
06 – MAC Oscar Gustafsson September 26, 2018 0

06 – MAC
Oscar Gustafsson

06 – MAC Oscar Gustafsson September 26, 2018 1

A few remaining issues from last lecture

• ALU example
• Hardware for |x− y|
• Shifts in ALU:s

06 – MAC Oscar Gustafsson September 26, 2018 2

ALU example from lecture 5

06 – MAC Oscar Gustafsson September 26, 2018 3

ALU example from lecture 5

-- purpose: Select operand 1 for adder 1
-- type : combinational
-- inputs : operand , a, b
-- outputs: adder1op1
adder1op1select: process (operand, a, b)
begin -- process adder1op1select
case operand is

when 1|2|3|4|7 => adder1op1 <= a;
when 5|8 => if (a(wordlength+1) = '0') then

adder1op1 <= a;
else

adder1op1 <= not(a);
end if;

when 6 => if (a(wordlength+1) = '0' or b(wordlength+1) = '0') then
adder1op1 <= a;

else
adder1op1 <= not(a);

end if;
when others => adder1op1 <= (others => '-');

end case;
end process adder1op1select;

06 – MAC Oscar Gustafsson September 26, 2018 4

ALU example from lecture 5

06 – MAC Oscar Gustafsson September 26, 2018 5

ALU example from lecture 5
adder1op1select: process (operand, a, b)
begin -- process adder1op1select
case c1 is

when 0 => adder1op1 <= a;
when 1 => if (a(wordlength+1) = '0') then

adder1op1 <= a;
else

adder1op1 <= not(a);
end if;

when others => if (a(wordlength+1) = '0' or b(wordlength+1) = '0') then
adder1op1 <= a;

else
adder1op1 <= not(a);

end if;
end case;
end process adder1op1select;

c1adder1op1select: process (operand)
begin -- process c1adder1op1select
case operand is

when 1|2|3|4|7 => c1 <= 0;
when 5|8 => c1 <= 1;
when 6 => c1 <= 2;
when others => c1 <= 0;

end case;
end process c1adder1op1select;

06 – MAC Oscar Gustafsson September 26, 2018 6

ALU example from lecture 5

06 – MAC Oscar Gustafsson September 26, 2018 7

ALU example from lecture 5
type c0options is (An, Ai);
...
adder1op1select: process (c0, a)
begin -- process adder1op1select
case c0 is

when An => adder1op1 <= a;
when others => adder1op1 <= not(a);

end case;
end process adder1op1select;

c0adder1op1select: process (operand, asign, bsign)
begin -- process c1adder1op1select
case operand is

when 1|2|3|4|7 => c0 <= An;
when 5|8 => if asign = '0' then

c0 <= An;
else

c0 <= Ai;
end if;

when 6 => if asign = '1' and bsign = '1' then
c0 <= Ai;

else
c0 <= An;

end if;
when others => c0 <= An;

end case;
end process c0adder1op1select;

06 – MAC Oscar Gustafsson September 26, 2018 8

ALU example from lecture 5
Results for 8-bit ALU in 65 nm: area vs fclk (GHz)

06 – MAC Oscar Gustafsson September 26, 2018 9

16-bit |A−B|

Three approaches

06 – MAC Oscar Gustafsson September 26, 2018 10

16-bit |A−B|
Results for 16-bit |A−B| in 65 nm: area vs fclk (GHz)

06 – MAC Oscar Gustafsson September 26, 2018 11

Typical ALU shiŌ operaƟons

[Liu2008]

06 – MAC Oscar Gustafsson September 26, 2018 12

ShiŌer primiƟve

[Liu2008]
• Note: Barrel shifters based on 4-to-1 multiplexers
may be more efficient

06 – MAC Oscar Gustafsson September 26, 2018 13

Hardware mulƟplexing in shiŌer

[Liu2008]
• Note: Fill in table may be complicated for some
shift operations

06 – MAC Oscar Gustafsson September 26, 2018 14

Bitwise logic operaƟons

• AND, OR, XOR
• More or less trivial

06 – MAC Oscar Gustafsson September 26, 2018 15

Other ALU operaƟons

• Find leading one: Returns the most significant bit set to
one

• Find leading zero: Returns the most significant bit set
to zero

• Population count: Returns the number of bits set to one

// RTL code for find leading one
casez(opa)

