
04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 0

04 – DSP Architecture and
Microarchitecture
Oscar Gustafsson



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 1

Conclusions - InstrucƟon set design

• C hides memory addressing costs and loop costs
• At assembly language level, memory addressing
must be explicitly executed.

• We can conclude that most memory access and
addressing can be pipelined and executed in
parallel behind running the arithmetic operations.



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 2

Conclusions - InstrucƟon set design

• One essential ASIP design technique will be
grouping the arithmetic and memory operations
into one specific instruction if they are used
together all the time

• Remember this during lab 4!



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 3

Conclusions - InstrucƟon set design

• To hide the cost of memory addressing and data
access is to design smart addressing models by
finding and using regularities of addressing and
memory access.

• Addressing regularities:
• postincremental addressing
• modulo addressing
• postincremental with variable step size
• and bit-reversed addressing.



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 4

Conclusions - InstrucƟon set design

• An assembly language instruction set must be
more efficient than Junior

• Accelerations shall be implemented at arithmetic
and algorithmic levels.

• Addressing and data accesses can be executed in
parallel with arithmetic computing.

• Program flow control, loop or conditional
execution, can also be accelerated



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 5

Conclusions - InstrucƟon set design

• A DSP processor will seldomly have a pure
RISC-like instruction set

• To accelerate important DSP kernels, CISC-like
extensions are acceptable (especially if they don’t
add any real hardware cost)
• (Also, note that both RISC and CISC are losers in

the processor wars today, real processors are
typically hybrids)



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 6

What if you can’t create an ASIP?

• Trade program memory for performance
• To avoid control complexity (loop unrolling)
• To avoid addressing complexity

• Other clever programming tricks
• Conditional execution
• (Self modifying code)
• Rewrite algorithm
• etc…



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 7

History of DSP architectures

• Von Neumann architecture vs Harvard
architecture

Memory

Control 
unit

Arithmetic 
unit

In-out

Program 
memory

Control 
unit

Arithmetic 
unit

In-out

Data 
memory

[Liu2008, Figure 3.3]



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 8

History of DSP architectures

DP DM

CP PM

DP DM

CP PM

M
U
X

DP DM

CP PM

M
U
X

(a) (b) (c)

[Liu2008, Figure 3.4]
• a) Normal Harvard architecture
• b) Words from PM can be sent to the datapath
• c) Use a dual port data memory



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 9

History of DSP architectures
• Efficient FIR filter with only two memories (PM and DM)

Alt 1: Carries coefficient Alt 2: Override instruction
as immediate fetch, fetch data from PM

mac A, DM[AR0++%], -1 conv 8,DM[AR0++%]
mac A, DM[AR0++%], -743 .data -1
mac A, DM[AR0++%], 0 .data -743
mac A, DM[AR0++%], 8977 .data 0
mac A, DM[AR0++%], 16297 .data 8977
mac A, DM[AR0++%], 8977 .data 16297
mac A, DM[AR0++%], 0 .data 8977
mac A, DM[AR0++%], -743 .data 0
mac A, DM[AR0++%], -1 .data -743
rnd A .data -1

rnd A
More orthogonal No need for wide PM



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 10

History of DSP architectures

DP DM

CP PM/DM

M
U
X

DP DM

CP PM

M
U
X

(d) (e)

C
ac

he

DM

[Liu2008, Figure 3.5]
• d) Use a small cache to allow for one memory to be
shared between PM and DM

• e) Typical three memory configuration.



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 11

DSP Processor vs DSP Core

[Liu2008, Figure 3.2]



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 12

Architecture selecƟon

• Selecting a suitable ASIP architecture for the
desired application domain

• The decision includes how many function modules
are required, how to interconnect these modules
(relations between modules), and how to connect
the ASIP to the embedded system

• Closely related to instruction set selection if an
efficient implementation is desired



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 13

Architecture selecƟon

• DSP processor developers have an advantage over
general purpose CPU developers (e.g. Intel, AMD,
ARM):
• Known applications
• Known scheduling requirements
• Vector based algorithms and processing



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 14

Architecture selecƟon

• Challenges of DSP parallelization
• Hard real time and high performance
• Low memory and low power costs
• Data and control dependencies

• Remember Amdahl’s law: Your speedup is
ultimately limited by the parts that cannot be sped
up.



