltage and zero slope when it turns on.

�40

Class E
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Class E

• Turn-off losses reduce the efficiency and degrade the 
power capability.

• Losses in the output network also reduce the efficiency.

• Because of high stress on devices (3.5 x VDD), they are 
not suitable for scaling trends toward low-power and 
low breakdown voltages in advanced processes.

• But the class E amplifier can be improved (finite L to 
VDD) to only have about 2.5 x VDD.
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Fritzin et al., 2010
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Class E in 130 nm CMOS
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Class F

• To overcome the problems of class E, harmonic termination 
(typically 2nd + 3rd harmonic) can be used to create sharper 
switching.

• Called class F amplifier.
• A transmission line is typically used for discrete devices, but 

for IC, LC tanks are used. 
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• With a cascode, we can operate the PA at higher supply voltage 
=> high Pout.

• The voltage stress on the devices will be relaxed; the cascode 
device “shields” the input transistor as Vx rises, keeping the drain-
source voltage of M1 less than Vb-VTH2.
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Higher supply: cascode stage
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Example 12.14

• Determine the maximum terminal-to-terminal voltage differences 
of M1 and M2 in a cascode stage. Assume Vin has a peak 
amplitude of V0 and a dc level of Vm, and VX has a peak amplitude 
of Vp (and a dc level of VDD).
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Example 12.14

• Transistor M1 experiences maximum 
VDS as Vin falls to Vm - V0. If M1 nearly 
turns off, then VDS1 ≈ Vb - VTH2, VGS1 ≈ 
Vm - V0, and VDG1 = Vb - VTH2 - (Vm - V0). 
For the same input level, the drain 
voltage of M2 reaches its maximum of 
VDD + Vp, creating

and

• Also, the drain-bulk voltage of M2 
reaches VDD + Vp.
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Higher supply: cascode

• Cascodes with more 
stacked devices.

• Limited by max drain-
substrate voltage on 
uppermost transistor.

• Need careful "internal" 
matching (C2-C4).

• In practice limited to 3-4 
stacked devices.
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• PA input is mainly linear => matching network can be designed 
using conjugate matching.

• PA output resistance AND cap varies with signal => conjugate 
matching does not work.

• AND (shown in book (12.60)-(12.62)), matching for maximum 
power transfer does not correspond to maximum efficiency! 
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Large signal matching
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• For the general case of a nonlinear complex output 
impedance, a small-signal approximation of the impedance in 
the midrange of the output voltage and current can be used to 
obtain rough values for the matching network components.

• Modifying these values for maximum large-signal efficiency 
requires a great deal of trial and error, especially if the 
package parasitics must be taken into account. 
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Large signal matching

Lee’s	book
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• To find optimum load and source impedances, load-pull 
measurements are performed.
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Load-pull measurements
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Load-pull measurements
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Load-pull measurements

Johansson et al., 2013
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• Any bandpass signal can be represented as Vin(t) = Venv (t) * 
cos[ω0t + ϕ(t)], we can decompose Vin(t) into an envelope signal 
and a phase signal, amplify each separately, and combine the 
results at the end.

• Polar modulation, envelope elimination and restoration (EER), 
envelope tracking (ET).
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Polar modulation
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(a) The large current flowing through this stage requires a buffer in 
this path, but efficiency considerations demand minimal voltage 
headroom consumption by the buffer.
(b) No guarantee that VDD,PA tracks A0Venv(t) faithfully. 
(c) Stage is modified to a closed-loop control .
•
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Polar modulation
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• It is possible to avoid envelope variations in a PA by decomposing 
a variable-envelope signal into two constant-envelope waveforms.

• Outphasing, "linear amplification with nonlinear components 
(LINC)", Chireix.
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Outphasing
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Pulse-width modulation

• Conventional	PWM	can	be	adopted	for	RF.	

• It	is	also	possible	to	do	the	PWM	at	IF	and	upconvert	it	to	RF.	

• Research	(PhD	student	Fahim	Ul-Haque)	@	LiU	for	CMOS-IC.
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• If an auxiliary transistor is introduced that provides gain only when 
the main transistor begins to compress, then the overall gain can 
remain relatively constant for higher input and output levels.

• Almost all basestation amplifier designs use Doherty to increase the 
efficiency.

• Linearity is not so good, but fixed with pre-distortion.
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Doherty amplifier
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Doherty amplifier
• Implementation requires λ/4 delay line, which is tricky to 

implement on-chip without losses, and may be too large at lower 
frequencies. 

• Main advantage: better efficiency in the "back-off" region.
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Pre-distortion (DPD)

• There are many linearization techniques, the most 
popular (especially in basestations) is pre-distortion.
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Pre-distortion (DPD)
Blue	=	undistorted	
Red	=	added	distortion

Blue	=	undistorted	
Red	=	resulting	after	adding




