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A few remaining issues from last lecture

• ALU example
• Hardware for |x− y|
• Shifts in ALU:s



06 – MAC Oscar Gustafsson September 26, 2018 2

ALU example from lecture 5



06 – MAC Oscar Gustafsson September 26, 2018 3

ALU example from lecture 5

-- purpose: Select operand 1 for adder 1
-- type : combinational
-- inputs : operand , a, b
-- outputs: adder1op1
adder1op1select: process (operand, a, b)
begin -- process adder1op1select
case operand is

when 1|2|3|4|7 => adder1op1 <= a;
when 5|8 => if (a(wordlength+1) = '0') then

adder1op1 <= a;
else

adder1op1 <= not(a);
end if;

when 6 => if (a(wordlength+1) = '0' or b(wordlength+1) = '0') then
adder1op1 <= a;

else
adder1op1 <= not(a);

end if;
when others => adder1op1 <= (others => '-');

end case;
end process adder1op1select;
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ALU example from lecture 5
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ALU example from lecture 5
adder1op1select: process (operand, a, b)
begin -- process adder1op1select
case c1 is

when 0 => adder1op1 <= a;
when 1 => if (a(wordlength+1) = '0') then

adder1op1 <= a;
else

adder1op1 <= not(a);
end if;

when others => if (a(wordlength+1) = '0' or b(wordlength+1) = '0') then
adder1op1 <= a;

else
adder1op1 <= not(a);

end if;
end case;
end process adder1op1select;

c1adder1op1select: process (operand)
begin -- process c1adder1op1select
case operand is

when 1|2|3|4|7 => c1 <= 0;
when 5|8 => c1 <= 1;
when 6 => c1 <= 2;
when others => c1 <= 0;

end case;
end process c1adder1op1select;
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ALU example from lecture 5
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ALU example from lecture 5
type c0options is (An, Ai);
...
adder1op1select: process (c0, a)
begin -- process adder1op1select
case c0 is

when An => adder1op1 <= a;
when others => adder1op1 <= not(a);

end case;
end process adder1op1select;

c0adder1op1select: process (operand, asign, bsign)
begin -- process c1adder1op1select
case operand is

when 1|2|3|4|7 => c0 <= An;
when 5|8 => if asign = '0' then

c0 <= An;
else

c0 <= Ai;
end if;

when 6 => if asign = '1' and bsign = '1' then
c0 <= Ai;

else
c0 <= An;

end if;
when others => c0 <= An;

end case;
end process c0adder1op1select;
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ALU example from lecture 5
Results for 8-bit ALU in 65 nm: area vs fclk (GHz)
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16-bit |A−B|

Three approaches



06 – MAC Oscar Gustafsson September 26, 2018 10

16-bit |A−B|
Results for 16-bit |A−B| in 65 nm: area vs fclk (GHz)
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Typical ALU shiŌ operaƟons

[Liu2008]
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ShiŌer primiƟve

[Liu2008]
• Note: Barrel shifters based on 4-to-1 multiplexers
may be more efficient
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Hardware mulƟplexing in shiŌer

[Liu2008]
• Note: Fill in table may be complicated for some
shift operations
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Bitwise logic operaƟons

• AND, OR, XOR
• More or less trivial
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Other ALU operaƟons

• Find leading one: Returns the most significant bit set to
one

• Find leading zero: Returns the most significant bit set
to zero

• Population count: Returns the number of bits set to one

// RTL code for find leading one
casez(opa)

16'b1???????????????: msbbit = 16;
16'b01??????????????: msbbit = 15;
16'b001?????????????: msbbit = 14;

endcase
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MAC - IntroducƟon

• MAC - Multiply and ACcumulate
• One of the most important parts of a DSP
processor
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Why MAC?
• Convolution based algorithms

• FIR, IIR, Auto correlation, Cross correlation
• Linear algebra based algorithms

• Inner product, Matrix multiplication
• Support most transformation algorithms

• FFT, DCT
• Example below: FIR implemented with 4 MACs
and one MULT

Round
Saturation
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Basic structure of a MAC unit

*

OpA OpB

ACR
Pipeline reg.

