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Todays lecture

• DSP toolchain (assembler, compiler, linker,
simulator, debugger)
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Toolchain

• Assembler
• Linker
• Compiler
• Simulator
• Debugger
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Assembler

• Simple explanation
• Read assembler source code
• Translate to machine code
• Sounds easy?

• Any programmer can write a simple assembler
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Assembler - more complete explanaƟon
• Repeat: Read one line of source code

• Remove comments
• Is this an assembler directive? If so, handle it
• Is there a label on the line?

– Add to label database with the current address
• Is a label used anywhere on the line?

– Is the address of the label unknown?
– Add address to unresolved label database

• Save (possibly incomplete) machine code of line to
memory

• Once the entire file has been read: Fix all
unresolved label references and write out final
machine code to an output file
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Assembler - tricky things

• It is very convenient to be able to use expressions
like this:

.equ HSIZE 16

.equ PITCH 160
load r0,label+(5*HSIZE+PITCH*10)/4

• This requires the assembler to parse complex
expressions (more on parsing later)



09 – The Toolchain Oscar Gustafsson October 9, 2018 6

Assembler - More tricky things

• On many architectures there are two kind of jump
instructions
• A single word instruction: PC = PC + offset
• A double word instruction: PC = absolute_addr

• Before you have resolved all labels you do not
know if the offset is small enough to fit a single
word jump
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Assembler - More Tricky things

• When changing a single word instruction to double
word you will have to redo many other label
calculations as well!

• This can also be true for other kind of instructions
• For example, load/store with absolute addressing:

– First 1024 words can be accessed using 1 insn word
– The remaining memory requires 2 insn words
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Linker

• When implementing larger applications the
application is usually divided into several parts or
libraries
• All labels will not be resolved by the assembler

when assembling a single source file
• Surprisingly non-trivial for the general case

(dynamic libraries, etc)
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Linker funcƟonality
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”I don’t want to write a linker”

• Invoke a preprocessor like CPP from your
assembler

• This is a decent substitute for a linker:
/* Start of main assembler file */
#include "iolibrary.asm"
#include "fft.asm"
#include "huffman.asm"
// Bonus 1: Comments can be handled (removed) by CPP
// Bonus 2: You do not need to implement EQU yourself:
#define BLOCK 16

main:
call iosetup
call fftsetup
...
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”I don’t want to write a linker”

• Not perfect, you still have to handle:
• Labels
• (Expressions)

• Cannot handle pre-assembled libraries
• It is enough to get your software developers started
before a linker is available
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Compiler

• For most users a compiler works like this:
• Read source code
• Compilation process (MAGIC ???)
• Output machine code
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Compiler

• Slightly more advanced view
• Read source code
• Compilation process (MAGIC ??)
• Output assembler
• Run assembler
• Run linker
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Compiler crash course

• Frontend
• Read source code and tokenize it (lexical analysis)
• Parse source code and generate abstract syntax

tree
• (Middleend?)

• Optimize (MAGIC?)
• Code generation

• Backend
• Output assembler

• Not a part of the compiler
• Run assembler
• Run linker
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Tokenizer (lexical analysis)

• All lines in the source code are divided into tokens
of different types

position = initial + rate * 60; // Comments are ignored

TOKEN_SYMBOL("position")
TOKEN_ASSIGN
TOKEN_SYMBOL("initial")
TOKEN_PLUS
TOKEN_SYMBOL("rate")
TOKEN_ASTERISK
TOKEN_VALUE(60)
TOKEN_SEMICOLON
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Parse tree for posiƟon = iniƟal + rate * 60
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Lexical analyzer/Parser summary

• Fairly tricky to write by hand
• Depends on the source language (e.g. Lisp vs

C++...)
• Luckily there are tools to do this for us:

• Flex - Generate a lexical analyzer
• Bison - Generates a parser
• Knowing how to use these (or similar) tools is an

important skill for every programmer!
• You will learn to use these tools in the compiler

construction class at IDA
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Lexical analyzer/Parser summary

• You will learn to use these tools in the compiler
construction class at IDA
• Read this course!

– (Or learn it by yourself)
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Lexical analyzer/parser

• Any programmer may need to parse files at some
point

• Aside the obvious (parsing source code in various
languages):
• Parsing configuration files
• Parsing log files
• Making a command line interpreter
• etc…

• Knowing how to use lex/yacc (or similar tools
suitable to the programming language you are
using) will save you a lot of time!



