10 — DSP Firmware Oscar Gustafsson October 11, 2018

10 — DSP Firmware

Oscar Gustafsson

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Todays lecture

e DSP firmware
¢ Application modelling

e Hardware verification

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

On to firmware development issues
A case study on MP3 decoding

e The MPEG1 Layer III specification gives the
procedure for MP3 decoding but does not say
exactly how the calculations should be performed

¢ A decoder may use

« TFloating-point or fixed-point (or more esoteric
number representations...)
 Different algorithms for the various filters

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Case study: Modelling MP3 decoding

¢ A compliant MP3 decoder will decode a certain
test bitstream without deviating too much from a
reference output in the standard

« A fully compliant MP3 decoder has an RMS error
of less than 2-1°/4/12 and an absolute difference
of less than 27! relative to full scale

« Alimited accuracy MP3 decoder has an RMS error
of less than 271 /\/12

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Root Mean Square (RMS)

® Dpms =
\/((Rl — 7‘1)2 + (R2 — 1”2)2 + ...+ (RN — TN)2)/N
¢ For an MP3 decoder the root mean square error
should be less than either 271°/1/12 (or 2711 /1/12
for a limited accuracy decoder)

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Absolute error

® Dagsmax = max{|Ri —ri|,|R2 —ra|,...,|Rn — n|}

¢ For an MP3 decoder the absolute error should be
less than 274 for a fully compliant decoder

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Signal to noise ratio (SNR)

* SNR = 20log;((maxpeadroom /Drms) dBV

¢ Signal to noise ratio is not used for MP3 decoding
compliancy but is often used in other DSP systems

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Case study: Modelling MP3 decoding

e Download MP3 decoder source code

e Instrument source code with custom functions for
fixed or floating point arithmetic

struct NUMBER {
int32_t exponent;
int32_t mantissa;
};
// Floating point add
void add(struct NUMBER *result,
struct NUMBER *x,
struct NUMBER *y);

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 8

Case study: Modelling MP3 decoding

// Without instrumentation // With instrumentation

float evenl[size/2]; NUMBER evenl[size/2];
float odd[size/2]; NUMBER odd[size/2];
for(i=0; i<size/2; i++) { for(i=0; i<size/2; i++) {
even[i] = in[i] + add (&even[i] ,&in[i],
in[size-1-i]; &in[size-1-i]);
} }

® You can (and probably should) use operator
overloading in C++ here

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Case study: Modelling MP3 decoding

e Replace inefficient algorithms with faster

algorithms
« Matrix multiplication based DCT: 2048 MUL,
2048 ADD

« Fast DCT: 80 MUL, 209 ADD

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Case study: Modelling MP3 decoding

¢ Analyze needed mathematical operations

M +7) X7 /
. .’IJ4/3

e sin, cos, tan

10

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Case study: Modelling MP3 decoding

d +7) X) /
« Division by constant = Multiply with 1/constant
« Division by power of 2: Shift (or multiply with

1/constant)
o /3
« Too large for lookup table (Number range:
0—-8207)
« Newton-Raphson on z~'/? requires only +, —, and
X

® sin, cos, tan
« Only used on constant values = Can be
precalculated and put in a relatively small lookup
table

11

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 12

Case study: Modelling MP3 decoding

¢ Final task: rewrite reference decoder to use only +,
—,and x
¢ Also add two number formats
+ One for floating-point format in memory
— struct NUMBER
+ One for floating-point format in registers
— struct REGISTER

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 13

Case study: Modelling MP3 decoding

Compliance results depending on the precision of the floating point arithmetics

- Not compliant - Limited accuracy - Full precision
ol e We needed 5
"l exponent bits
17 [.
gl - in the memory
i NN to get the
Tu = = = required
&l EEE :
al — dynamic range
10 1 | | and 6
o] ;
o —11 exponent .bltS
7 EEEEEEEEN in the registers

L L L L L L L L
7 8 9 10 11 12 13 14 15 16 17 18 19 20

Internal mantissa siz

LINKOPING
II." UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Case study: Modelling MP3 decoding

e We also needed to verify that the theoretical results
have a grounding in reality using listening tests
¢ ABX listening tests
+ The test subject gets three audio files:
» A: Reference result
« B: Our result
« X: User should decide whether this file is A or B
+ (Double blind test, no human knows whether A or
B is the reference file until after the fact.)

