
09 – The Toolchain Oscar Gustafsson October 9, 2018 0

09 – The Toolchain
Oscar Gustafsson



09 – The Toolchain Oscar Gustafsson October 9, 2018 1

Todays lecture

• DSP toolchain (assembler, compiler, linker,
simulator, debugger)



09 – The Toolchain Oscar Gustafsson October 9, 2018 2

Toolchain

• Assembler
• Linker
• Compiler
• Simulator
• Debugger



09 – The Toolchain Oscar Gustafsson October 9, 2018 3

Assembler

• Simple explanation
• Read assembler source code
• Translate to machine code
• Sounds easy?

• Any programmer can write a simple assembler



09 – The Toolchain Oscar Gustafsson October 9, 2018 4

Assembler - more complete explanaƟon
• Repeat: Read one line of source code

• Remove comments
• Is this an assembler directive? If so, handle it
• Is there a label on the line?

– Add to label database with the current address
• Is a label used anywhere on the line?

– Is the address of the label unknown?
– Add address to unresolved label database

• Save (possibly incomplete) machine code of line to
memory

• Once the entire file has been read: Fix all
unresolved label references and write out final
machine code to an output file



09 – The Toolchain Oscar Gustafsson October 9, 2018 5

Assembler - tricky things

• It is very convenient to be able to use expressions
like this:

.equ HSIZE 16

.equ PITCH 160
load r0,label+(5*HSIZE+PITCH*10)/4

• This requires the assembler to parse complex
expressions (more on parsing later)



09 – The Toolchain Oscar Gustafsson October 9, 2018 6

Assembler - More tricky things

• On many architectures there are two kind of jump
instructions
• A single word instruction: PC = PC + offset
• A double word instruction: PC = absolute_addr

• Before you have resolved all labels you do not
know if the offset is small enough to fit a single
word jump



09 – The Toolchain Oscar Gustafsson October 9, 2018 7

Assembler - More Tricky things

• When changing a single word instruction to double
word you will have to redo many other label
calculations as well!

• This can also be true for other kind of instructions
• For example, load/store with absolute addressing:

– First 1024 words can be accessed using 1 insn word
– The remaining memory requires 2 insn words



09 – The Toolchain Oscar Gustafsson October 9, 2018 8

Linker

• When implementing larger applications the
application is usually divided into several parts or
libraries
• All labels will not be resolved by the assembler

when assembling a single source file
• Surprisingly non-trivial for the general case

(dynamic libraries, etc)



09 – The Toolchain Oscar Gustafsson October 9, 2018 9

Linker funcƟonality



09 – The Toolchain Oscar Gustafsson October 9, 2018 10

”I don’t want to write a linker”

• Invoke a preprocessor like CPP from your
assembler

• This is a decent substitute for a linker:
/* Start of main assembler file */
#include "iolibrary.asm"
#include "fft.asm"
#include "huffman.asm"
// Bonus 1: Comments can be handled (removed) by CPP
// Bonus 2: You do not need to implement EQU yourself:
#define BLOCK 16

main:
call iosetup
call fftsetup
...



09 – The Toolchain Oscar Gustafsson October 9, 2018 11

”I don’t want to write a linker”

• Not perfect, you still have to handle:
• Labels
• (Expressions)

• Cannot handle pre-assembled libraries
• It is enough to get your software developers started
before a linker is available



09 – The Toolchain Oscar Gustafsson October 9, 2018 12

Compiler

• For most users a compiler works like this:
• Read source code
• Compilation process (MAGIC ???)
• Output machine code



09 – The Toolchain Oscar Gustafsson October 9, 2018 13

Compiler

• Slightly more advanced view
• Read source code
• Compilation process (MAGIC ??)
• Output assembler
• Run assembler
• Run linker



09 – The Toolchain Oscar Gustafsson October 9, 2018 14

Compiler crash course

• Frontend
• Read source code and tokenize it (lexical analysis)
• Parse source code and generate abstract syntax

tree
• (Middleend?)

• Optimize (MAGIC?)
• Code generation

• Backend
• Output assembler

• Not a part of the compiler
• Run assembler
• Run linker



09 – The Toolchain Oscar Gustafsson October 9, 2018 15

Tokenizer (lexical analysis)

• All lines in the source code are divided into tokens
of different types

position = initial + rate * 60; // Comments are ignored

TOKEN_SYMBOL("position")
TOKEN_ASSIGN
TOKEN_SYMBOL("initial")
TOKEN_PLUS
TOKEN_SYMBOL("rate")
TOKEN_ASTERISK
TOKEN_VALUE(60)
TOKEN_SEMICOLON



09 – The Toolchain Oscar Gustafsson October 9, 2018 16

Parse tree for posiƟon = iniƟal + rate * 60



09 – The Toolchain Oscar Gustafsson October 9, 2018 17

Lexical analyzer/Parser summary

• Fairly tricky to write by hand
• Depends on the source language (e.g. Lisp vs

C++...)
• Luckily there are tools to do this for us:

• Flex - Generate a lexical analyzer
• Bison - Generates a parser
• Knowing how to use these (or similar) tools is an

important skill for every programmer!
• You will learn to use these tools in the compiler

construction class at IDA



09 – The Toolchain Oscar Gustafsson October 9, 2018 18

Lexical analyzer/Parser summary

• You will learn to use these tools in the compiler
construction class at IDA
• Read this course!