09 – The Toolchain Oscar Gustafsson October 9, 2018 20

OpƟmizaƟon phase

• You do not need to worry about this phase
• Interesting, but we’ll consider it a black box with
some sort of magic inside in this course
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Code generaƟon

• Take optimized representation of program and
output assembler program

• If we have a production compiler like GCC or
LLVM this is the only part we need to modify to
port it to our processor
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Backend porƟng is not magic (Example from GCC)

• Easy issues
• Datatype sizes (sizeof int, short, char, etc)
• Big/little endian
• Number of registers, different register classes
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GCC backend porƟng is not magic

• Not so difficult
• Instruction patterns for basic operations like

move, add, sub, multiply, etc
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GCC backend porƟng is not magic

• Fairly tricky
• Stack frame format and calling convention
• How memory addressing works in your CPU
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GCC backend porƟng issues

• At first nothing works at all
• This is the difficult phase, there are lots of settings

you need to tweak for your processor
• Once GCC generates code it is easy to
incrementally improve your backend
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GCC backend - Timeframe

• Count on 3 months to get a working non-optimized
backend up and running

• Count on 3 more months to get a decent
optimizing backend for a RISC-like processor

• Do not count on being able to create a backend
that can output specialized ASIP instructions
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Simulator vs Emulator

• Historically:
• Emulator - hardware is involved to emulate

another system
• Simulator - done in software

• Today - more confusing:
• In mainstream usage, an emulator is more or less

the same as a simulator (e.g., NES emulator)
• In the SoC society, emulation is usually associated

with huge FPGAs that emulate an ASIC before
fabrication
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Behavioral Simulator

• Read machine code from file
• Repeat

• Read instruction
• Interpret instruction
• Execute instruction
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Behavioral simulator

• Requirements
• Bit accurate
• As cycle true as possible
• Relatively fast

• Mostly used for software development
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Remember this example?

Mnemonic Encoding
ADD rD,rS,rT 0000 ssss tttt dddd
SUB rD,rS,rT 0001 ssss tttt dddd
CMP rS,rT 0010 ssss tttt 0000
MUL rD,rS,rT 0011 ssss tttt dddd
JMP A 0100 0000 aaaa aaaa
JMP.EQ A 0101 0000 aaaa aaaa
JMP.NE A 0110 0000 aaaa aaaa
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Main loop

void simulate(void) {
read_machine_code("inputfile.bin");
initialize_registers();
while(1) {

execute_instruction();
}

}
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execute_instrucƟon()

uint16_t insn=read_insn();
increment_pc();

int rs, rt, rd;
rs = (insn & 0x0f00) >> 8;
rt = (insn & 0x00f0) >> 4;
rd = (insn & 0x000f);

uint16_t opa = rf[rs];
uint16_t opb = rf[rt];
switch(insn & 0xf000) {

case 0x0000:
do_add(opa,opb,rd);
break;

case 0x1000:
do_sub(opa,opb,rd);
break;

case 0x2000:
check((insn & 0x000f) == 0);
do_cmp(opa,opb,rd);
break;

case 0x3000:
do_mul(opa,opb,rd);
break;

case 0x4000:
check((insn & 0x0f00) == 0);
do_jmp(insn & 0xff);
break;

case 0x5000:
check((insn & 0x0f00) == 0);
do_jmp_eq(insn & 0xff);
break;

case 0x6000:
check((insn & 0x0f00) == 0);
do_jmp_ne(insn & 0xff);
break;

default:
printf("UNKNOWN␣INSTRUCTION\n");
break;

}
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ExecuƟon

void do_add(uint16_t opa, uint16_t opb, int rd) {
uint16_t result = opa + opb;
rf[rd] = result;
if(!result) {

zflag = 1;
} else {

zflag = 0;
}

}
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Pipeline effects

• The simulator can
handle code with data
dependencies that the
hardware cannot

add r0,r1,r2
add r4,r0,r3

New r0

Old r0
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ProtecƟng the register file

int rf_busy[16]; // Keeps track of whether a
// result is ready

void write_reg(int regno, uint16_t value, int delay) {
rf[regno] = value;
rf_busy[regno] = delay;

}
void every_cycle(void) {

for (int i = 0; i < 16; i++) {
if (rf_busy[i] > 0) {

rf_busy[i]--; // If busy, decrement
} // busy counter until we

} // are allowed to access
} // the register again.
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ProtecƟng the register file

// Read from register file while checking if the
// result has been written
int get_opa(uint16_t insn) {

int rs = (insn & 0x0f00) >> 8;
if (rf_busy[rs] > 0) {

err("FAIL:␣Accessing␣a␣register␣before␣it␣is␣ready");
}
return rf[rs];

}
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Pipeline effects for jumps

• Remember this
example?
• jmp 0x59
• add r5,r2,r3

• Jumps have one or two
delay slots in our
simple example

Add is being fetched here

While jump is decoded here
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Delay slot handling

// Delay slot handling
int delay_slot = 0;
uint8_t newpc = 0;
void increment_pc() {

pc = pc + 1;
if (delay_slot) {

delay_slot --;
if (!delay_slot) {

pc = newpc;
}

}
}

// Conditional jump if equal
void do_jump_eq(uint8_t addr) {

if (zflag) {
delay_slot = 2;
newpc = addr;

}
}
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Summary: Behavioral simulator

• It is possible to write a behavioral simulator that is
bit true and cycle true without implementing a
complete pipeline
• (Although a behavioral instruction set simulator

may be implemented without being completely
cycle true)
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Micro-architecture simulator

