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Solutions

1. Large-signal analysis
The circuit in the figure is to be used in an analog circuits.
a) Derive the voltage  as a function of the output voltage, but not as a

function of the input voltage. Hint: .
The current through the resistors are

(1.1)

(1.2)

where the voltage  is the voltage at the source of the transistor. These
current should be equal which results in the expression for the output
voltage as

(1.3)

b) Derive the output voltage as a function of the input voltage when the
transistor is saturated.

The currents through the transistors are given by Eq. (1.1) and Eq. (1.2). In
the saturation region the current through the transistor is given by (when
the bulk effect and channel-length modulation is neglected)

(1.4)

where is the voltage at the source of the transistor and .
All the currents should be equal and we can for example use the Eq. (1.1),
Eq. (1.3), and Eq. (1.4) to solve the voltage at node . This voltage can than
be converted to the output voltage by utilizing Eq. (1.3). First setting the
right-hand side of Eq. (1.1) equal to the right-hand side of Eq. (1.4) gives

Student’s Instructions

The CMOS transistor operation regions, small signal parameters, and noise characteris-
tics are found on the last page of this test.

Generally, do not just answer yes or no to a short question. You always have to answer
with figures, formulas, etc., otherwise no or fewer points will be given.

Basically, there are few numerical answers to be given in this test.

You may write down your answers in Swedish or English.

Vx
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(1.5)

Solving for  in this equation gives after some manipulations

(1.6)

The positive solution is not correct since we know that the transistor is
saturated, i.e., . Hence, the
voltage is

(1.7)

The output voltage can be expressed as

c) Derive the output voltage as a function of the input voltage when the
transistor is operating in the linear region.

The currents through the devices are given by

(1.8)

(1.9)

(1.10)

We know that the currents should be equal. This results in

where

(1.11)

which results in

. (1.12)

d) Determine the input voltage, , for which the transistor switches from
operating in the saturation region to the linear region.

Vx R1⁄ α VA Vx–( )2=

Vx

Vx VA
1

2αR1
-------------

1
2αR1
------------- 1 4VAαR1+±+=
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1
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Vout VDD
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The voltage at node  equals

(1.13)

Further, in order for the transistor to operate just between the saturation
and the linear region we know that

Further, the current through the transistor in saturation and through the
resistors are given by

(1.14)

(1.15)

(1.16)

Combining Eq. (1.13), Eq. (1.14), and Eq. (1.16) gives

(1.17)

This equation can be reformulated to

2. Small-signal analysis
The transistor in the circuit shown in the figure is biased in the saturation
region. Neglect the influence of all internal parasitics in the transistor.
a) Draw the small-signal model for the circuit. Do not neglect the bulk

effect.
The small-signal model of the amplifier is shown in Figure 2.1

b) Derive the transfer function of the circuit, i.e., .
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Vx
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VDS VGS VT–= Vout Vx–⇒ Vin Vx VT––= Vout⇒ Vin VT VA≡–=
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I R2

VDD Vout–
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------------------------= =

VDD Vout–

R2
--------------------------- α Vout 1

R1

R2
------+ 
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R2
-----------–+ 0=

Figure 2.1 The small-signal model of the source-degenerated common-source amplifi-
er.
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1) 0=
Using nodal analysis of the circuit in the nodes  and  gives the
equations

From the first equation we can solve for . This results in

(2.1)

Inserting this into the second equations gives

This can be simplified to

Hence, the transfer function is given by

(2.2)

where

(2.3)

c) Derive approximate expressions for the DC gain, first pole, second pole,
zeros, and the output resistance as a function of, e.g., the small-signal
parameters, resistances, and capacitances. Assume that  and

The DC gain is

(2.4)

The poles are well separated since  and . Hence, the
approximate formula

(2.5)

is a good approximation of the location of the poles. This results in the fact

Vx Vout
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that the first pole is located at

(2.6)

while the second pole is

The zero is expressed as

(2.7)

Note that the second pole and the first zero is not located on top of each
other, but they are close to each other.
To compute the output resistance we need to setup the problem once again.
This time the input voltage is zero while we apply a voltage source at the
output of the gain stage. We like to compute the current that this voltage
source delivers to the circuit in order to obtain the output resistance. We
reformulate the nodal analysis equations from assignment b.

Solving for  from the first equation yields

(2.8)

Inserting it into the second equation and solving for  results in

(2.9)

p1
a
b
---≈
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-------------------------------------------------- gds gm gmbs+ +( )– I out=
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------------------------------------------------------------------------------------ 1
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3. Macro blocks
In an analog circuit, the building block shown in Figure 3.1 is found. The
OP amp is assumed to be ideal except that it has finite DC gain, , and a
nonzero output resistance, .
a) Derive the transfer function from the input to the output of the circuit,

.

The transfer function can be computed by nodal analysis in the nodes
and .