– (Or learn it by yourself)



09 – The Toolchain Oscar Gustafsson October 9, 2018 19

Lexical analyzer/parser

• Any programmer may need to parse files at some
point

• Aside the obvious (parsing source code in various
languages):
• Parsing configuration files
• Parsing log files
• Making a command line interpreter
• etc…

• Knowing how to use lex/yacc (or similar tools
suitable to the programming language you are
using) will save you a lot of time!



09 – The Toolchain Oscar Gustafsson October 9, 2018 20

OpƟmizaƟon phase

• You do not need to worry about this phase
• Interesting, but we’ll consider it a black box with
some sort of magic inside in this course



09 – The Toolchain Oscar Gustafsson October 9, 2018 21

Code generaƟon

• Take optimized representation of program and
output assembler program

• If we have a production compiler like GCC or
LLVM this is the only part we need to modify to
port it to our processor



09 – The Toolchain Oscar Gustafsson October 9, 2018 22

Backend porƟng is not magic (Example from GCC)

• Easy issues
• Datatype sizes (sizeof int, short, char, etc)
• Big/little endian
• Number of registers, different register classes



09 – The Toolchain Oscar Gustafsson October 9, 2018 23

GCC backend porƟng is not magic

• Not so difficult
• Instruction patterns for basic operations like

move, add, sub, multiply, etc



09 – The Toolchain Oscar Gustafsson October 9, 2018 24

GCC backend porƟng is not magic

• Fairly tricky
• Stack frame format and calling convention
• How memory addressing works in your CPU



09 – The Toolchain Oscar Gustafsson October 9, 2018 25

GCC backend porƟng issues

• At first nothing works at all
• This is the difficult phase, there are lots of settings

you need to tweak for your processor
• Once GCC generates code it is easy to
incrementally improve your backend



09 – The Toolchain Oscar Gustafsson October 9, 2018 26

GCC backend - Timeframe

• Count on 3 months to get a working non-optimized
backend up and running

• Count on 3 more months to get a decent
optimizing backend for a RISC-like processor

• Do not count on being able to create a backend
that can output specialized ASIP instructions



09 – The Toolchain Oscar Gustafsson October 9, 2018 27

Simulator vs Emulator

• Historically:
• Emulator - hardware is involved to emulate

another system
• Simulator - done in software

• Today - more confusing:
• In mainstream usage, an emulator is more or less

the same as a simulator (e.g., NES emulator)
• In the SoC society, emulation is usually associated

with huge FPGAs that emulate an ASIC before
fabrication



09 – The Toolchain Oscar Gustafsson October 9, 2018 28

Behavioral Simulator

• Read machine code from file
• Repeat

• Read instruction
• Interpret instruction
• Execute instruction



09 – The Toolchain Oscar Gustafsson October 9, 2018 29

Behavioral simulator

• Requirements
• Bit accurate
• As cycle true as possible
• Relatively fast

• Mostly used for software development



09 – The Toolchain Oscar Gustafsson October 9, 2018 30

Remember this example?

Mnemonic Encoding
ADD rD,rS,rT 0000 ssss tttt dddd
SUB rD,rS,rT 0001 ssss tttt dddd
CMP rS,rT 0010 ssss tttt 0000
MUL rD,rS,rT 0011 ssss tttt dddd
JMP A 0100 0000 aaaa aaaa
JMP.EQ A 0101 0000 aaaa aaaa
JMP.NE A 0110 0000 aaaa aaaa



09 – The Toolchain Oscar Gustafsson October 9, 2018 31

Main loop

void simulate(void) {
read_machine_code("inputfile.bin");
initialize_registers();
while(1) {

execute_instruction();
}

}



09 – The Toolchain Oscar Gustafsson October 9, 2018 32

execute_instrucƟon()

uint16_t insn=read_insn();
increment_pc();

int rs, rt, rd;
rs = (insn & 0x0f00) >> 8;
rt = (insn & 0x00f0) >> 4;
rd = (insn & 0x000f);

uint16_t opa = rf[rs];
uint16_t opb = rf[rt];
switch(insn & 0xf000) {

case 0x0000:
do_add(opa,opb,rd);
break;

case 0x1000:
do_sub(opa,opb,rd);
break;

case 0x2000:
check((insn & 0x000f) == 0);
do_cmp(opa,opb,rd);
break;

case 0x3000:
do_mul(opa,opb,rd);
break;

case 0x4000:
check((insn & 0x0f00) == 0);
do_jmp(insn & 0xff);
break;

case 0x5000:
check((insn & 0x0f00) == 0);
do_jmp_eq(insn & 0xff);
break;

case 0x6000:
check((insn & 0x0f00) == 0);
do_jmp_ne(insn & 0xff);
break;

default:
printf("UNKNOWN␣INSTRUCTION\n");
break;