• Why ACR instead of normal RF?
• Reduce the number of RF ports
• No register/accumulator size

mismatch
• No need to write to RF after a

very long pipeline
– During convolution: (Address
generation, memory read,
multiply, add)
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MulƟplier basics

• Create a schematic for a 16× 16multiplier with
support for:
• OP1: Signed/unsigned integer multiplication
• OP2: Signed/unsigned integer multiplication

(read out high part)
• OP3: Signed fractional multiplication (with proper

rounding)
• The instruction decoder will set the Cs signal
according to whether signed or unsigned
multiplication is desired
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MAC unit basics

• Example: Create a schematic for a MAC unit 16-bit
inputs, 8 guard bits and the following operations:
• OP0: NOP
• OP1: ACR = 0
• OP2: ACR = Signed/unsigned multiplication
• OP3: ACR = Signed/unsigned multiply and

accumulation
• OP4: ACR = SAT(RND(ACR)) //

Rounding/saturation for fractional inputs/outputs
• Note: A fairly common mistake on the exam is to
forget the NOP instruction!
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MAC unit basics

• Something is missing in the specification.
• (Something which was previously a common error
on the exam…)
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MAC unit basics

• We need to read back the result of the
accumulation:
• Op5: RF = ACR[31:16]
• Op6: RF = ACR[15:0]
• Op7: RF = ACR[39:32]

• (In fact, we need to be able to save/restore the
complete state of the MAC unit.)
• We need to be able to do context switches!
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MAC unit basics - Discussion break

• Question: If we have 16-bit fractional inputs and
want a 16-bit fractional output, which bits of the
accumulator do we need to read out? How do we
perform saturation and rounding?
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MAC unit basics - Discussion break

• Question: If we have 16-bit fractional inputs and
want a 16-bit fractional output, which bits of the
accumulator should we need?

• OP8: RF = ACR[30:15]
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MAC unit basics

• Alternatives:
• Support fractional multiplication by scaling right

by one step directly after the multiplication. Now
both (saturated) integer and (saturated) fractional
MAC is supported by reading out only ACR[31:16]
and ACR[15:0].
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MAC unit basics

• Alternatives:
• Allow post operations on the ACR value during

readout:
– RF = SAT(ROUND(ACR[31:16]))
– Drawback: Potentially a long critical path.

• Sign-extended readout of guard bits: RF = {
{8{ACR[39]}}, ACR[39:32]};

• Allow a few other different kinds of readout
options
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MAC unit basics

• We probably also want to be able to set the ACR to
arbitrary values:
• OP9: ACR[31:16] = OpA
• OP10: ACR[15:0] = OpA
• OP11: ACR[39:32] = OpA[7:0]

• Wemay want some other variants as well:
• ACR = { {8{OpA[15]}}, OpA[15:0], 16'b0}; (Load

high and sign extend)
• ACR = { {9{OpA[15]}}, OpA[15:0], 15'b0}; (Load

fractional value and sign extend)
• ACR = { {8{OpA[15]}}, OpA[15:0], OpB[15:0]};

(Load high and low part simultaneously)

• OpA and OpB may be either a memory or register file
operand
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Scaling

• Scaling is typically desired in a MAC unit
• A scaling operation allows us to handle more than

just fractional/integer multiplication
• OP12: Scaling by 0.5 (easy)
• OP13: Scaling by 0.25 (easy)
• OP14: Scaling by 2 (easy)
• OP15: Scaling by 4 (easy)
• etc...
• OP16: Scaling by 1.5 (easy or hard?)
• OP17: Scaling by 0.75 (easy or hard?)
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Scaling
• WARNING: Arithmetic right shift is not identical to division
by a power of two!

• Not a big concern if you round the result properly

#include <stdio.h>
int main(int argc, char **argv){

int a=-1;
printf("%d, %d\n", a/2, a >> 1);
return 0;

}
// Output from this program on x86_64 (using GCC): 0, -1

• Nitpick: Right shift on a negative number is actually not specified by
the C standard! (It is an implementation defined behavior although it
is unlikely to use anything but an arithmetic right shift.)
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Wide mulƟplicaƟon operaƟon

• You may sometimes want to run a 32× 32 bit wide
multiplication on a MAC unit with a 16 bit wide multiplier.

