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Exercise

1. Basic CMOS building block
a) Sketch the output voltage as a function of the power supply voltage, ,
for  between 0 and 5 threshold voltages. The input voltage is a DC
voltage, . (3p)
b) Determine the values of for which the transistor is operating in the
... cut-off region
... linear region
... saturation region. (5p)
c) State two reasons why we seldomly use amplifiers with resistive load in
analog integrated circuits. (2p)

Student’s Instructions

The CMOS transistor operation regions, small signal parameters, and noise characteris-
tics are found on the last page of this test.

Generally, do not just answer yes or no to a short question. You always have to answer
with figures, formulas, etc., otherwise no or fewer points will be given.

Basically, there are few numerical answers to be given in this test.

You may write down your answers in Swedish or English.
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Figure 1.1 A CMOS gain stage.
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2. Small signal analysis
Assume that all transistors are biased so that they are operating in the
saturation region.
a) Derive the small signal transfer function from the input to the output. All
parasitics except the source gate capacitor of transistor  can be
neglected. Express the DC-gain and the poles of the circuit. (4p)
b) Describe two ways to increase the phase margin. What will happen to the
other performance parameters? (3p)
c) What is the range of the possible values for  to ensure that all
transistors are operating in the saturation region? (3p)

3. Operational amplifier
We have designed the following OTA in shown in Figure 3.1. All transistors
are operating in the saturation region. The transfer function is given by

(3.1)

No capacitive parasitics are taken into account.
a) Derive the common-mode and output ranges. Use relevant design
parameters such as , , and . (3p)
b) How do we increase the output resistance of the circuit? (3p)
c) This circuit is not the best circuit to be used when we want to drive small
resistive loads. Why? (2p)
d) Assume that the amplifier is a one pole system with the following
transfer function:
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Figure 2.1 A CMOS gain stage.
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(3.2)

Derive the expression for the unity-gain frequency. What will the DC gain
be of closed loop system if the feedback factor  if ? (2p)

4. Switched capacitor
A switched capacitor circuit in clock cycle 1 is shown in Figure 4.1.
a) Derive the transfer function for the switched capacitor circuit shown in
Figure 4.1, i.e., . Assume that the OTA is ideal. (4p)
b) Is the circuit insensitive to capacitive parasitics? Motivate your answer
carefully. (2p)
c) Assume that the OTA suffers from an input offset voltage, . Derive
the output voltage  for the times  and so on. (4p)
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Figure 3.1 An operational transconductance amplifier.
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Figure 4.1 A switched capacitor circuit in clock phase 1.
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5. CMOS Building blocks
a) What is the difference between an operational amplifier and an
operational transconductance amplifier? (1p)
b) Why do we like to bias all transistors so that they are operating in the
saturation region? (1p)
c) Explain advantages and drawbacks of an active-RC integrator compared
to a switched capacitor accumulator. (2p)
d) What is transistor matching? Describe two ways to improve the matching
between two transistors. (2p)
e) The circuit shown in Figure 5.1a can be enhanced as shown in Figure
5.1b, how is the performance affected in Figure 5.1b compared to Figure
5.1a (gain, poles and zeroes)? (2p)

f) Linus needs to design a circuit with high gain. He has studied bipolar
circuits. In bipolar technology the Darlington amplifier is a common way to
increase the gain of the circuit. He is asking you if the circuit shown in
Figure 5.2 (A Darlington amplifier where the bipolar transistors have been
replaced by CMOS transistors) can be designed to have high gain. What
would your recommendation be? (2p)
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Figure 5.1 Two commonly used gain stages.
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Transistor formulas and noise

CMOS transistors

Current formulas and operating regions

Cut-off:

Linear:

Saturation:

Small-signal parameters

Linear region:

Saturation region:

Circuit noise

Thermal noise

The thermal noise spectral density at the gate of a CMOS transistor is

Flicker noise

The flicker noise spectral density at the gate of a CMOS transistor is
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