04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

04 — DSP Architecture and
Microarchitecture

Oscar Gustafsson

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Conclusions - Instruction set design

¢ C hides memory addressing costs and loop costs

¢ At assembly language level, memory addressing
must be explicitly executed.

e We can conclude that most memory access and

addressing can be pipelined and executed in
parallel behind running the arithmetic operations.

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Conclusions - Instruction set design

¢ One essential ASIP design technique will be
grouping the arithmetic and memory operations
into one specific instruction if they are used
together all the time

¢ Remember this during lab 4!

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Conclusions - Instruction set design

¢ To hide the cost of memory addressing and data
access is to design smart addressing models by
finding and using regularities of addressing and
Memory access.

e Addressing regularities:

+ postincremental addressing

« modulo addressing

« postincremental with variable step size
« and bit-reversed addressing.

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Conclusions - Instruction set design

An assembly language instruction set must be
more efficient than Junior

Accelerations shall be implemented at arithmetic
and algorithmic levels.

Addressing and data accesses can be executed in
parallel with arithmetic computing.

Program flow control, loop or conditional
execution, can also be accelerated

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Conclusions - Instruction set design

¢ A DSP processor will seldomly have a pure
RISC-like instruction set
e To accelerate important DSP kernels, CISC-like
extensions are acceptable (especially if they don’t
add any real hardware cost)
+ (Also, note that both RISC and CISC are losers in
the processor wars today, real processors are
typically hybrids)

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

What if you can’t create an ASIP?

¢ Trade program memory for performance
« To avoid control complexity (loop unrolling)
» To avoid addressing complexity

e Other clever programming tricks

« Conditional execution
+ (Self modifying code)
+ Rewrite algorithm

+ etc...

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

History of DSP architectures

e Von Neumann architecture vs Harvard

architecture
‘ Memory ‘ Program Data
l T l T memory memory
Control [~ Arithmetic 1 T l T
unit unit Control [~ Arithmetic
0 unit — unit

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

History of DSP architectures

(@) (b) ©
[Liu2008, Figure 3.4]
¢ a) Normal Harvard architecture
¢ b) Words from PM can be sent to the datapath
¢ ¢) Use a dual port data memory

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture

History of DSP architectures

Oscar Gustafsson September 14, 2018

e Efficient FIR filter with only two memories (PM and DM)

Alt

mac
mac
mac
mac
mac
mac
mac
mac
mac
rnd

1: Carries coefficient Alt 2: Override instruction
as immediate fetch, fetch data from PM
A, DM[ARO++%], -1 conv 8,DM[ARO++%]
A, DM[ARO++%], -743 .data -1
A, DM[ARO++%], O .data -743
A, DM[ARO++%]1, 8977 .data 0O
A, DM[ARO++%], 16297 .data 8977
A, DM[ARO++%], 8977 .data 16297
A, DM[ARO++%], O .data 8977
A, DM[ARO++%], -743 .data 0
A, DM[ARO++%], -1 .data -743
A .data -1
rnd A
More orthogonal No need for wide PM

LINKOPING
I I.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 10

(@) (e)
[Liu2008, Figure 3.5]

¢ d) Use a small cache to allow for one memory to be
shared between PM and DM

® o) Tymiral thraa mamanry enanficuiratinn

History of DSP architectures

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture

Oscar Gustafsson

DSP Processor vs DSP Core

'-=| Main memories t i

::IDMIDMIDMAIMMUIPMI::

i
E: I Other pheriph I Interrupt I Timer I i'
I

" DSP Processor "

[Liu2008, Figure 3.2]

DSP subsystem

4

September 14, 2018

11

LINKOPING
UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Architecture selection

¢ Selecting a suitable ASIP architecture for the
desired application domain

¢ The decision includes how many function modules
are required, how to interconnect these modules
(relations between modules), and how to connect
the ASIP to the embedded system

¢ Closely related to instruction set selection if an
efficient implementation is desired

12

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Architecture selection

e DSP processor developers have an advantage over
general purpose CPU developers (e.g. Intel, AMD,
ARM):

« Known applications
« Known scheduling requirements
« Vector based algorithms and processing

13

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Architecture selection

¢ Challenges of DSP parallelization

« Hard real time and high performance
« Low memory and low power costs
« Data and control dependencies

¢ Remember Amdahl’s law: Your speedup is

ultimately limited by the parts that cannot be sped

up.