}



09 – The Toolchain Oscar Gustafsson October 9, 2018 33

ExecuƟon

void do_add(uint16_t opa, uint16_t opb, int rd) {
uint16_t result = opa + opb;
rf[rd] = result;
if(!result) {

zflag = 1;
} else {

zflag = 0;
}

}



09 – The Toolchain Oscar Gustafsson October 9, 2018 34

Pipeline effects

• The simulator can
handle code with data
dependencies that the
hardware cannot

add r0,r1,r2
add r4,r0,r3

New r0

Old r0



09 – The Toolchain Oscar Gustafsson October 9, 2018 35

ProtecƟng the register file

int rf_busy[16]; // Keeps track of whether a
// result is ready

void write_reg(int regno, uint16_t value, int delay) {
rf[regno] = value;
rf_busy[regno] = delay;

}
void every_cycle(void) {

for (int i = 0; i < 16; i++) {
if (rf_busy[i] > 0) {

rf_busy[i]--; // If busy, decrement
} // busy counter until we

} // are allowed to access
} // the register again.



09 – The Toolchain Oscar Gustafsson October 9, 2018 36

ProtecƟng the register file

// Read from register file while checking if the
// result has been written
int get_opa(uint16_t insn) {

int rs = (insn & 0x0f00) >> 8;
if (rf_busy[rs] > 0) {

err("FAIL:␣Accessing␣a␣register␣before␣it␣is␣ready");
}
return rf[rs];

}



09 – The Toolchain Oscar Gustafsson October 9, 2018 37

Pipeline effects for jumps

• Remember this
example?
• jmp 0x59
• add r5,r2,r3

• Jumps have one or two
delay slots in our
simple example

Add is being fetched here

While jump is decoded here



09 – The Toolchain Oscar Gustafsson October 9, 2018 38

Delay slot handling

// Delay slot handling
int delay_slot = 0;
uint8_t newpc = 0;
void increment_pc() {

pc = pc + 1;
if (delay_slot) {

delay_slot --;
if (!delay_slot) {

pc = newpc;
}

}
}

// Conditional jump if equal
void do_jump_eq(uint8_t addr) {

if (zflag) {
delay_slot = 2;
newpc = addr;

}
}



09 – The Toolchain Oscar Gustafsson October 9, 2018 39

Summary: Behavioral simulator

• It is possible to write a behavioral simulator that is
bit true and cycle true without implementing a
complete pipeline
• (Although a behavioral instruction set simulator

may be implemented without being completely
cycle true)



09 – The Toolchain Oscar Gustafsson October 9, 2018 40

Micro-architecture simulator

• This simulator must be:
• Cycle true
• Bit accurate
• Pipeline accurate

• This simulator will be slower
• Used for verification of RTL code



09 – The Toolchain Oscar Gustafsson October 9, 2018 41

Micro-architecture simulator

• The simulator is partitioned like the processor
pipeline

void run_one_clock(void) {
pipeline_fetch_insn();
pipeline_read_operands();
pipeline_execute();
pipeline_writeback();

update_all_pipeline_registers();
}



09 – The Toolchain Oscar Gustafsson October 9, 2018 42

Micro-architecture simulator

• Debug functions to readout the contents of various
pipeline registers
• Especially important when debugging large and

complex processors (like out-of-order superscalar)



09 – The Toolchain Oscar Gustafsson October 9, 2018 43

RTL simulaƟon and the golden model

• When you are
reasonable sure that
no bugs are left in the
ISS you can use this as
the golden model that
the RTL source code
must conform to



09 – The Toolchain Oscar Gustafsson October 9, 2018 44

Simulator features: Snapshots

• The ability to save the entire state of the simulator
and reload the state at a later time



09 – The Toolchain Oscar Gustafsson October 9, 2018 45

Simulator features: Profiling

• When running a program the simulator can
increment a counter for each instruction every
time it is executed
• You can also profile other things like branch

taken/not-taken probabilities, memory usage,
estimated power usage, etc



09 – The Toolchain Oscar Gustafsson October 9, 2018 46

Simulator features: Reversability

• Some simulators can step back in time
• Very nice for debugging

– Example: Run backwards to determine where a
certain pointer was set to illegal value

• (Hard to implement efficiently without snapshots.)