14

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Summary of MP3 decoding

¢ Result of compliance test according to the
standard
« We required 9 bits of mantissa in memory and 12
bits of mantissa in registers for limited accuracy
¢ Result of our ABX listening test
+ We needed 10 bits of mantissa in memory and 16
bits of mantissa in registers to get high quality
decoding

15

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 16

Summary of MP3 decoding

¢ The use of fast DCT algorithms had little impact on
the RMS

e Using only +, —, and x was not a problem for this
application except for 2*/3 which could be solved
with Newton-Raphson for z—1/3

+ Although this was changed to a polynomial
approximation later on

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Conclusions: Application modelling

¢ We need something to test
+ Instrument reference application
+ Write new application using matlab, C, etc
¢ We need some way to evaluate our results
« RMS, SNR, Absolute error
— Based on the standard or other requirements
« Subjective tests (ABX and other double blind tests)

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Conclusions: Application modelling

* We need to use reasonable datatypes

» Fixed-point with appropriate bit widths

» Floating-point with appropriate bit widths
¢ We need to use reasonable algorithms

« FFT, Fast DCT, Newton-Raphson, CORDIC,
lookup tables, etc...
» Algorithms need to be adaptable to our HW

18

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Conclusions: Application modelling

¢ Finally, our algorithms must use reasonable sized
program, data and constant memory

« We do not want megabytes of lookup-tables

19

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 20

Other issues

¢ On-chip/off-chip memory usage?

- DMA?

« Cache?

+ Memory organization? (e.g. tile-based or linear?
Multibank?)

¢ Interrupt latencies

» Reserve registers for interrupts? (In software or
hardware?)

LINKOPING
Il.u UNIVERSITY

10 - DSP Firmware

Oscar Gustafsson October 11, 2018

DSP Firmware

¢ Challenges compared to normal desktop
applications

Real-time requirements

Low memory requirements

Specialized processors with limited compiler
support

Often cumbersome to fix bugs using software
updates

21

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Writing large assembly programs

e Avoid this.

« Butif you do not have a compiler you do not have a
choice

® You need a reference code in a high level language

« You get to play C to assembly compiler yourself

« At every step you should be able to compare the
intermediate output from your C code with your
assembler output

22

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

C-code and other high level languages

The closer the C-code to HW, the better can be the
result from the C-compiler

Understand the compiler in detail
e gcc-S

Annotate enough "Compiler known” functions
Functional verification of compiled code
» Do not forget the regression suite for SW!

23

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

C-code and other high level languages

e Inline assembler

» Use C for everything but the most critical loops
« Use inline assembler for these

¢ Do not optimize before you benchmark!

24

LINKOPING
Il.u UNIVERSITY

10 - DSP Firmware

Oscar Gustafsson October 11, 2018

C-code and other high level languages

¢ Try to save memory

Know your C compiler output

It may be a good idea to allocate memory statically
Do not use dynamic memory allocation if you can
avoid it (new, malloc)

Do not use huge library functions out of
convenience (printf vs puts)

Do not use floating point math if your DSP
processor does not have HW support for it...

25

LINKOPING
UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Low cycle cost assembly kernels

¢ Gain much by saving cycles in an inner loop!

Use REPEAT instead of conditional jump

Loop unrolling

The code cost of inner loops is not so important!
¢ Use as many vector instruction as possible

Keep useful data in RF as long as possible
Use conditional execution if needed

« Exception: Modern OoO processors with good
branch predictors

26

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

When to benchmark/profile?

e When the project has reached:
« Pen and paper
— Can this be done for lab 4? Try it!
« Application modeling
— Crude MIPS count available here based on
instrumentation for example
» ASIP instruction selection
+ Firmware development

