TSEI03 Homework 2: Solution

Identify logic function from gate schematic

$$
F(A, B, C, D, E)=\overline{\overline{(\overline{A \cdot B})}}+\overline{(\overline{C \cdot D})+\bar{E}}=\overline{A \cdot B+C \cdot D \cdot E}
$$

Switch nets

$$
\left\{\begin{array}{l}
S_{\mathrm{p}}=F(\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E})=\overline{\bar{A} \cdot \bar{B}+\bar{C} \cdot \bar{D} \cdot \bar{E}}=(A+B)(C+D+E) \\
S_{\mathrm{n}}=\overline{F(A, B, C, D, E)}=\overline{\overline{A \cdot B+C \cdot D \cdot E}}=A \cdot B+C \cdot D \cdot E
\end{array}\right.
$$

Transistor schematic with annotated widths, W_{k}

Select all channel lengths to minimum, $L_{\min }$, and express the widths in units of $L_{\text {min }}$. Worst case resistance occurs when a single path conducts. Design the widths of a single conduction path to be equal. Using $R \propto 1 / W$, we should design the six pull-up paths to have an equivalent resistance of $W_{\mathrm{p}}=5 L_{\text {min }}$:

$$
\left\{\begin{array} { l }
{ W _ { 1 } ^ { - 1 } + W _ { 4 } ^ { - 1 } = (5 L _ { \text { min } }) ^ { - 1 } } \\
{ W _ { 1 } ^ { - 1 } + W _ { 5 } ^ { - 1 } = (5 L _ { \text { min } }) ^ { - 1 } } \\
{ W _ { 2 } ^ { - 1 } + W _ { 4 } ^ { - 1 } = (5 L _ { \text { min } }) ^ { - 1 } \quad { } _ { \text { equal widths in path } } } \\
{ W _ { 2 } ^ { - 1 } + W _ { 5 } ^ { - 1 } = (5 L _ { \text { min } }) ^ { - 1 } } \\
{ W _ { 3 } ^ { - 1 } + W _ { 4 } ^ { - 1 } = (5 L _ { \text { min } }) ^ { - 1 } } \\
{ W _ { 3 } ^ { - 1 } + W _ { 5 } ^ { - 1 } = (5 L _ { \text { min } }) ^ { - 1 } }
\end{array} \left\{\begin{array}{l}
W_{1}=W_{4}=10 L_{\text {min }} \\
W_{1}=W_{5}=10 L_{\text {min }} \\
W_{2}=10 L_{\min } \\
W_{2}=W_{5}=10 L_{\text {min }} \\
W_{3}=W_{4}=10 L_{\min } \\
W_{3}=W_{5}=10 L_{\min }
\end{array}\right.\right.
$$

Design the two pull-down paths to have an equivalent resistance of $W_{\mathrm{n}}=1.5 L_{\text {min }}$:

Hence $W_{1}=W_{2}=W_{3}=W_{4}=W_{5}=10 L_{\min }, W_{6}=W_{7}=3 L_{\min }$, and $W_{8}=W_{9}=W_{10}=4.5 L_{\min }$.

