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Microarchitecture Design

• Step 1: Partition each assembly instruction into
microoperations, allocate each microoperation
into corresponding hardware modules.

• Step 2: Collect all microoperations allocated in a
module and specify hardware multiplexing for
RTL coding of the module

• Step 3: Fine-tune intermodule specifications of the
ASIP architecture and finalize the top-level
connections and pipeline.
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Hardware MulƟplexing

• Reusing one hardware module for several different
operations

• Example: Signed and unsigned 16-bit
multiplication
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Hardware MulƟplexing

[Liu2008]
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Hardware mulƟplexing

• Hardware multiplexing can be implemented either
by SW or by configuring the HW

• A processor is basically a very neat design pattern
for multiplexing different HW units

• Perhaps the most important skill of a good VLSI
designer
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Typical design paƩern for datapath modules
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Discussion break

• Which of these units is most expensive in terms of
area?
• 17 × 17 bit multiplier
• 32-bit adder/subtracter
• 32-bit 16-to-1 mux
• 32-bit adder
• 8 KiB memory (32 bits wide)



05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 7

Area properƟes (a.k.a. what to opƟmize)
• Relative areas of a few different components

• 32-bit adder: 0.2 to 1 area units
• 32-bit adder/subtracter: 0.3 to 2 area units
• 32-bit 16-to-1 mux: 0.5 to 0.6 area units
• 17 × 17 bit multiplier: 1.3 to 3.7 area units
• 8 KiB memory (32 bits wide): 33 area units

• Exam hint: You are typically supposed to minimize
the area of the units you design. That is, do not use
more multipliers than necessary, avoid extra
adders, do not worry about small 2-to-1
multiplexers. (And do not add extra SRAM
memories if you can avoid it...)



05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 8

Performance properƟes

• Relative maximum frequencies
• 32-bit adder: 0.1 to 1
• 32-bit adder/subtracter: 0.1 to 0.9
• 32-bit 16-to-1 mux: 0.31 to 0.9
• 17 × 17 bit multiplier: 0.11 to 0.44
• 8 KiB memory (32 bits wide): 0.53
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OpƟmizing memory size is oŌen the most important
task

• MP3 decoder example
• All memories in the
chip are 3 time the size
of the DSP core itself

• (I/O pads are also
larger than the DSP
core itself)
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Microarchitecture design of an instrucƟon
• Required microoperations for a typical convolution

instruction:
• conv ACRx,DM0(ARy++%),DM1(ARz++)

• Required microoperations:
• Instruction decoding
• Perform addressing calculation
• Read memories
• Perform signed multiplication
• Add guard bits to the result of the multiplication
• Accumulate the result
• Set flags
• For a combined repeat/conv instruction:

– PC<= PC while in the loop
– PC<= PC + 1 as the last step in the loop
– No saturation/rounding during the iteration
– Saturate/round after final loop iteration
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The register file (RF)

• The RF gets data from data memories by running
load instructions while preparing for an execution
of a subroutine.

• While running a subroutine, the register file is
used as computing buffers.

• After running the subroutine, results in the RF will
be stored into data memories by running store
instructions.
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General register file

[Liu2008]
• Connected to almost all parts of the core
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Register file schemaƟc
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Register file speed

• Almost (but not quite) the same speed as a very
fast 32-bit adder (in this particular technology)

• Also note that it is possible to use special register
file memories (but at an increased verification
cost)
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Read before write or write before read

• A processor architect has to decide how the
register file should work when reading and writing
the same register

• Read before write
• The old value is read

• Write before read
• The new value is read (more costly in terms of the

timing budget)
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Physical design: fan-out problem

[Liu2008]
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Register File in Verilog

reg [15:0] rf[31:0]; // 16 bit wide RF with 32 entries
always @(posedge clk) begin

if(we) rf[waddr] <= wdata;
end

always @* begin
op_a = rf[opaddr_a];
op_b = rf[opaddr_b];

end
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Special purpose registers

• Sometimes we need special purpose registers (SPR
or SR)
• BOT/TOP for modulo addressing
• AR for address register
• SP
• I/O
• Core configuration registers
• etc

• Should these be included in the general purpose
register file?
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Special purpose registers as normal registers

