
10 – DSP Firmware Oscar Gustafsson October 11, 2018 0

10 – DSP Firmware
Oscar Gustafsson

10 – DSP Firmware Oscar Gustafsson October 11, 2018 1

Todays lecture

• DSP firmware
• Application modelling
• Hardware verification

10 – DSP Firmware Oscar Gustafsson October 11, 2018 2

On to firmware development issues
A case study on MP3 decoding

• The MPEG1 Layer III specification gives the
procedure for MP3 decoding but does not say
exactly how the calculations should be performed

• A decoder may use
• Floating-point or fixed-point (or more esoteric

number representations...)
• Different algorithms for the various filters

10 – DSP Firmware Oscar Gustafsson October 11, 2018 3

Case study: Modelling MP3 decoding

• A compliant MP3 decoder will decode a certain
test bitstream without deviating too much from a
reference output in the standard
• A fully compliant MP3 decoder has an RMS error

of less than 2−15/
√
12 and an absolute difference

of less than 2−14 relative to full scale
• A limited accuracy MP3 decoder has an RMS error

of less than 2−11/
√
12

10 – DSP Firmware Oscar Gustafsson October 11, 2018 4

Root Mean Square (RMS)

• DRMS =√
((R1 − r1)2 + (R2 − r2)2 + . . .+ (RN − rN)2)/N

• For an MP3 decoder the root mean square error
should be less than either 2−15/

√
12 (or 2−11/

√
12

for a limited accuracy decoder)

10 – DSP Firmware Oscar Gustafsson October 11, 2018 5

Absolute error

• DABSMAX = max{|R1 − r1|, |R2 − r2|, . . . , |Rn − rn|}
• For an MP3 decoder the absolute error should be
less than 2−14 for a fully compliant decoder

10 – DSP Firmware Oscar Gustafsson October 11, 2018 6

Signal to noise raƟo (SNR)

• SNR = 20 log10(maxheadroom /DRMS) dBV
• Signal to noise ratio is not used for MP3 decoding
compliancy but is often used in other DSP systems

10 – DSP Firmware Oscar Gustafsson October 11, 2018 7

Case study: Modelling MP3 decoding

• Download MP3 decoder source code
• Instrument source code with custom functions for
fixed or floating point arithmetic

struct NUMBER {
int32_t exponent;
int32_t mantissa;

};
// Floating point add
void add(struct NUMBER *result,

struct NUMBER *x,
struct NUMBER *y);

10 – DSP Firmware Oscar Gustafsson October 11, 2018 8

Case study: Modelling MP3 decoding

// Without instrumentation // With instrumentation
float even[size/2]; NUMBER even[size/2];
float odd[size/2]; NUMBER odd[size/2];
for(i=0; i<size/2; i++) { for(i=0; i<size/2; i++) {
even[i] = in[i] + add(&even[i],&in[i],

in[size-1-i]; &in[size-1-i]);
} }

• You can (and probably should) use operator
overloading in C++ here

10 – DSP Firmware Oscar Gustafsson October 11, 2018 9

Case study: Modelling MP3 decoding

• Replace inefficient algorithms with faster
algorithms
• Matrix multiplication based DCT: 2048 MUL,

2048 ADD
• Fast DCT: 80 MUL, 209 ADD

10 – DSP Firmware Oscar Gustafsson October 11, 2018 10

Case study: Modelling MP3 decoding

• Analyze needed mathematical operations
• +, −, ×, /
• x4/3

• sin, cos, tan

10 – DSP Firmware Oscar Gustafsson October 11, 2018 11

Case study: Modelling MP3 decoding
• +, −, ×, /

• Division by constant⇒Multiply with 1/constant
• Division by power of 2: Shift (or multiply with

1/constant)
• x4/3

• Too large for lookup table (Number range:
0–8207)

• Newton-Raphson on x−1/3 requires only +, −, and
×

• sin, cos, tan
• Only used on constant values⇒ Can be

precalculated and put in a relatively small lookup
table

10 – DSP Firmware Oscar Gustafsson October 11, 2018 12

Case study: Modelling MP3 decoding

• Final task: rewrite reference decoder to use only +,
−, and ×

• Also add two number formats
• One for floating-point format in memory

– struct NUMBER
• One for floating-point format in registers

– struct REGISTER

10 – DSP Firmware Oscar Gustafsson October 11, 2018 13

Case study: Modelling MP3 decoding

(Including implicit one)

• We needed 5
exponent bits
in the memory
to get the
required
dynamic range
and 6
exponent bits
in the registers

10 – DSP Firmware Oscar Gustafsson October 11, 2018 14

Case study: Modelling MP3 decoding

• We also needed to verify that the theoretical results
have a grounding in reality using listening tests

• ABX listening tests
• The test subject gets three audio files:
• A: Reference result
• B: Our result
• X: User should decide whether this file is A or B
• (Double blind test, no human knows whether A or

B is the reference file until after the fact.)