16'b1???????????????: msbbit = 16;
16'b01??????????????: msbbit = 15;
16'b001?????????????: msbbit = 14;

endcase

06 – MAC Oscar Gustafsson September 26, 2018 16

MAC - IntroducƟon

• MAC - Multiply and ACcumulate
• One of the most important parts of a DSP
processor

06 – MAC Oscar Gustafsson September 26, 2018 17

Why MAC?
• Convolution based algorithms

• FIR, IIR, Auto correlation, Cross correlation
• Linear algebra based algorithms

• Inner product, Matrix multiplication
• Support most transformation algorithms

• FFT, DCT
• Example below: FIR implemented with 4 MACs
and one MULT

Round
Saturation

06 – MAC Oscar Gustafsson September 26, 2018 18

Basic structure of a MAC unit

*

OpA OpB

ACR
Pipeline reg.

• Why ACR instead of normal RF?
• Reduce the number of RF ports
• No register/accumulator size

mismatch
• No need to write to RF after a

very long pipeline
– During convolution: (Address
generation, memory read,
multiply, add)

06 – MAC Oscar Gustafsson September 26, 2018 19

MulƟplier basics

• Create a schematic for a 16× 16multiplier with
support for:
• OP1: Signed/unsigned integer multiplication
• OP2: Signed/unsigned integer multiplication

(read out high part)
• OP3: Signed fractional multiplication (with proper

rounding)
• The instruction decoder will set the Cs signal
according to whether signed or unsigned
multiplication is desired

06 – MAC Oscar Gustafsson September 26, 2018 20

MAC unit basics

• Example: Create a schematic for a MAC unit 16-bit
inputs, 8 guard bits and the following operations:
• OP0: NOP
• OP1: ACR = 0
• OP2: ACR = Signed/unsigned multiplication
• OP3: ACR = Signed/unsigned multiply and

accumulation
• OP4: ACR = SAT(RND(ACR)) //

Rounding/saturation for fractional inputs/outputs
• Note: A fairly common mistake on the exam is to
forget the NOP instruction!

06 – MAC Oscar Gustafsson September 26, 2018 21

MAC unit basics

• Something is missing in the specification.
• (Something which was previously a common error
on the exam…)

06 – MAC Oscar Gustafsson September 26, 2018 22

MAC unit basics

• We need to read back the result of the
accumulation:
• Op5: RF = ACR[31:16]
• Op6: RF = ACR[15:0]
• Op7: RF = ACR[39:32]

• (In fact, we need to be able to save/restore the
complete state of the MAC unit.)
• We need to be able to do context switches!

06 – MAC Oscar Gustafsson September 26, 2018 23

MAC unit basics - Discussion break

• Question: If we have 16-bit fractional inputs and
want a 16-bit fractional output, which bits of the
accumulator do we need to read out? How do we
perform saturation and rounding?

06 – MAC Oscar Gustafsson September 26, 2018 24

MAC unit basics - Discussion break

• Question: If we have 16-bit fractional inputs and
want a 16-bit fractional output, which bits of the
accumulator should we need?

• OP8: RF = ACR[30:15]

06 – MAC Oscar Gustafsson September 26, 2018 25

MAC unit basics

• Alternatives:
• Support fractional multiplication by scaling right

by one step directly after the multiplication. Now
both (saturated) integer and (saturated) fractional
MAC is supported by reading out only ACR[31:16]
and ACR[15:0].

06 – MAC Oscar Gustafsson September 26, 2018 26

MAC unit basics

• Alternatives:
• Allow post operations on the ACR value during

readout:
– RF = SAT(ROUND(ACR[31:16]))
– Drawback: Potentially a long critical path.