• Straightforward method:

$signed(A[31:0]) * $signed(B[31:0]) =
= $unsigned(B[15:0]) * $unsigned(A[15:0]) +
+ ($unsigned(B[15:0]) * $signed(A[31:16])) << 16 +
+ ($signed(B[31:16]) * $unsigned(A[15:0])) << 16
+ ($signed(B[31:16]) * $signed(A[31:16])) << 32)

• One reason why Senior has separate mulxx/macxx/convxx
instructions, where x can be either s (signed) or u (unsigned).
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Wide mulƟplicaƟon operaƟon
• Somewhat trickier in practice (64-bit result)

AH = $signed(A[31:16]); AL = $unsigned(A[15:0])
BH = $signed(B[31:16]); BL = $unsigned(B[15:0])

ACR = AL * BL;
R0 = ACR[15:0];
ACR = ACR >> 16; // Question to audience: Do we

// need rounding here?
ACR += BL*AH;
ACR += AL*BH;
R1 = ACR[15:0];
ACR = ACR >> 16;

ACR += HL*AL;
R2 = ACR[15:0];
R3 = ACR[31:16];
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Long ArithmeƟc OperaƟons

• There is a wide adder in the MAC unit. This may
be used for long addition/subtraction:
• ACRz = ACRx + ACRy; (x, y, and z are numbers

from 0 to N − 1, where N is the number of
accumulator registers)

• ACRz = ACRx - ACRy;
• ACRz = ABS(ACRx);
• Compare (set flags according to ACRx - ACRy)
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Long ArithmeƟc OperaƟons

• It is also convenient to be able to add immediates
or values from the register file:
• ACRz = {{24{OpA[15]}}, OpA[15:0]};
• ACRz = {{8{OpA[15]}}, OpA[15:0], 16'b0};
• ACRz = {{8{OpA[15]}}, OpA[15:0],

OpB[15:0]};
• Wemay want the following variant to make it easy
to work with fractional data:
• ACRz = {{9{OpA[15]}}, OpA[15:0], 15'b0};
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Flags

• We probably want all the normal flags in the MAC
unit

• Zero (Z)
• Negative (N)
• Overflow (V)
• Carry (C) (Probably not so important)
• Wemay also want a sticky version of the overflow
flag ((S)) dealing with the full accumulator (not
overflow as in saturation)
• Rationale: Do a number of calculations, go to error

handling code if an overflow occurred at any point
in the calculation.
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Advanced MAC architectures: Dual MAC
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Advanced MAC architectures: Complex MAC
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Complex mulƟplicaƟon algorithms

• Normal algorithm:
• (a+ bi)(c+ di) = (ac− bd) + i(ad+ bc)
• 4 multiplications, 2 additions

• If one factor (c+ di) is constant:
• Usecase: FFT, complex FIR/IIR, etc
• Still 4 multiplications and 2 additions

• Critical path: multiplier→ adder
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Complex mulƟplicaƟon algorithms

• Gauss’ algorithm
• k1 = c(a+ b)
• k2 = a(d− c)
• k3 = b(c+ d)
• (a+ bi)(c+ di) = (k1 − k3) + i(k1 + k2)
• 3 multiplications, 5 additions
• Drawback: Needs slightly wider

multipliers/adders
• If one factor (c+ di) is constant:

• Precompute d− c and c+ d
• 3 multiplications and 3 additions

• Critical path: adder→multiplier→ adder
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Wide mulƟplicaƟon: Karatsuba’s variant

• A similar trick can be used for performing
real-valued multiplications

• Could be useful for handling multiplications wider
than the native datawidth

• If you are interested, search for Karatsuba’s
algorithm
• Wikipedia has a good introduction

• A very similar trick can also reduce the
computational complexity of FIR filters (Search for
Fast Fir algorithm, FFA)
• We might look at this in a later lecture
• Talk to Oscar if you think this is really interesting!

(from earlier year’s slides...)
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FloaƟng-point MAC

• Potential problem:
• Floating-point addition is cumbersome
• The accumulation part is hence cumbersome
• Easiest solution (from HW point of view): Use

several accumulators and use loop
unrolling/software pipelining

• Floating point MAC is sometimes called FMA
(Fused Multiply and Add)
• In this case rounding is only done once instead of

twice
• Alignment can be performed in parallel with the

multiplication
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CriƟcal Path issues in MAC unit

D-mem 1 D-mem 2 D-mem 3 D-mem 4 ConstantRF OPA

32 to1

RF OPB

32 to1

Long wires Long wires

As MAC input Very heavy fan out here!

[Liu2008]
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CriƟcal Path issues in MAC unit

ACR1

ACR2
ACRm

ACRn

Heavy fan out for 
MAC internal 
logic

Long wire

Register 
select 
logic

Data 
select 
logic

From RF

From a port
… …

Data memory

[Liu2008]
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CriƟcal Path issues in MAC unit

(a) MAC in one clock cycle

Accumulator

ACR

Flag circuit

*

(b) MAC using two clocks

Accumulator

ACR

Flag circuit

*

(a) MAC using three clocks

Accumulator

ACR

Flag circuit

*

[Liu2008]
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