10 – DSP Firmware Oscar Gustafsson October 11, 2018 15

Summary of MP3 decoding

• Result of compliance test according to the
standard
• We required 9 bits of mantissa in memory and 12

bits of mantissa in registers for limited accuracy
• Result of our ABX listening test

• We needed 10 bits of mantissa in memory and 16
bits of mantissa in registers to get high quality
decoding

10 – DSP Firmware Oscar Gustafsson October 11, 2018 16

Summary of MP3 decoding

• The use of fast DCT algorithms had little impact on
the RMS

• Using only +, −, and × was not a problem for this
application except for x4/3 which could be solved
with Newton-Raphson for x−1/3

• Although this was changed to a polynomial
approximation later on

10 – DSP Firmware Oscar Gustafsson October 11, 2018 17

Conclusions: ApplicaƟon modelling

• We need something to test
• Instrument reference application
• Write new application using matlab, C, etc

• We need some way to evaluate our results
• RMS, SNR, Absolute error

– Based on the standard or other requirements
• Subjective tests (ABX and other double blind tests)

10 – DSP Firmware Oscar Gustafsson October 11, 2018 18

Conclusions: ApplicaƟon modelling

• We need to use reasonable datatypes
• Fixed-point with appropriate bit widths
• Floating-point with appropriate bit widths

• We need to use reasonable algorithms
• FFT, Fast DCT, Newton-Raphson, CORDIC,

lookup tables, etc...
• Algorithms need to be adaptable to our HW

10 – DSP Firmware Oscar Gustafsson October 11, 2018 19

Conclusions: ApplicaƟon modelling

• Finally, our algorithms must use reasonable sized
program, data and constant memory
• We do not want megabytes of lookup-tables

10 – DSP Firmware Oscar Gustafsson October 11, 2018 20

Other issues

• On-chip/off-chip memory usage?
• DMA?
• Cache?
• Memory organization? (e.g. tile-based or linear?

Multibank?)
• Interrupt latencies

• Reserve registers for interrupts? (In software or
hardware?)

10 – DSP Firmware Oscar Gustafsson October 11, 2018 21

DSP Firmware

• Challenges compared to normal desktop
applications
• Real-time requirements
• Low memory requirements
• Specialized processors with limited compiler

support
• Often cumbersome to fix bugs using software

updates

10 – DSP Firmware Oscar Gustafsson October 11, 2018 22

WriƟng large assembly programs

• Avoid this.
• But if you do not have a compiler you do not have a

choice
• You need a reference code in a high level language

• You get to play C to assembly compiler yourself
• At every step you should be able to compare the

intermediate output from your C code with your
assembler output

10 – DSP Firmware Oscar Gustafsson October 11, 2018 23

C-code and other high level languages

• The closer the C-code to HW, the better can be the
result from the C-compiler

• Understand the compiler in detail
• gcc -S

• Annotate enough ”Compiler known” functions
• Functional verification of compiled code

• Do not forget the regression suite for SW!

10 – DSP Firmware Oscar Gustafsson October 11, 2018 24

C-code and other high level languages

• Inline assembler
• Use C for everything but the most critical loops
• Use inline assembler for these

• Do not optimize before you benchmark!

10 – DSP Firmware Oscar Gustafsson October 11, 2018 25

C-code and other high level languages

• Try to save memory
• Know your C compiler output
• It may be a good idea to allocate memory statically
• Do not use dynamic memory allocation if you can

avoid it (new, malloc)
• Do not use huge library functions out of

convenience (printf vs puts)
• Do not use floating point math if your DSP

processor does not have HW support for it...

10 – DSP Firmware Oscar Gustafsson October 11, 2018 26

Low cycle cost assembly kernels

• Gain much by saving cycles in an inner loop!
• Use REPEAT instead of conditional jump
• Loop unrolling
• The code cost of inner loops is not so important!
• Use as many vector instruction as possible
• Keep useful data in RF as long as possible
• Use conditional execution if needed

• Exception: Modern OoO processors with good
branch predictors

10 – DSP Firmware Oscar Gustafsson October 11, 2018 27

When to benchmark/profile?