14

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson

September 14, 2018 15

Ways to speed up a processor - Discussion break

® Programmer visible:
+ VLIW
« Multiple memories
« Accelerators
« SIMD
e Multicore

e Programmer invisible

Cache

Pipelining
Superscalar (in- or
out-of-order)
Dataforwarding
Branch prediction

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Parallelism in DSP Algorithms

e Parallelism can be seen on several different
abstractions levels

¢ Different types of parallelism can be used
differently

16

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Parallelism in DSP Algorithms — Operation level

e Some operations can be performed in parallel

17

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson

September 14, 2018 18

Parallelism in DSP Algorithms — Algorithm/block level

Decimation
filter

FFT

e Algorithms/blocks can be computed in parallel

¢ Not fundamentally different compared to

operation level

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Parallelism in DSP Algorithms — Data level

¢ Different data (parts of image in this case) can be
computed in parallel

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture

Standard DSP architecture

Oscar Gustafsson

Instruction
memory

']

Program
control

Instruction
decoder

!

Address

Execution
unit

September 14, 2018

20

LINKOPING
UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson

Advanced architectures: SIMD

Instruction
memory

Instruction
decoder

Program
control

Address

Address

Execution
unit

Execution
unit

¢ Single instruction, multiple data
¢ Advantage: low power and area
¢ Disadvantage: difficult to use efficiently, very

difficult target for a compiler.

September 14, 2018

21

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Advanced architectures: SIMD

Instruction
memory

[7

Program |_ |Instruction
control decoder

Address

Execution
unit

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Advanced architectures: VLIW

e Why: DSP tasks are relatively predictable

« A parallel datapath gives higher performance
e How: Very Large Instruction Word

« Multiple instruction issues per-cycle

+ Compiler manages data dependency
¢ Challenges

» Memory issue and on chip connections

» Register (fan-out ports) costs

+ Hard compiler target

23

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture

Oscar Gustafsson

Advanced architectures: VLIW

September 14, 2018

Instruction
memory

¥

Program
control

Instruction
decoder

|

]

Address

Address

Execution
unit

Execution
unit

24

LINKOPING
UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Advanced architectures: VLIW

Instruction
memory
¥ [
Program Instruction
control decoder

25

LINKOPING
II." UNIVERSITY

04 — DSP Architecture and Microarchitecture

Oscar Gustafsson September 14, 2018

Advanced architectures: Superscalar

Instruction
memory
']
Program Instruction
control decoder and scheduler

]

]

Address Address
Execution | | Execution
unit unit

¢ Analyze instruction flow
¢ Run several instruction in parallel
» (And possibly out of order)

26

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Advanced architectures: Superscalar

Instruction
memory

Program Instruction
control decoder and scheduler

27

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture

VLIW vs Superscalar

e VLIW:

Relatively easy to
design and verify
the hardware

Not code efficient
due to instruction
size and NOP
instructions

Hard to keep binary
compatibility
Hard to create an
efficient compiler

Oscar Gustafsson September 14, 2018 28

e Superscalar

« Hard to design and
verify the hardware

» Good code
efficiency, relatively
small instructions,
No NOPs needed

» [Easier to manage
compatibility
between processor
versions

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Multicore architectures

¢ Heterogenous or homogenous

« Well known heterogenous architecture: Cell
« Well known homogenous architecture: Modern
X86

e Usually harder to program than single core arch.

e Heterogenous architectures are well suited for
ASIPs
+ Standard MCU for main part of application
« Specialized DSP for performance critical parts

29

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture

Advanced architectures: Multicore

Oscar Gustafsson

September 14, 2018

Instruction Instruction
memory memory
[[]
Program | Instruction Program |_ [Instruction
control decoder control decoder
Address Address
Execution Execution
unit unit

30

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson

Advanced architectures: Multicore

il

September 14, 2018

31

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Summary: Advanced Architectures

e SIMD DSP: Very good for regular tasks

e VLIW: Good parallelism but hard for compiler

e Superscalar: Relatively easy for a compiler, but
highest silicon cost and verification cost

e Multicore: Whenever a single core is not powerful
enough

® You can choose any (combination of)
architecture(s) which makes sense

32

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture

Oscar Gustafsson

September 14, 2018
Summary: Advanced Architectures

Computing
performance
Single MAC

DMAC

Complexity
handling
SIMD performance

Power
efficienc

VLIW

Superscalar

Silicon
Multi-core efﬁciencr

Il.u LINKOPING

UNIVERSITY

33

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

ASIP

Design flow

¢ Understand target application

¢ Design architecture and assembly instruction set
¢ Create microarchitecture specification

e Write RTL code

¢ Synthesize code

¢ Backend design

e Tape out

e Celebrate!