(3.1)

(3.2)

Further,

(3.3)

Combining Eq. (3.2) and Eq. (3.3) results in

(3.4)

(3.5)

Inserting it into Eq. (3.1) gives the transfer function.

A0
Rout

H s( ) Vout s( ) Vin⁄ s( )=

R1

C1

Vout
Vin A

Vx

Figure 3.1 A Miller integrator. a) Amplifier description, b) Macro model description.

R1Vin Vout
Vx

C1

A0(0–Vx)

Rout

Vy

Vx
Vout

Vin Vx–

R1
-------------------- Vout Vx–( )sC1+ 0=

Vx Vout–( )sC1

Vy Vout–( )
Rout

----------------------------+ 0=

Vy A0Vx–=

Vx sC1 A0Gout–( ) Vout sC1 Gout+( )=

Vx

Vout sC1 Gout+( )
sC1 A0Gout–( )

------------------------------------------=
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(3.6)

(3.7)

b) Derive the transfer function, , for the circuit
when the DC gain is infinite and the output resistance is nonzero.

In the case where is infinite we can either use Eq. (3.7) or compute the
transfer function from the schematic in Figure 3.1. In this case we derive
the result from Eq. (3.7). This results in

(3.8)

which is a regular inverting integrator. Hence, a large gain of the amplifier
decreases the influence of the output resistance.
c) Derive the transfer function, , of the circuit when

the output resistance is zero and the DC gain is finite.
Here we can also derive the transfer function directly from the model in
Figure 3.1, but in this case we use the formula in Eq. (3.7).

(3.9)

This is an integrator which has a pole at low frequencies due to the finite
gain of the amplifier.

4. Switched-capacitor circuit analysis
A switched capacitor circuit in clock phase 1, i.e., time , , , is
shown in the figure. The value of changes only at time , , ,
and so on, i.e., .
a) Express the output voltage, , for clock phase 1 of the switched

VinG1 Vout– sC1 G1 sC1+( )
sC1 Gout+

A0Gout s– C1
------------------------------+ 

 =

Vout
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----------
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 +
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---------------–= =
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Vin
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1
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capacitor circuit shown in the figure. Assume that the OTA is ideal.
Starting by assigning positive charge at the left plate of capacitor  and
to the right of capacitor and . The next step is to express the charge
at the capacitors.
At time t

, ,
time

, ,
and at time

, ,
The charge conservation equations are

(4.1)

(4.2)

The Eq. (4.1) results in

(4.3)

which states that the output voltage is kept constant between clock phase 1
to 2.
Furthermore, Eq. (4.2) results in

We also know that  which yield that

Performing a Z-transformation on this equation gives the results

(4.4)

rearranging the equation yields

(4.5)

which is a common noninverting lossy accumulator.
b) Is the circuit insensitive to capacitive parasitics? Motivate your answer

carefully.
The parasitics of interest are shown in

C1
C2 C3

q1 t( ) 0= q2 t( ) C2Vout t( )= q3 t( ) C3Vout t( )=
t τ+

q1 t τ+( ) C1Vin t τ+( )= q2 t τ+( ) 0= q3 t τ+( ) C3Vout t τ+( )=
t 2τ+

q1 t 2τ+( ) 0= q2 t 2τ+( ) C2Vout t 2τ+( )= q3 t 2τ+( ) C3Vout t 2τ+( )=

q3 t( ) q3 t τ+( )=

q1 t τ+( ) q2 t τ+( ) q3 t τ+( )+ + =

q1 t 2τ+( ) q2 t 2τ+( ) q3 t 2τ+( )+ +=

C3Vout t( ) C3Vout t τ+( )=

C1Vin t τ+( ) C3Vout t( )+ C2Vout t 2τ+( ) C3Vout t 2τ+( )+=

Vin t( ) Vin t τ+( )=

C1Vin t( ) C3Vout t( )+ C2 C3+( )Vout t 2τ+( )=

Vout z( ) C2 C3+( )z C3–( ) C1Vin z( )=

Vout z( )

Vin z( )
-----------------

C1

C2 C3+
------------------- 1

z
C3

C2 C3+
-------------------–

----------------------------=
9 (12)
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Cpa does not alter the transfer function since it is always connected to the
ideal input source.
Cpb does not change the transfer function since it is shorted to ground in one
clock phase and connected to ground and the input source in the other clock
phase.
Cpc The voltage in node where this parasitic is connected is always virtual
ground or ground. Hence, the transfer function will not be changed.
Cpd Connected between ground and virtual ground which results in no
change in the transfer function
Cpe Connected between ground and ground or output of the OPamp and
ground. No effect on the transfer function.
Cpg Connected between output node of OPamp to ground. No changes in the
transfer function.
Cph, Cpi, Cpj, Cpf Connected between ground and ground not changing the
transfer function.
Hence, the circuit is insensitive to capacitive parasitics, when the transfer
function is of concern, but the settling time will be affected.
c) Express the output voltage, , for clock phase 1 of the switched

capacitor circuit shown in the Figure. Assume that the OTA suffers from
an offset voltage.

