## TSTE03 Homework 3: Solution

Inspect layout $\Rightarrow$

Schematic


Function

$$
S_{\mathrm{n}}=A B C \Rightarrow x=(A B C)^{\prime} \Rightarrow F=A B C
$$

Gate, source, and drain widths
$W_{1}=W_{2}=W_{3}=W_{4}=W_{5}=W_{6}=0.5 \mu \mathrm{~m}, W_{7}=1.0 \mu \mathrm{~m}$
Gate lengths
$L_{1}=L_{2}=L_{3}=L_{4}=L_{5}=L_{6}=L_{7}=0.25 \mu \mathrm{~m}$
Source lengths

$$
L_{\mathrm{s} 1}=L_{\mathrm{s} 5}=L_{\mathrm{s} 6}=L_{\mathrm{s} 7}=0.5 \mu \mathrm{~m}, L_{\mathrm{s} 2}=L_{\mathrm{s} 3}=L_{\mathrm{s} 4}=0.25 \mu \mathrm{~m}
$$

Drain lengths
$L_{\mathrm{d} 1}=L_{\mathrm{d} 2}=L_{\mathrm{d} 6}=L_{\mathrm{d} 7}=0.75 \mu \mathrm{~m}, L_{\mathrm{d} 3}=L_{\mathrm{d} 4}=L_{\mathrm{d} 5}=0.25 \mu \mathrm{~m}$

Metal wire dimensions of node $x$

$$
W_{\mathrm{m}}=0.375 \mu \mathrm{~m}, L_{\mathrm{m}} \approx 7 \mu \mathrm{~m}
$$

Poly wire dimensions of node $x$

$$
W_{\mathrm{p}}=0.25 \mu \mathrm{~m}, L_{\mathrm{p}} \approx 4 \mu \mathrm{~m}
$$

Worst-case PMOS drain capacitance of node $x$

$$
\begin{aligned}
C_{\mathrm{d} 1} & \approx W_{1} L_{\mathrm{d} 1} C_{\mathrm{j} 0 \mathrm{p}}+\left(W_{1}+2 L_{\mathrm{d} 1}\right) C_{\mathrm{jsw} 0 \mathrm{p}}= \\
& =0.5 \cdot 10^{-6} \cdot 0.75 \cdot 10^{-6} \cdot 1.9 \cdot 10^{-3}+\left(0.5 \cdot 10^{-6}+2 \cdot 0.75 \cdot 10^{-6}\right) \cdot 0.22 \cdot 10^{-9} \mathrm{~F} \approx 1.16 \mathrm{fF}
\end{aligned}
$$

Worst-case NMOS drain capacitance of node $x$

$$
\begin{aligned}
C_{\mathrm{d} 2} & \approx W_{2} L_{\mathrm{d} 2} C_{\mathrm{j} 0 \mathrm{n}}+\left(W_{2}+2 L_{\mathrm{d} 2}\right) C_{\mathrm{jsw} 0 \mathrm{n}}= \\
& =0.5 \cdot 10^{-6} \cdot 0.75 \cdot 10^{-6} \cdot 2.0 \cdot 10^{-3}+\left(0.5 \cdot 10^{-6}+2 \cdot 0.75 \cdot 10^{-6}\right) \cdot 0.28 \cdot 10^{-9} \mathrm{~F} \approx 1.31 \mathrm{fF}
\end{aligned}
$$

Worst-case gate capacitance of MOSFETs $M_{1} \ldots M_{6}$

$$
C_{\mathrm{g} 1}=C_{\mathrm{g} 2}=C_{\mathrm{g} 3}=C_{\mathrm{g} 4}=C_{\mathrm{g} 5}=C_{\mathrm{g} 6} \approx W_{i} L_{i} C_{\mathrm{ox}}=0.5 \cdot 10^{-6} \cdot 0.25 \cdot 10^{-6} \cdot 6 \cdot 10^{-3} \mathrm{~F}=0.75 \mathrm{fF}
$$

Worst-case gate capacitance of MOSFET $M_{7}$

$$
C_{\mathrm{g} 7} \approx W_{7} L_{7} C_{\mathrm{ox}}=1.0 \cdot 10^{-6} \cdot 0.25 \cdot 10^{-6} \cdot 6 \cdot 10^{-3} \mathrm{~F}=1.5 \mathrm{fF}
$$

Capacitance of metal wire of node $x$

$$
\begin{aligned}
C_{\mathrm{m}} & \approx W_{\mathrm{m}} L_{\mathrm{m}} C_{\mathrm{ma}}+2\left(W_{\mathrm{m}}+L_{\mathrm{m}}\right) C_{\mathrm{mf}}= \\
& =0.375 \cdot 10^{-6} \cdot 7 \cdot 10^{-6} \cdot 35 \cdot 10^{-6}+2\left(0.375 \cdot 10^{-6}+7 \cdot 10^{-6}\right) \cdot 55 \cdot 10^{-12} \mathrm{~F} \approx 0.91 \mathrm{fF}
\end{aligned}
$$

Capacitance of poly wire of node $x$

$$
\begin{aligned}
C_{\mathrm{p}} & \approx W_{\mathrm{p}} L_{\mathrm{p}} C_{\mathrm{pa}}+2\left(W_{\mathrm{p}}+L_{\mathrm{p}}\right) C_{\mathrm{pf}}= \\
& =0.25 \cdot 10^{-6} \cdot 4 \cdot 10^{-6} \cdot 75 \cdot 10^{-6}+2\left(0.25 \cdot 10^{-6}+4 \cdot 10^{-6}\right) \cdot 40 \cdot 10^{-12} \mathrm{~F} \approx 0.42 \mathrm{fF}
\end{aligned}
$$

Worst-case capacitance of node $x$

$$
C_{\mathrm{x}} \approx C_{\mathrm{d} 1}+C_{\mathrm{d} 2}+C_{\mathrm{g} 1}+C_{\mathrm{g} 2}+C_{\mathrm{g} 6}+C_{\mathrm{g} 7}+C_{\mathrm{m}}+C_{\mathrm{p}} \approx 7.6 \mathrm{fF}
$$

Initial state for worst case charge sharing is when all internal capacitances are discharged

- $A=0$ turns off path to rest of the switch net
- $B=C=\emptyset=1$ discharges the capacitances in the switch net

Output node $x$ should then be precharged with no charging of internal capacitances

- $A=0$ turns off path to rest of the switch net
- $\emptyset=0$ precharges node $x$
- State of $B$ and $C$ does not matter since associated capacitances are already discharged

Worst case charge sharing occurs when the output node $x$ shares its charge with internal ones

- $\emptyset=1$ makes node $x$ dynamic
- $A=B=1$ connects node $x$ to the switch net nodes and shares the charge
- $C=0$ is needed for evaluating $x$ to 1


## Answers

a) Implemented funtion is $F=A B C$
b) Worst-case parasitic capacitance at node $x$ is $C_{\mathrm{x}} \approx 7.6 \mathrm{fF}$
c) Largest charge sharing occurs for $\langle\emptyset, A, B, C\rangle=\langle 1,0,1,1\rangle \rightarrow\langle 0,0,-,-\rangle \rightarrow\langle 1,1,1,0\rangle$