• This simulator must be:
• Cycle true
• Bit accurate
• Pipeline accurate

• This simulator will be slower
• Used for verification of RTL code
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Micro-architecture simulator

• The simulator is partitioned like the processor
pipeline

void run_one_clock(void) {
pipeline_fetch_insn();
pipeline_read_operands();
pipeline_execute();
pipeline_writeback();

update_all_pipeline_registers();
}
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Micro-architecture simulator

• Debug functions to readout the contents of various
pipeline registers
• Especially important when debugging large and

complex processors (like out-of-order superscalar)
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RTL simulaƟon and the golden model

• When you are
reasonable sure that
no bugs are left in the
ISS you can use this as
the golden model that
the RTL source code
must conform to
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Simulator features: Snapshots

• The ability to save the entire state of the simulator
and reload the state at a later time
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Simulator features: Profiling

• When running a program the simulator can
increment a counter for each instruction every
time it is executed
• You can also profile other things like branch

taken/not-taken probabilities, memory usage,
estimated power usage, etc
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Simulator features: Reversability

• Some simulators can step back in time
• Very nice for debugging

– Example: Run backwards to determine where a
certain pointer was set to illegal value

• (Hard to implement efficiently without snapshots.)
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Simulator feature: Tracing

• Create a log of important events such as I/O,
memory read/writes, conditional branches, etc

• Create a VCD (value change dump) file for wave
form viewer
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C and ISS co-simulaƟon

• Scenario: You are developing a JPEG encoder
together with a few other engineers
• Engineer 1: Writing assembly for Huffman

encoding
• Engineer 2 (you): Writing assembly for DCT
• Engineer 3: Writing assembly for main program

• You are basing your encoder on some sort of
reference code



09 – The Toolchain Oscar Gustafsson October 9, 2018 49

C and ISS co-simulaƟon

• Problem
• You cannot easily test your assembly code unless

engineer 1 and 3 are finished with their tasks
• Solution

• Make sure your simulator can be loaded as a
library from C

• Use reference JPEG encoder for everything but the
DCT
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C and ISS co-simulaƟon
#ifdef COSIMULATION
static int loaded = 0;
if (!loaded) {

sim.assemble("dct.asm");
loaded = 1;

}
for (int i = 0; i < 64; i++) {

sim.write(input[i], sim.addrof("input") + i);
}
sim.setpc(sim.addrof("dct"));
sim.run();
for (i = 0; i < 64; i++) {

output[i] = sim.read(sim.addrof("output") + i);
}
#else

// Normal DCT goes here
#endif
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C and ISS co-simulaƟon

• Problem solved
• All engineers can test their code without worrying

about bugs in the others assembly
implementations
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RTL and ISS co-simulaƟon

• It could be very interesting to be able to start
development of an SoC system before the RTL
code of the DSP processor is done

• This is very important for larger systems
• Allows software development to start early!
• Simplifies debugging of SoC hardware before

processor is ready
• This can be done by (for example) allowing the ISS
to be called from Verilog or VHDL
• In Verilog this is called VPI or PLI
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Handling custom instrucƟons through plugins

• It is desirable to have a plugin interface to your
assembler and instruction set simulator to allow
for the development of custom instructions and/or
accelerators
• Especially if you do not want to expose your

toolchain source code to your customers
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Debugger

• Some requirements
• Single step
• Breakpoints based on program counters
• View source code for current assembly instruction
• Breakpoints based on data value on bus
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Debugger for ISS

• Just add a few functions. Most of the functionality
is already there.

• For more advanced debuggers you may want to
follow already established ad-hoc standards for
debugging
• For example, gdb debug protocol
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Debugger for real hardware

• Two possibilities
• Implement debugging in software running on the

DSP core
• Implement debugging in hardware, software is not

involved at all
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Debugger for real hardware

• Breakpoints in software debugger
• PC FSMmodified to generate exception after one

instruction when singlestep is activated
• PC FSMmodified to generate exception when

reaching a certain (configurable) value
• Comparator on data buses to generate exception

when a configurable value is present
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Debugger for real hardware

• Hardware debug unit
• All debugging goes over a dedicated debug

interface (typically JTAG)
• When stalled the RF, data/program memories, PC,

and even the pipeline registers can be read/written
over the debug interface

• Must still have support for hardware breakpoints,
but no need to take an exception

• May support advanced features such as tracing as
well
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Debugger for RTL code

• If you have support in the hardware for a debugger
you can use the same support to debug programs
executing in an RTL simulator
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Time to start thinking about the exam?

• How to prepare:
• Solve tutorial exercises
• Solve the design challenge in the exercise book

– Cross-check your solution proposal with a friend
• (Study old exams…– See the tutorial exercises)
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QuesƟons about the exam?

• Feel free to visit me in my office
• You might want to email me in advance if you want

me to be more prepared for your answer
• You can of course also ask me or Erik
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