27

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Tools of the trade

e For calculating sin / cos / tan, z*/3, etc there are
many possibilities
« CORDIC
« Lookup tables
+ Newton-Raphson
« Polynomial
.+ ete

e Combinations are also possible

 First lookup-table, then a few Newton-Raphson
iterations

28

LINKOPING
Il.u UNIVERSITY

10 - DSP Firmware

Oscar Gustafsson October 11, 2018

Tools of the trade

e Algorithmic strength reduction

FFT/DCT/etc
Fast Fir Algorithms (FFA)
Fast Matrix x Vector multiplications (Strassen)

29

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 30

Tools of the trade

e Fast Matrix multiplication
« Winograd’s inner product
— (Can be used for FIR filters as well to halve the
number of multiplications (ISCAS2013))
+ Strassen (O(2%®)) http:
//en.wikipedia.org/wiki/Strassen_algorithm
« (Later work brings down the complexity to less
than O(224), but only for very large matrices.)

LINKOPING
Il.u UNIVERSITY

http://en.wikipedia.org/wiki/Strassen_algorithm
http://en.wikipedia.org/wiki/Strassen_algorithm

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Tools of the trade

e Strength reduction algorithms often show better
performance on paper than in real benchmarks

« Reason: caches, branch prediction, addressing
irregularities, etc
e However, we are free to design a processor in
whatever way necessary = such algorithms may
make more sense for ASIPs than general purpose
processors.

31

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 32

Tools of the trade (Esoteric)

¢ Esoteric way of calculating 1/sqrt(x) where x is a
floating point value

+ Google 0x5f3759d5
¢ Fun reading: Hacker’s delight
 Tips for various bit-level manipulations, etc
« Example: Why would you calculate x & (x-1)?
e Orx & (-x)?
® See also http://aggregate.org/MAGIC/ and
http://graphics.stanford.edu/~seander/
bithacks.html

LINKOPING
Il.u UNIVERSITY

http://aggregate.org/MAGIC/
http://graphics.stanford.edu/~seander/bithacks.html
http://graphics.stanford.edu/~seander/bithacks.html

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Memory efficiency woes

¢ 1. Minimize memory costs

e Low program memory costs
« Low data memory costs

¢ 2. Minimize memory transaction costs

« Minimize on off chip swapping
o Minimize data transfer between tasks
o Minimize load and store

¢ Itis usually hard to minimize both at the same time

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 34

Memory efficient

¢ Find algorithms use less on chip data memories.
For example, some algorithms require fewer
coefficients.

» Trade computing complexity for memory
efficiency
e Select algorithms with full memory access
predictability if possible. Data can thus be stored
in off-chip memory and pre-fetched efficiently
when needed.

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Discussion break: Memory space vs performance

¢ Assume you want to calculate x and y positions on
the unit circle.
« How would you do it if you need high
performance?
+ How would you do it if you need low memory
usage?

35

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 36

Example: Iterate over unit circle

for(i=0; i < 512; i++) {
fool[i] #*= cos((float)i*M_PI/256;

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

With lookup table for cos and sin

tmp = 0;
for(r = 0.0; r < M_PI*2; r+=M_PI/256){
LUT [tmp++] = cos(r);

// ... at some other point in the program:
for(i=0; i < 512; i++){
fool[i] *= LUT[i];

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 38

Vector rotation to calculate sequence of cos/sin values

// Calculate cosine function using vector rotation
A=0;
B=1;
for(i=0; i < 512; i++){
foo[i] *= B;
C = Axcos(M_PI/256)-B*sin(M_PI/256) ;
B = A*sin(M_PI/256)+B*cos(M_PI/256);
A=C;

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 39

Vector rotation to calculate sequence of cos/sin values

¢ Not perfect

« Precision is not that good
+ Calculation cost of vector rotation is higher than
table lookup
— Multiplication is fairly power hungry
— (But we do not need power hungry memory
accesss)
— No need for fairly large lookup table

« Only works for regular sin/cos function calls

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 40

Real time considerations

¢ In areal-time system it is important to know about
worst case execution time (WCET)

¢ Different algorithms have different sensitivities to
input data

® Program path analysis

« Dynamic run time analysis
 Static run time analysis

LINKOPING
Il.u UNIVERSITY

10 - DSP Firmware

Oscar Gustafsson

October 11, 2018

Profiling example of MP3 decoding

Bit rate [kbitis]