• Sign-extended readout of guard bits: RF = {
{8{ACR[39]}}, ACR[39:32]};

• Allow a few other different kinds of readout
options

06 – MAC Oscar Gustafsson September 26, 2018 27

MAC unit basics

• We probably also want to be able to set the ACR to
arbitrary values:
• OP9: ACR[31:16] = OpA
• OP10: ACR[15:0] = OpA
• OP11: ACR[39:32] = OpA[7:0]

• Wemay want some other variants as well:
• ACR = { {8{OpA[15]}}, OpA[15:0], 16'b0}; (Load

high and sign extend)
• ACR = { {9{OpA[15]}}, OpA[15:0], 15'b0}; (Load

fractional value and sign extend)
• ACR = { {8{OpA[15]}}, OpA[15:0], OpB[15:0]};

(Load high and low part simultaneously)

• OpA and OpB may be either a memory or register file
operand

06 – MAC Oscar Gustafsson September 26, 2018 28

Scaling

• Scaling is typically desired in a MAC unit
• A scaling operation allows us to handle more than

just fractional/integer multiplication
• OP12: Scaling by 0.5 (easy)
• OP13: Scaling by 0.25 (easy)
• OP14: Scaling by 2 (easy)
• OP15: Scaling by 4 (easy)
• etc...
• OP16: Scaling by 1.5 (easy or hard?)
• OP17: Scaling by 0.75 (easy or hard?)

06 – MAC Oscar Gustafsson September 26, 2018 29

Scaling
• WARNING: Arithmetic right shift is not identical to division
by a power of two!

• Not a big concern if you round the result properly

#include <stdio.h>
int main(int argc, char **argv){

int a=-1;
printf("%d, %d\n", a/2, a >> 1);
return 0;

}
// Output from this program on x86_64 (using GCC): 0, -1

• Nitpick: Right shift on a negative number is actually not specified by
the C standard! (It is an implementation defined behavior although it
is unlikely to use anything but an arithmetic right shift.)

06 – MAC Oscar Gustafsson September 26, 2018 30

Wide mulƟplicaƟon operaƟon

• You may sometimes want to run a 32× 32 bit wide
multiplication on a MAC unit with a 16 bit wide multiplier.

• Straightforward method:

$signed(A[31:0]) * $signed(B[31:0]) =
= $unsigned(B[15:0]) * $unsigned(A[15:0]) +
+ ($unsigned(B[15:0]) * $signed(A[31:16])) << 16 +
+ ($signed(B[31:16]) * $unsigned(A[15:0])) << 16
+ ($signed(B[31:16]) * $signed(A[31:16])) << 32)

• One reason why Senior has separate mulxx/macxx/convxx
instructions, where x can be either s (signed) or u (unsigned).

06 – MAC Oscar Gustafsson September 26, 2018 31

Wide mulƟplicaƟon operaƟon
• Somewhat trickier in practice (64-bit result)

AH = $signed(A[31:16]); AL = $unsigned(A[15:0])
BH = $signed(B[31:16]); BL = $unsigned(B[15:0])

ACR = AL * BL;
R0 = ACR[15:0];
ACR = ACR >> 16; // Question to audience: Do we

// need rounding here?
ACR += BL*AH;
ACR += AL*BH;
R1 = ACR[15:0];
ACR = ACR >> 16;

ACR += HL*AL;
R2 = ACR[15:0];
R3 = ACR[31:16];

06 – MAC Oscar Gustafsson September 26, 2018 32

Long ArithmeƟc OperaƟons

• There is a wide adder in the MAC unit. This may
be used for long addition/subtraction:
• ACRz = ACRx + ACRy; (x, y, and z are numbers

from 0 to N − 1, where N is the number of
accumulator registers)

• ACRz = ACRx - ACRy;
• ACRz = ABS(ACRx);
• Compare (set flags according to ACRx - ACRy)

06 – MAC Oscar Gustafsson September 26, 2018 33

Long ArithmeƟc OperaƟons

• It is also convenient to be able to add immediates
or values from the register file:
• ACRz = {{24{OpA[15]}}, OpA[15:0]};
• ACRz = {{8{OpA[15]}}, OpA[15:0], 16'b0};
• ACRz = {{8{OpA[15]}}, OpA[15:0],