• When the project has reached:
• Pen and paper

– Can this be done for lab 4? Try it!
• Application modeling

– Crude MIPS count available here based on
instrumentation for example

• ASIP instruction selection
• Firmware development

10 – DSP Firmware Oscar Gustafsson October 11, 2018 28

Tools of the trade

• For calculating sin / cos / tan, x4/3, etc there are
many possibilities
• CORDIC
• Lookup tables
• Newton-Raphson
• Polynomial
• etc

• Combinations are also possible
• First lookup-table, then a few Newton-Raphson

iterations

10 – DSP Firmware Oscar Gustafsson October 11, 2018 29

Tools of the trade

• Algorithmic strength reduction
• FFT/DCT/etc
• Fast Fir Algorithms (FFA)
• Fast Matrix × Vector multiplications (Strassen)
• …

10 – DSP Firmware Oscar Gustafsson October 11, 2018 30

Tools of the trade

• Fast Matrix multiplication
• Winograd’s inner product

– (Can be used for FIR filters as well to halve the
number of multiplications (ISCAS2013))

• Strassen (O(22.8)) http:
//en.wikipedia.org/wiki/Strassen_algorithm

• (Later work brings down the complexity to less
than O(22.4), but only for very large matrices.)

http://en.wikipedia.org/wiki/Strassen_algorithm
http://en.wikipedia.org/wiki/Strassen_algorithm

10 – DSP Firmware Oscar Gustafsson October 11, 2018 31

Tools of the trade

• Strength reduction algorithms often show better
performance on paper than in real benchmarks
• Reason: caches, branch prediction, addressing

irregularities, etc
• However, we are free to design a processor in
whatever way necessary⇒ such algorithms may
make more sense for ASIPs than general purpose
processors.

10 – DSP Firmware Oscar Gustafsson October 11, 2018 32

Tools of the trade (Esoteric)

• Esoteric way of calculating 1/sqrt(x) where x is a
floating point value
• Google 0x5f3759d5

• Fun reading: Hacker’s delight
• Tips for various bit-level manipulations, etc
• Example: Why would you calculate x & (x-1)?
• Or x & (-x)?

• See also http://aggregate.org/MAGIC/ and
http://graphics.stanford.edu/~seander/
bithacks.html

http://aggregate.org/MAGIC/
http://graphics.stanford.edu/~seander/bithacks.html
http://graphics.stanford.edu/~seander/bithacks.html

10 – DSP Firmware Oscar Gustafsson October 11, 2018 33

Memory efficiency woes

• 1. Minimize memory costs
• Low program memory costs
• Low data memory costs

• 2. Minimize memory transaction costs
• Minimize on off chip swapping
• Minimize data transfer between tasks
• Minimize load and store

• It is usually hard to minimize both at the same time

10 – DSP Firmware Oscar Gustafsson October 11, 2018 34

Memory efficient

• Find algorithms use less on chip data memories.
For example, some algorithms require fewer
coefficients.
• Trade computing complexity for memory

efficiency
• Select algorithms with full memory access
predictability if possible. Data can thus be stored
in off-chip memory and pre-fetched efficiently
when needed.

10 – DSP Firmware Oscar Gustafsson October 11, 2018 35

Discussion break: Memory space vs performance

• Assume you want to calculate x and y positions on
the unit circle.
• How would you do it if you need high

performance?
• How would you do it if you need low memory

usage?

10 – DSP Firmware Oscar Gustafsson October 11, 2018 36

Example: Iterate over unit circle

for(i=0; i < 512; i++) {
foo[i] *= cos((float)i*M_PI/256;

}

10 – DSP Firmware Oscar Gustafsson October 11, 2018 37

With lookup table for cos and sin

tmp = 0;
for(r = 0.0; r < M_PI*2; r+=M_PI/256){

LUT[tmp++] = cos(r);
}

// ... at some other point in the program:
for(i=0; i < 512; i++){

foo[i] *= LUT[i];
}

10 – DSP Firmware Oscar Gustafsson October 11, 2018 38

Vector rotaƟon to calculate sequence of cos/sin values

// Calculate cosine function using vector rotation
A=0;
B=1;
for(i=0; i < 512; i++){

foo[i] *= B;
C = A*cos(M_PI/256)-B*sin(M_PI/256);
B = A*sin(M_PI/256)+B*cos(M_PI/256);
A=C;

}

10 – DSP Firmware Oscar Gustafsson October 11, 2018 39

Vector rotaƟon to calculate sequence of cos/sin values

• Not perfect
• Precision is not that good
• Calculation cost of vector rotation is higher than

table lookup
– Multiplication is fairly power hungry
– (But we do not need power hungry memory

accesss)
– No need for fairly large lookup table

• Only works for regular sin/cos function calls

10 – DSP Firmware Oscar Gustafsson October 11, 2018 40

Real Ɵme consideraƟons

• In a real-time system it is important to know about
worst case execution time (WCET)

• Different algorithms have different sensitivities to
input data

• Program path analysis
• Dynamic run time analysis
• Static run time analysis

10 – DSP Firmware Oscar Gustafsson October 11, 2018 41

Profiling example of MP3 decoding

• Note how some parts take the same amount of time
independent of the bit-rate whereas the bit-rate
has a huge effect on the run time of other parts