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 15

Ways to speed up a processor - Discussion break

• Programmer visible:
• VLIW
• Multiple memories
• Accelerators
• SIMD
• Multicore

• Programmer invisible
• Cache
• Pipelining
• Superscalar (in- or

out-of-order)
• Dataforwarding
• Branch prediction



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 16

Parallelism in DSP Algorithms

• Parallelism can be seen on several different
abstractions levels

• Different types of parallelism can be used
differently



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 17

Parallelism in DSP Algorithms – OperaƟon level

• Some operations can be performed in parallel



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 18

Parallelism in DSP Algorithms – Algorithm/block level

Decimation
filter

FFT

• Algorithms/blocks can be computed in parallel
• Not fundamentally different compared to
operation level



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 19

Parallelism in DSP Algorithms – Data level

• Different data (parts of image in this case) can be
computed in parallel



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 20

Standard DSP architecture

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 21

Advanced architectures: SIMD

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit

Address

Execution
unit

• Single instruction, multiple data
• Advantage: low power and area
• Disadvantage: difficult to use efficiently, very
difficult target for a compiler.



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 22

Advanced architectures: SIMD

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit

Address

Execution
unit



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 23

Advanced architectures: VLIW

• Why: DSP tasks are relatively predictable
• A parallel datapath gives higher performance

• How: Very Large Instruction Word
• Multiple instruction issues per-cycle
• Compiler manages data dependency

• Challenges
• Memory issue and on chip connections
• Register (fan-out ports) costs
• Hard compiler target



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 24

Advanced architectures: VLIW

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit

Address

Execution
unit



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 25

Advanced architectures: VLIW

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit

Address

Execution
unit



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 26

Advanced architectures: Superscalar

Instruction
memory

Instruction
decoder and scheduler

Program
control

Address

Execution
unit

Address

Execution
unit

• Analyze instruction flow
• Run several instruction in parallel

• (And possibly out of order)



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 27

Advanced architectures: Superscalar

Instruction
memory

Instruction
decoder and scheduler

Program
control

Address

Execution
unit

Address

Execution
unit



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 28

VLIW vs Superscalar

• VLIW:
• Relatively easy to

design and verify
the hardware

• Not code efficient
due to instruction
size and NOP
instructions

• Hard to keep binary
compatibility

• Hard to create an
efficient compiler

• Superscalar
• Hard to design and

verify the hardware
• Good code

efficiency, relatively
small instructions,
No NOPs needed

• Easier to manage
compatibility
between processor
versions



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 29

MulƟcore architectures

• Heterogenous or homogenous
• Well known heterogenous architecture: Cell
• Well known homogenous architecture: Modern

X86
• Usually harder to program than single core arch.
• Heterogenous architectures are well suited for
ASIPs
• Standard MCU for main part of application
• Specialized DSP for performance critical parts



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 30

Advanced architectures: MulƟcore

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 31

Advanced architectures: MulƟcore

Decimation
filter

FFT

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit

Instruction
memory

Instruction
decoder

Program
control

Address

Execution
unit



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 32

Summary: Advanced Architectures

• SIMD DSP: Very good for regular tasks
• VLIW: Good parallelism but hard for compiler
• Superscalar: Relatively easy for a compiler, but
highest silicon cost and verification cost

• Multicore: Whenever a single core is not powerful
enough

• You can choose any (combination of)
architecture(s) which makes sense



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 33

Summary: Advanced Architectures

[Liu2008, Figure 4.5 (modified)]



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 34

ASIP Design flow

• Understand target application
• Design architecture and assembly instruction set
• Create microarchitecture specification
• Write RTL code
• Synthesize code
• Backend design
• Tape out
• Celebrate!