OpB[15:0]};
• Wemay want the following variant to make it easy
to work with fractional data:
• ACRz = {{9{OpA[15]}}, OpA[15:0], 15'b0};

06 – MAC Oscar Gustafsson September 26, 2018 34

Flags

• We probably want all the normal flags in the MAC
unit

• Zero (Z)
• Negative (N)
• Overflow (V)
• Carry (C) (Probably not so important)
• Wemay also want a sticky version of the overflow
flag ((S)) dealing with the full accumulator (not
overflow as in saturation)
• Rationale: Do a number of calculations, go to error

handling code if an overflow occurred at any point
in the calculation.

06 – MAC Oscar Gustafsson September 26, 2018 35

Advanced MAC architectures: Dual MAC

06 – MAC Oscar Gustafsson September 26, 2018 36

Advanced MAC architectures: Complex MAC

06 – MAC Oscar Gustafsson September 26, 2018 37

Complex mulƟplicaƟon algorithms

• Normal algorithm:
• (a+ bi)(c+ di) = (ac− bd) + i(ad+ bc)
• 4 multiplications, 2 additions

• If one factor (c+ di) is constant:
• Usecase: FFT, complex FIR/IIR, etc
• Still 4 multiplications and 2 additions

• Critical path: multiplier→ adder

06 – MAC Oscar Gustafsson September 26, 2018 38

Complex mulƟplicaƟon algorithms

• Gauss’ algorithm
• k1 = c(a+ b)
• k2 = a(d− c)
• k3 = b(c+ d)
• (a+ bi)(c+ di) = (k1 − k3) + i(k1 + k2)
• 3 multiplications, 5 additions
• Drawback: Needs slightly wider

multipliers/adders
• If one factor (c+ di) is constant:

• Precompute d− c and c+ d
• 3 multiplications and 3 additions

• Critical path: adder→multiplier→ adder

06 – MAC Oscar Gustafsson September 26, 2018 39

Wide mulƟplicaƟon: Karatsuba’s variant

• A similar trick can be used for performing
real-valued multiplications

• Could be useful for handling multiplications wider
than the native datawidth

• If you are interested, search for Karatsuba’s
algorithm
• Wikipedia has a good introduction

• A very similar trick can also reduce the
computational complexity of FIR filters (Search for
Fast Fir algorithm, FFA)
• We might look at this in a later lecture
• Talk to Oscar if you think this is really interesting!

(from earlier year’s slides...)

06 – MAC Oscar Gustafsson September 26, 2018 40

FloaƟng-point MAC

• Potential problem:
• Floating-point addition is cumbersome
• The accumulation part is hence cumbersome
• Easiest solution (from HW point of view): Use

several accumulators and use loop
unrolling/software pipelining

• Floating point MAC is sometimes called FMA
(Fused Multiply and Add)
• In this case rounding is only done once instead of

twice
• Alignment can be performed in parallel with the

multiplication

06 – MAC Oscar Gustafsson September 26, 2018 41

CriƟcal Path issues in MAC unit

D-mem 1 D-mem 2 D-mem 3 D-mem 4 ConstantRF OPA

32 to1

RF OPB

32 to1

Long wires Long wires

As MAC input Very heavy fan out here!

[Liu2008]

06 – MAC Oscar Gustafsson September 26, 2018 42

CriƟcal Path issues in MAC unit

ACR1

ACR2
ACRm

ACRn

Heavy fan out for
MAC internal
logic

Long wire

Register
select
logic

Data
select
logic

From RF

From a port
… …

Data memory

[Liu2008]

06 – MAC Oscar Gustafsson September 26, 2018 43

CriƟcal Path issues in MAC unit

(a) MAC in one clock cycle

Accumulator

ACR

Flag circuit

*

(b) MAC using two clocks

Accumulator

ACR

Flag circuit

*

(a) MAC using three clocks

Accumulator

ACR

Flag circuit

*

[Liu2008]

Oscar Gustafsson

www.liu.se

www.liu.se

