
05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 0

05 – Microarchitecture, RF and
ALU
Oscar Gustafsson

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 1

Microarchitecture Design

• Step 1: Partition each assembly instruction into
microoperations, allocate each microoperation
into corresponding hardware modules.

• Step 2: Collect all microoperations allocated in a
module and specify hardware multiplexing for
RTL coding of the module

• Step 3: Fine-tune intermodule specifications of the
ASIP architecture and finalize the top-level
connections and pipeline.

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 2

Hardware MulƟplexing

• Reusing one hardware module for several different
operations

• Example: Signed and unsigned 16-bit
multiplication

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 3

Hardware MulƟplexing

[Liu2008]

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 4

Hardware mulƟplexing

• Hardware multiplexing can be implemented either
by SW or by configuring the HW

• A processor is basically a very neat design pattern
for multiplexing different HW units

• Perhaps the most important skill of a good VLSI
designer

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 5

Typical design paƩern for datapath modules

Pre-operation-I

Co
lle

cte
d

m
icr

o
op

er
ati

on
s

Pre-operation-II

Pre-operation-X

Pre-operation-Y

... ...

Ke
rn

el
op

er
ati

on
s

Post-operation-I

Post-operation-II

Post-operation-X

Post-operation-Y

... ...

Re
su

lts
an

d
ve

rif
ica

tio
ns

[Liu2008]

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 6

Discussion break

• Which of these units is most expensive in terms of
area?
• 17 × 17 bit multiplier
• 32-bit adder/subtracter
• 32-bit 16-to-1 mux
• 32-bit adder
• 8 KiB memory (32 bits wide)

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 7

Area properƟes (a.k.a. what to opƟmize)
• Relative areas of a few different components

• 32-bit adder: 0.2 to 1 area units
• 32-bit adder/subtracter: 0.3 to 2 area units
• 32-bit 16-to-1 mux: 0.5 to 0.6 area units
• 17 × 17 bit multiplier: 1.3 to 3.7 area units
• 8 KiB memory (32 bits wide): 33 area units

• Exam hint: You are typically supposed to minimize
the area of the units you design. That is, do not use
more multipliers than necessary, avoid extra
adders, do not worry about small 2-to-1
multiplexers. (And do not add extra SRAM
memories if you can avoid it...)

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 8

Performance properƟes

• Relative maximum frequencies
• 32-bit adder: 0.1 to 1
• 32-bit adder/subtracter: 0.1 to 0.9
• 32-bit 16-to-1 mux: 0.31 to 0.9
• 17 × 17 bit multiplier: 0.11 to 0.44
• 8 KiB memory (32 bits wide): 0.53

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 9

OpƟmizing memory size is oŌen the most important
task

• MP3 decoder example
• All memories in the
chip are 3 time the size
of the DSP core itself

• (I/O pads are also
larger than the DSP
core itself)

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 10

Microarchitecture design of an instrucƟon
• Required microoperations for a typical convolution

instruction:
• conv ACRx,DM0(ARy++%),DM1(ARz++)

• Required microoperations:
• Instruction decoding
• Perform addressing calculation
• Read memories
• Perform signed multiplication
• Add guard bits to the result of the multiplication
• Accumulate the result
• Set flags
• For a combined repeat/conv instruction:

– PC<= PC while in the loop
– PC<= PC + 1 as the last step in the loop
– No saturation/rounding during the iteration
– Saturate/round after final loop iteration

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 11

The register file (RF)

• The RF gets data from data memories by running
load instructions while preparing for an execution
of a subroutine.

• While running a subroutine, the register file is
used as computing buffers.

• After running the subroutine, results in the RF will
be stored into data memories by running store
instructions.

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 12

General register file

[Liu2008]
• Connected to almost all parts of the core

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 13

Register file schemaƟc

register 1

register 2

register 3

register n

............

from register file
from memory 1
from memory 2
from ALU

from MAC

from ports

......

OPA

OPB

ctrl_reg_in

ctrl_o_a

ctrl_o_b

Write circuit

S
to

re
ci

rc
ui

t

Read circuit

[Liu2008]

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 14

Register file speed

• Almost (but not quite) the same speed as a very
fast 32-bit adder (in this particular technology)

• Also note that it is possible to use special register
file memories (but at an increased verification
cost)

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 15

Read before write or write before read

• A processor architect has to decide how the
register file should work when reading and writing
the same register

• Read before write
• The old value is read

• Write before read
• The new value is read (more costly in terms of the

timing budget)

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 16

Physical design: fan-out problem

[Liu2008]

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 17

Register File in Verilog

reg [15:0] rf[31:0]; // 16 bit wide RF with 32 entries
always @(posedge clk) begin

if(we) rf[waddr] <= wdata;
end

always @* begin
op_a = rf[opaddr_a];
op_b = rf[opaddr_b];

end

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 18

Special purpose registers

• Sometimes we need special purpose registers (SPR
or SR)
• BOT/TOP for modulo addressing
• AR for address register
• SP
• I/O
• Core configuration registers
• etc

• Should these be included in the general purpose
register file?