• Conclusion: You cannot trust your average
execution time

10 – DSP Firmware Oscar Gustafsson October 11, 2018 42

Coding quality checklist

• Try to use double precision instructions and keep
computing inside the MAC

• Insert and optimize data measurement and scaling
subroutines

• Use guard and shift together to avoid overflow
• Perform truncation and rounding at the right time

10 – DSP Firmware Oscar Gustafsson October 11, 2018 43

Important techniques for DSP firmware developer

• Using metrics like SNR and RMS error to
determine the quality of the implementation

• Know how to calculate functions like pow(), sin(),
cos(), tan(), etc efficiently in a given scenario

• Know how to minimize memory usage or trade off
memory usage vs computing complexity

• Trade off latency vs throughput (c.f. lab 1)

10 – DSP Firmware Oscar Gustafsson October 11, 2018 44

HW verificaƟon

• Verification cost is huge (e.g., more than double
the cost of RTL development)

10 – DSP Firmware Oscar Gustafsson October 11, 2018 45

HW verificaƟon

• Verification cost is huge (e.g., more than double
the cost of RTL development)

10 – DSP Firmware Oscar Gustafsson October 11, 2018 46

VerificaƟon - Simple nonchecking testbench

initial begin
rst = 1;
#10; // Wait for 10 ns
rst = 0;
opa = 32;
opb = 45;
ctrl=1;
#10;
opa = 45;
opb = 11;
ctrl=2;
#10;
// And so on...

10 – DSP Firmware Oscar Gustafsson October 11, 2018 47

VerificaƟon - Simple nonchecking testbench

initial begin
rst = 1;
#10; // Wait for 10 ns
rst = 0;
opa = 32;
opb = 45;
ctrl=1;
#10;
opa = 45;
opb = 11;
ctrl=2;
#10;
// And so on...

Not a good idea!

10 – DSP Firmware Oscar Gustafsson October 11, 2018 48

VerificaƟon using files

initial begin
fd = $fopen("indata","r");
while(!finished) begin

@(posedge clk);
$fgets(buf,fd);
numdata= $sscanf(line,"%08x␣%08x␣%08x",x,y,z);
if(numdata == 3) begin

opa <= x;
opb <= y;
if(outdata !== z) begin

$display("Output␣data␣incorrect!");
$stop;

end
end else begin

finished = 1;
end

end
end

10 – DSP Firmware Oscar Gustafsson October 11, 2018 49

VerificaƟon using files

• Essentially what we do in the labs
• Very nice for processor development

• You need a simulator anyway for processor
development

• Can be cumbersome for many other systems where
it is not natural to write a simulator

10 – DSP Firmware Oscar Gustafsson October 11, 2018 50

(System)Verilog and VHDL are programming
languages!

• Write testbenches in a structured manner
• Divide and conquer!
• Use tasks/procedures to make the testbenches

easier to understand
• You can, in many cases, make the testbench

selfchecking without any need for external files
• Model the system using behavioral code

10 – DSP Firmware Oscar Gustafsson October 11, 2018 51

Example: Verifying a divider

task test_divs; // (Would be a procedures in VHDL)
input [BITS1:0] dividend;
input [BITS1:0] divisor;
begin

@(posedge clk);
divop <= `SIGNED;
divopa <= dividend;
divopb <= divisor;
ctrlstartdiv <= 1;
@(posedge clk);
while(div_flag_busy) begin

@(posedge clk);
end
if(div_result !== dividend/divisor) begin

$display("%m:␣Result␣not␣correct!");
$stop;

end
end

end

10 – DSP Firmware Oscar Gustafsson October 11, 2018 52

Example: Verifying a divider

task simpletest;
begin

$display("Testing␣simple␣values");
test_divu(1,1);
test_divu(2,1);
test_divu(2,2);
$display("Testing␣corner␣values␣(large)");
test_divu(32'h80000000 ,1);
test_divu(32'h80000000 ,32'h80000000);
test_divu(0,32'h80000000);
test_divu(1,32'h80000000);
test_divu(2,32'h80000000);
// And so on

10 – DSP Firmware Oscar Gustafsson October 11, 2018 53

Example: Verifying a divider

initial begin
startclock();
releasereset();
simpletest();
simpletest_signed();
test_small_values();
test_corners();
test_random_values();
stopclock();
$display("All␣tests␣finished!");

end

10 – DSP Firmware Oscar Gustafsson October 11, 2018 54

Design for verificaƟon

• Remove unneeded complexity⇒ Reduced
verification cost

10 – DSP Firmware Oscar Gustafsson October 11, 2018 55

Other things to look into

• SystemVerilog has a lot of nice features for
testbenches
• Fifos, classes, interfaces, assertions and many

others
• Look for Verification Methodology Manual for

inspiration

Oscar Gustafsson

www.liu.se

www.liu.se