09 – The Toolchain Oscar Gustafsson October 9, 2018 47

Simulator feature: Tracing

• Create a log of important events such as I/O,
memory read/writes, conditional branches, etc

• Create a VCD (value change dump) file for wave
form viewer



09 – The Toolchain Oscar Gustafsson October 9, 2018 48

C and ISS co-simulaƟon

• Scenario: You are developing a JPEG encoder
together with a few other engineers
• Engineer 1: Writing assembly for Huffman

encoding
• Engineer 2 (you): Writing assembly for DCT
• Engineer 3: Writing assembly for main program

• You are basing your encoder on some sort of
reference code



09 – The Toolchain Oscar Gustafsson October 9, 2018 49

C and ISS co-simulaƟon

• Problem
• You cannot easily test your assembly code unless

engineer 1 and 3 are finished with their tasks
• Solution

• Make sure your simulator can be loaded as a
library from C

• Use reference JPEG encoder for everything but the
DCT



09 – The Toolchain Oscar Gustafsson October 9, 2018 50

C and ISS co-simulaƟon
#ifdef COSIMULATION
static int loaded = 0;
if (!loaded) {

sim.assemble("dct.asm");
loaded = 1;

}
for (int i = 0; i < 64; i++) {

sim.write(input[i], sim.addrof("input") + i);
}
sim.setpc(sim.addrof("dct"));
sim.run();
for (i = 0; i < 64; i++) {

output[i] = sim.read(sim.addrof("output") + i);
}
#else

// Normal DCT goes here
#endif



09 – The Toolchain Oscar Gustafsson October 9, 2018 51

C and ISS co-simulaƟon

• Problem solved
• All engineers can test their code without worrying

about bugs in the others assembly
implementations



09 – The Toolchain Oscar Gustafsson October 9, 2018 52

RTL and ISS co-simulaƟon

• It could be very interesting to be able to start
development of an SoC system before the RTL
code of the DSP processor is done

• This is very important for larger systems
• Allows software development to start early!
• Simplifies debugging of SoC hardware before

processor is ready
• This can be done by (for example) allowing the ISS
to be called from Verilog or VHDL
• In Verilog this is called VPI or PLI



09 – The Toolchain Oscar Gustafsson October 9, 2018 53

Handling custom instrucƟons through plugins

• It is desirable to have a plugin interface to your
assembler and instruction set simulator to allow
for the development of custom instructions and/or
accelerators
• Especially if you do not want to expose your

toolchain source code to your customers



09 – The Toolchain Oscar Gustafsson October 9, 2018 54

Debugger

• Some requirements
• Single step
• Breakpoints based on program counters
• View source code for current assembly instruction
• Breakpoints based on data value on bus



09 – The Toolchain Oscar Gustafsson October 9, 2018 55

Debugger for ISS

• Just add a few functions. Most of the functionality
is already there.

• For more advanced debuggers you may want to
follow already established ad-hoc standards for
debugging
• For example, gdb debug protocol



09 – The Toolchain Oscar Gustafsson October 9, 2018 56

Debugger for real hardware

• Two possibilities
• Implement debugging in software running on the

DSP core
• Implement debugging in hardware, software is not

involved at all



09 – The Toolchain Oscar Gustafsson October 9, 2018 57

Debugger for real hardware

• Breakpoints in software debugger
• PC FSMmodified to generate exception after one

instruction when singlestep is activated
• PC FSMmodified to generate exception when

reaching a certain (configurable) value
• Comparator on data buses to generate exception

when a configurable value is present



09 – The Toolchain Oscar Gustafsson October 9, 2018 58

Debugger for real hardware

• Hardware debug unit
• All debugging goes over a dedicated debug

interface (typically JTAG)
• When stalled the RF, data/program memories, PC,

and even the pipeline registers can be read/written
over the debug interface

• Must still have support for hardware breakpoints,
but no need to take an exception

• May support advanced features such as tracing as
well



09 – The Toolchain Oscar Gustafsson October 9, 2018 59

Debugger for RTL code

• If you have support in the hardware for a debugger
you can use the same support to debug programs
executing in an RTL simulator



09 – The Toolchain Oscar Gustafsson October 9, 2018 60

Time to start thinking about the exam?

• How to prepare:
• Solve tutorial exercises
• Solve the design challenge in the exercise book

– Cross-check your solution proposal with a friend
• (Study old exams…– See the tutorial exercises)



09 – The Toolchain Oscar Gustafsson October 9, 2018 61

QuesƟons about the exam?

• Feel free to visit me in my office
• You might want to email me in advance if you want

me to be more prepared for your answer
• You can of course also ask me or Erik



Oscar Gustafsson

www.liu.se

www.liu.se