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 35

ASIP Design flow



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 36

Understanding applicaƟons

• Read standards
• Read and profile reference code
• Read research papers about target application

• IEEE Xplore, Scopus, Google Scholar, etc
• Interview application expert



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 37

90-10 code locality rule

• About 10% of the instructions are used about 90%
of the time
• (Not really a rule, more of an observation)
• Holds fairly well for DSP-like applications

• We should create an instruction set so that those
10% can be executed efficiently



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 38

Profiling

• Pen and paper method
• Look at reference code (Matlab, C, pseudo code

etc)
• Manually figure out required number of

– Arithmetic operations
– Control flow instructions
– Memory accesses
– Address calculations

• Works for small applications/subroutines
• Such as the problems in the exam



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 39

Profiling tools

• Tell compiler that you want to use profiling
• For gcc: -pg

• Signal (timer interrupt) is generated regularly
• Every 10 ms when using gcc on Linux

• Current PC is stored
• Functions are instrumented

• A counter is incremented for each function call



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 40

Profiling example: mplayer using gprof in Linux

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
12.40 2.27 2.27 73363735 0.00 0.00 decode_residual
11.86 4.44 2.17 6180354 0.00 0.00 put_h264_qpel8o
8.14 5.93 1.49 21857226 0.00 0.00 h264_h_loop_fil
7.43 7.29 1.36 9922560 0.00 0.00 ff_h264_decode_
5.52 8.30 1.01 18181724 0.00 0.00 put_h264_chroma
4.70 9.16 0.86 82688 0.01 0.07 loop_filter
4.67 10.02 0.86 9922560 0.00 0.00 ff_h264_filter_
4.43 10.83 0.81 23096042 0.00 0.00 h264_h_loop_fil



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 41

Profiling flow for ASIP designers

• Find reference application code
• Compile it for your desktop computer

• With profiling/debugging information
• Run it with typical input data
• Look at profiling output to quickly determine parts

that are likely to be critical



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 42

Profiling piƞalls

• Is your reference code well optimized?
• Is your reference code using hardware features in
such a way that your profiling output is
misleading?
• Hand optimized assembler code
• Memory subsystem, cache size
• Specialized instructions
• Vector instructions



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 43

Profiling piƞalls

• While care must be taken in interpreting the
results, profiling is still a very good friend of an
ASIP designer!

• Never optimize your code unless you have profiled
it and seen that it makes sense to optimize it!
• ”The First Rule of Program Optimization: Don’t do

it. The Second Rule of Program Optimization (for
experts only!): Don’t do it yet.” — Michael A.
Jackson



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 44

Advanced profiling

• Profiling of other kinds of events:
• Cache hits and cache misses
• Floating point operations
• Taken/not taken branches
• Predicted/mispredicted branches
• TLB misses
• Instruction decoder stalls
• Etc...

• Interested? Look at oprofile or VTune



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 45

ASIP profiling

• Once you have an assembler and instruction set
simulator for your ASIP you can benchmark your
own ASIP

• Count the number of times each instruction is used
in a number of applications

• Useful for fine tuning of the DSP architecture but
too time consuming to start with
• Without a compiler it is very hard to profile

complete applications
• See lab 4!



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 46

StaƟc vs Dynamic Profiling

• Dynamic profiling: Running an application with
typical input data

• Static profiling: Analyzing the control flow graph
of an application and determining worst case
execution time (WCET)

• Critical for hard real time applications!
• Some hardware features complicates this:

– Interrupts, caches, superscalar, OoO, branch
prediction, DMA, etc...



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 47

EvaluaƟng instrucƟon sets

• Evaluation of an instruction set
• Cycle cost and memory usage
• Suitability for specific applications

• How to evaluate a processor
• Good assembly instruction set
• Good (open and scalable) architecture
• (Max clock frequency, low power, less area)

• Use benchmarking techniques!



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 48

General benchmarks

• Algorithm benchmarks/kernel benchmarks
• Normal precision and native word length
• What to check:

• Cycle costs of kernels, prologs, and epilogs
• Program/data memory costs

• Algorithms including
• FIR, IIR, LMS, FFT, DCT, FSM



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 49

Third Party Benchmarks

• BDTI: Berkeley Design Tech Incorporation
• Professional hand written assembly
• http://www.bdti.com

• EEMBC (the EDN Embedded Microprocessor
Benchmark Consortium), fall into five classes:
• automotive/industrial, consumer, networking,

office automation, and telecommunication
• http://www.eembc.org



04 – DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 50

Ideal benchmark

• The application you are interested in!
• Preferably optimized for your DSP architecture

• Difficult in practice



Oscar Gustafsson

www.liu.se

www.liu.se