• Convenient for the programmer. Special purpose
registers can be accessed like any normal register.
• Example: add bot0,1 ; Move ringbuffer

bottom one word
• Example 2 (from ARM): pop pc

• Drawbacks:
• Wastes entries in the general purpose register file
• Harder to use specialized register file memories
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Special purpose registers needs special instrucƟons
• Special instructions required to access SR:s
• Example:

• move r0,bot0 ; Move ringbuffer bottom one word
• (nop) ; May need nop(s) here
• add r0,1
• (nop) ; May need nop(s) here
• move bot0,r0
• (Move is encoded as move from/to special purpose register

here)
• Advantage:

• Easier to meet timing as special purpose registers can easier be
located anywhere in the core

• Can scale easily to hundreds of special purpose registers if
required. (Common on large and complex processors such as
ARM/x86)

• Drawback:
• Inconvenient for special registers you need to access all the time
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Conclusions: SPRs

• Only place SPRs as a normal register if you believe
it will be read/written via normal instructions very
often
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ALU in general

• ALU: Arithmetic and Logic Unit
• Arithmetic, logic, shift/rotate, others
• No guard bits for iterative computing
• One guard bit for single step computing
• Get operands from and send result to RF
• Handles single precision computing
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Separate ALU or ALU in MAC
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[Liu2008]
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ALU high level schemaƟc

Shift 
unit

Logic 
unit

Masker, guard, carry-in, and other preprocessing

A [15:0] B [15:0]

Saturation and flag processing

Result [15:0] FA/FC, FS, FZ

[Liu2008]



05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 25

Pre-processing

• Select operands: from one of the sources
• Register file, control path, HW constant

• Typical operand pre processing:
• Guard: one guard

– (does not support iterative computing)
• Invert: Conditional/non-conditional invert
• Supply constant 0, 1, –1
• Mask operand(s)
• Select proper carry input
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Post-processing

• Select result from multiple components
• From AU, logic unit, shift unit, and others

• Saturation operation
• Decide to generate carry-out flag or saturation
• Perform saturation on result if required

• Flag operation
• Flag computing and prediction
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General instrucƟons

Operation opa opb Carry in Carry out
ADD Addition + + 0 Cout/SAT
SUB Subtraction + - 1 Cout/SAT
ABS Absolute +/- A[15] SAT
CMP Compare + - 1 SAT
NEG Negate - 1 SAT
INC Increment + 1 0 SAT
DEC Decrement + -1 0 SAT
AVG Average + + 0 SAT
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Special InstrucƟons

Mnemonic Description Operation
MAX Select larger value RF <= max(OpA,OpB)
MIN Select smaller value RF <= min(OpA,OpB)
DTA Difference of two GR <= |OpA| − |OpB|

absolute values
ADT Absolute of the GR <= |OpA−OpB|

difference of two values
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Adder with carry in for RTL synthesis (safe soluƟon)

+

{A[15], A[15:0], “1”}

Result [16:0] < =FAO [17:1]

{B[15],B[15:0],CIN}

18b full adder

FAO [17:0]

[Liu2008]

• Full adder may have no
carry in

• One guard bit
• We need 2 extra bits in the

adder
• LSB of the 18b result will

not be used
• MSB of the 18b result will

be the guard
• Works on all synthesis tools
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Adder for RTL synthesis (modern version)

•
{Cout,R[15:0]}={1'b0,A[15:0]}+{1'b0,B[15:0]}+Cin;

• Cout is 1 bit wide
• Important: Cin is 1 bit wide!
• Modern synthesis tools can usually handle this
case without creating two adders
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Example: Implement an 8-bit ALU
Instructions Function OP
NOP No change of flags 0
A+B A+B (without saturation) 1
A-B A−B (without saturation) 2
SAT(A+B) A+B (with saturation) 3
SAT(A-B) A−B (with saturation) 4
SAT(ABS(A)) |A| (absolute operation, saturation) 5
SAT(ABS(A+B)) |A+B| (absolute operation, saturation) 6
SAT(ABS(A-B)) |A−B| (absolute operation, saturation) 7
SAT(ABS(A)-ABS(B)) |A| − |B| (absolute operation, saturation) 8
CLR S Clear S flag (other flags unchanged) 9
• There should be a negative, zero, and saturation flag!
• Discussion topic: How many adders are needed for each operation?
• Discussion topic: How many guard bits are needed for each

operation?
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