Starting by assigning positive charge at the left plate of capacitor  and
to the right of capacitor and . The next step is to express the charge
at the capacitors.
At time t

, ,
time

, ,
and at time

,
,

Figure 4.1 The SC circuit with capacitive parasitics due to the capacitor and the
switches.

C1

C2

C3

Cpa

Cpb

Cpc

Cpe

Cpf

Cpd

Cpg
Cph

Vout

Vin

CpiCpj

Vout z( )

C1
C2 C3

q1 t( ) C1Vos–= q2 t( ) C2 Vout t( ) Vos–( )= q3 t( ) C3 Vout t( ) Vos–( )=
t τ+

q1 t τ+( ) C1Vin t τ+( )= q2 t τ+( ) 0= q3 t τ+( ) C3 Vout t τ+( ) Vos–( )=
t 2τ+

q1 t 2τ+( ) C1Vos–=
q2 t 2τ+( ) C2 Vout t 2τ+( ) Vos–( )= q3 t 2τ+( ) C3 Vout t 2τ+( ) Vos–( )=
10 (12)
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The charge conservation equations are

(4.6)

(4.7)

The Eq. (4.1) results in

(4.8)

which states that the output voltage is kept constant between clock phase 1
to 2.
Furthermore, Eq. (4.2) results in

We also know that  which yield that

Performing a Z-transformation on the above equations results in

(4.9)

rearranging the equation yields

(4.10)

which is a common noninverting lossy accumulator which is not offset
compensated.

5. A mixture of questions
a) The current in a special CMOS transistor is given by

(5.1)

Derive approximate expressions for the transconductance and the output
conductance as a function of the current through the device, but not as a
function of any voltages. For the computation of the transconductance
assume that the  parameter is zero.
The transconductance is given by (since the  parameter is neglected)

The  parameter is

q3 t( ) q3 t τ+( )=

q1 t τ+( ) q2 t τ+( ) q3 t τ+( )+ + =

q1 t 2τ+( ) q2 t 2τ+( ) q3 t 2τ+( )+ +=

C3 Vout t( ) Vos–( ) C3 Vout t τ+( ) Vos–( )=

C1Vin t τ+( ) C3 Vout t τ+( ) Vos–( )+ C1Vos– C2 C3+( ) Vout t 2τ+( ) Vos–( )+=

Vin t( ) Vin t τ+( )=

C1Vin t( ) C3Vout t( ) C1 C2+( )Vos+ + C2 C3+( )Vout t 2τ+( )=

Vout z( ) C2 C3+( )z C3–( ) C1Vin z( ) C1 C2+( )Vos+=

Vout z( )
1

C2 C3+
------------------- 1

z
C3

C2 C3+
-------------------–

---------------------------- C1Vin z( ) C1 C2+( )Vos+( )=

I α VGS VT–( )γ
1 λ VDS VGS VT+–( )+( )=

λ
λ

gm
I∂

VGS∂
------------- αγ VGS VT–( )γ 1– γ α2 γ– αγ 1–

VGS VT–( )γ 1–( ) γ α2 γ–
I

γ 1–
γ

-----------

= = = =

gds
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(5.2)

b) State three techniques to increase the DC gain in the common-source
amplifier shown in the figure. Both changes to the topology and the
design parameters are allowed.

There are several techniques
Add cascodes
Add cascodes plus gain boosting
Increase the size of the input transistor
Decrease the current
c) Derive the input and output ranges of the amplifier shown in the figure.

Express the them in relevant design parameters ( , , ...).
Starting from the CMR and with the maximum input voltage we see that
this voltage is

The minimum input voltage is determined the path gnd->M7->M8->M5-
>M1 which results in

(5.3)

(5.4)

The output range is determined in a similar manner

(5.5)

(5.6)

(5.7)

gds
I∂

VDS∂
------------- λα VGS VT–( )γ λI≈= =

I D6 αi

Vin max, VDD VSG3 VDS1 VGS1+–– VDD

I bias

2α3
----------– VT3– VT1+= =

Vin min, VGS7 VGS8 VGS5 VDS5 VGS1+ +–+= =

I bias

α7
---------- VT7

I bias

α8
---------- VT8 VT5–

I bias

2α1
---------- VT1+ + + + +

CMR Vin min, Vin max,;[ ]=

Vout max, VDD VSD4– VDD

I bias

2α4
----------–= =

Vout min, VGS7 VGS8 VGS5 VDS5 VDS1+ +–+= =

I bias

α7
---------- VT7

I bias

α8
---------- VT8 VT5–

I bias

2α1
----------+ + + +=

OR Vout min, Vout max,;[ ]=
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