Profiling the decoder at various bit rates (44.1 kHz, joint stereo)

[0 Subband synthesis

IMDCT

Reorder samples
isc

|_J Stereo calculation

[Dequantization

[Huffman decoding

B Bitstream parsing

41

LINKOPING
UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Coding quality checklist

Try to use double precision instructions and keep
computing inside the MAC

Insert and optimize data measurement and scaling
subroutines

Use guard and shift together to avoid overflow

Perform truncation and rounding at the right time

42

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Important techniques for DSP firmware developer

¢ Using metrics like SNR and RMS error to
determine the quality of the implementation

¢ Know how to calculate functions like pow (), sin(),
cos (), tan(), etc efficiently in a given scenario

¢ Know how to minimize memory usage or trade off
memory usage vs computing complexity

e Trade off latency vs throughput (c.f. lab 1)

43

LINKOPING
UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

HW verification

¢ Verification cost is huge (e.g., more than double
the cost of RTL development)

v

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

HW verification

¢ Verification cost is huge (e.g., more than double
the cost of RTL development)

45

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Verification - Simple nonchecking testbench

initial begin

rst = 1;
#10; // Wait for 10 ns
rst = 0;
opa = 32;
opb = 45;
ctrl=1;
#10;

opa = 45;
opb = 11;
ctrl=2;
#10;

// And so on...

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Verification - Simple nonchecking testbench

initial begin

~Not.a good idea!

rst =

opa = 32;
opb 45;
ctrl=1;
#10;
opa = 45;

opb = 11;
ctrl=2;

#10;

// And so on...

47

LINKOPING
UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Verification using files

initial begin
fd = $fopen("indata","r");
while(!finished) begin
@(posedge clk);
$fgets (buf,fd);
numdata= $sscanf (line,"08x,%08%x,%08x" ,x,y,2);
if (numdata == 3) begin
opa <= x;
opb <= y;
if (outdata !== z) begin
$display ("Output, data,incorrect!");
$stop;
end

48

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Verification using files

¢ Essentially what we do in the labs
e Very nice for processor development
+ You need a simulator anyway for processor
development
¢ Can be cumbersome for many other systems where
it is not natural to write a simulator

49

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018 50

(System)Verilog and VHDL are programming
languages!

e Write testbenches in a structured manner

« Divide and conquer!

« Use tasks/procedures to make the testbenches
easier to understand

« You can, in many cases, make the testbench
selfchecking without any need for external files

» Model the system using behavioral code

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Example: Verifying a divider

task test_divs; // (Would be a procedures %in VHDL)
input [BITS1:0] dividend;
input [BITS1:0] divisor;
begin
@(posedge clk);
divop <= “SIGNED;
divopa <= dividend;
divopb <= divisor;
ctrlstartdiv <= 1;
@(posedge clk);
while(div_flag_busy) begin
@(posedge clk);
end

51

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Example: Verifying a divider

task simpletest;
begin

$display("Testing,simple values");
test_divu(1,1);

test_divu(2,1);

test_divu(2,2);

$display ("Testing,cornervalues (large)");
test_divu(32'h80000000,1);
test_divu(32'h80000000,32'h80000000) ;
test_divu(0,32'h80000000);
test_divu(1,32'h80000000);
test_divu(2,32'h80000000);

// And so on

52

LINKOPING
UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Example: Verifying a divider

initial begin

startclock();

releasereset ();

simpletest ();
simpletest_signed ();
test_small_values();
test_corners();
test_random_values ();
stopclock ();

$display("All tests,finished!");

end

53

LINKOPING
UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Design for verification

¢ Remove unneeded complexity = Reduced
verification cost

54

LINKOPING
Il.u UNIVERSITY

10 — DSP Firmware Oscar Gustafsson October 11, 2018

Other things to look into

e SystemVerilog has a lot of nice features for

testbenches
« Fifos, classes, interfaces, assertions and many
others
+ Look for Verification Methodology Manual for
inspiration

55

LINKOPING
Il.u UNIVERSITY

Oscar Gustafsson

www.liu.se

LINKOPING
II." UNIVERSITY

www.liu.se