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 19

Special purpose registers as normal registers

• Convenient for the programmer. Special purpose
registers can be accessed like any normal register.
• Example: add bot0,1 ; Move ringbuffer

bottom one word
• Example 2 (from ARM): pop pc

• Drawbacks:
• Wastes entries in the general purpose register file
• Harder to use specialized register file memories

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 20

Special purpose registers needs special instrucƟons
• Special instructions required to access SR:s
• Example:

• move r0,bot0 ; Move ringbuffer bottom one word
• (nop) ; May need nop(s) here
• add r0,1
• (nop) ; May need nop(s) here
• move bot0,r0
• (Move is encoded as move from/to special purpose register

here)
• Advantage:

• Easier to meet timing as special purpose registers can easier be
located anywhere in the core

• Can scale easily to hundreds of special purpose registers if
required. (Common on large and complex processors such as
ARM/x86)

• Drawback:
• Inconvenient for special registers you need to access all the time

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 21

Conclusions: SPRs

• Only place SPRs as a normal register if you believe
it will be read/written via normal instructions very
often

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 22

ALU in general

• ALU: Arithmetic and Logic Unit
• Arithmetic, logic, shift/rotate, others
• No guard bits for iterative computing
• One guard bit for single step computing
• Get operands from and send result to RF
• Handles single precision computing

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 23

Separate ALU or ALU in MAC

multiplier

Register file

Register file

multiplier

Register file

Register file

(a) (b)

ALU

Accumulator ALU and
Accumulator

DTU

[Liu2008]

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 24

ALU high level schemaƟc

Shift
unit

Logic
unit

Masker, guard, carry-in, and other preprocessing

A [15:0] B [15:0]

Saturation and flag processing

Result [15:0] FA/FC, FS, FZ

[Liu2008]

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 25

Pre-processing

• Select operands: from one of the sources
• Register file, control path, HW constant

• Typical operand pre processing:
• Guard: one guard

– (does not support iterative computing)
• Invert: Conditional/non-conditional invert
• Supply constant 0, 1, –1
• Mask operand(s)
• Select proper carry input

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 26

Post-processing

• Select result from multiple components
• From AU, logic unit, shift unit, and others

• Saturation operation
• Decide to generate carry-out flag or saturation
• Perform saturation on result if required

• Flag operation
• Flag computing and prediction

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 27

General instrucƟons

Operation opa opb Carry in Carry out
ADD Addition + + 0 Cout/SAT
SUB Subtraction + - 1 Cout/SAT
ABS Absolute +/- A[15] SAT
CMP Compare + - 1 SAT
NEG Negate - 1 SAT
INC Increment + 1 0 SAT
DEC Decrement + -1 0 SAT
AVG Average + + 0 SAT

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 28

Special InstrucƟons

Mnemonic Description Operation
MAX Select larger value RF <= max(OpA,OpB)
MIN Select smaller value RF <= min(OpA,OpB)
DTA Difference of two GR <= |OpA| − |OpB|

absolute values
ADT Absolute of the GR <= |OpA−OpB|

difference of two values

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 29

Adder with carry in for RTL synthesis (safe soluƟon)

+

{A[15], A[15:0], “1”}

Result [16:0] < =FAO [17:1]

{B[15],B[15:0],CIN}

18b full adder

FAO [17:0]

[Liu2008]

• Full adder may have no
carry in

• One guard bit
• We need 2 extra bits in the

adder
• LSB of the 18b result will

not be used
• MSB of the 18b result will

be the guard
• Works on all synthesis tools

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 30

Adder for RTL synthesis (modern version)

•
{Cout,R[15:0]}={1'b0,A[15:0]}+{1'b0,B[15:0]}+Cin;

• Cout is 1 bit wide
• Important: Cin is 1 bit wide!
• Modern synthesis tools can usually handle this
case without creating two adders

05 – Microarchitecture, RF and ALU Oscar Gustafsson September 14, 2018 31

Example: Implement an 8-bit ALU
Instructions Function OP
NOP No change of flags 0
A+B A+B (without saturation) 1
A-B A−B (without saturation) 2
SAT(A+B) A+B (with saturation) 3
SAT(A-B) A−B (with saturation) 4
SAT(ABS(A)) |A| (absolute operation, saturation) 5
SAT(ABS(A+B)) |A+B| (absolute operation, saturation) 6
SAT(ABS(A-B)) |A−B| (absolute operation, saturation) 7
SAT(ABS(A)-ABS(B)) |A| − |B| (absolute operation, saturation) 8
CLR S Clear S flag (other flags unchanged) 9
• There should be a negative, zero, and saturation flag!
• Discussion topic: How many adders are needed for each operation?
• Discussion topic: How many guard bits are needed for each

operation?

Oscar Gustafsson

www.liu.se

www.liu.se