34

LINKOPING
UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

ASIP Design flow

‘ Application / function coverage analysis ‘
I Source code

1 profiling
‘ Instruction set proposal and 90% 10% locality ‘

. . Instruction
Instruction set simulator and assembler ‘ .
1 set design

‘ Benchmarking: speed up and coverage

S

yes
‘ Release the instruction set architecture ‘ Processor
yes| implementation

‘ Micro architecture design, RTL, and VLSI

35

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Understanding applications

Read standards

Read and profile reference code
Read research papers about target application
« IEEE Xplore, Scopus, Google Scholar, etc

¢ Interview application expert

36

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

90-10 code locality rule

e About 10% of the instructions are used about 90%
of the time

+ (Not really a rule, more of an observation)
« Holds fairly well for DSP-like applications
e We should create an instruction set so that those
10% can be executed efficiently

37

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Profiling

¢ Pen and paper method
+ Look at reference code (Matlab, C, pseudo code
ete)
« Manually figure out required number of
Arithmetic operations
Control flow instructions
— Memory accesses
— Address calculations
e Works for small applications/subroutines

+ Such as the problems in the exam

38

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Profiling tools

Tell compiler that you want to use profiling
« Forgee: -pg

Signal (timer interrupt) is generated regularly
Every 10 ms when using gcc on Linux

o Current PC is stored
Functions are instrumented

+ A counter is incremented for each function call

39

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture

Oscar Gustafsson

September 14, 2018 40

Profiling example: mplayer using gprof in Linux

Each sample counts as 0.01 seconds.
cumulative
seconds

%

time

12.
.86
.14
.43
.52
.70
.67
.43

1

AR AN 0 R

40

2.
4.44
5.93
7.
8
9

27

29

.30
.16
10.
10.

02
83

self
seconds
2.
.17
.49
.36
.01
.86
.86
.81

O OO K =N

27

calls
73363735
6180354
21857226
9922560
18181724
82688
9922560
23096042

self

0.
.00
.00
.00
.00
.01
.00
.00

[el el elNeNeNeNe]

00

total
ms/call ms/call

0.
.00
.00
.00
.00
.07
.00
.00

O O OO OOoOOo

00

name
decode_residual
put_h264_gpel8o
h264_h_loop_fil
ff_h264_decode_
put_h264_chroma
loop_filter

ff_h264_filter_
h264_h_loop_fil

LINKOPING
I I.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 41

Profiling flow for ASIP designers

¢ Find reference application code

¢ Compile it for your desktop computer
« With profiling/debugging information
« Run it with typical input data

+ Look at profiling output to quickly determine parts
that are likely to be critical

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Profiling pitfalls

¢ Is your reference code well optimized?

¢ Is your reference code using hardware features in
such a way that your profiling output is
misleading?
« Hand optimized assembler code
« Memory subsystem, cache size
» Specialized instructions
« Vector instructions

42

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Profiling pitfalls

e While care must be taken in interpreting the
results, profiling is still a very good friend of an
ASIP designer!

¢ Never optimize your code unless you have profiled
it and seen that it makes sense to optimize it!

« "The First Rule of Program Optimization: Don’t do
it. The Second Rule of Program Optimization (for

experts only!): Don’t do it yet.” — Michael A.
Jackson

43

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Advanced profiling

¢ Profiling of other kinds of events:

« Cache hits and cache misses

» Floating point operations

« Taken/not taken branches

+ Predicted/mispredicted branches
« TLB misses

» Instruction decoder stalls

« Etc...

¢ Interested? Look at oprofile or VTune

v

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018
ASIP profiling

® Once you have an assembler and instruction set
simulator for your ASIP you can benchmark your
own ASIP

¢ Count the number of times each instruction is used
in a number of applications

e Useful for fine tuning of the DSP architecture but
too time consuming to start with
« Without a compiler it is very hard to profile
complete applications

e Seelab 4!

45

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018 46

Static vs Dynamic Profiling

¢ Dynamic profiling: Running an application with
typical input data
e Static profiling: Analyzing the control flow graph
of an application and determining worst case
execution time (WCET)
e (Critical for hard real time applications!
» Some hardware features complicates this:

— Interrupts, caches, superscalar, OoO, branch
prediction, DMA, etc...

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Evaluating instruction sets

e Evaluation of an instruction set

+ Cycle cost and memory usage

« Suitability for specific applications
¢ How to evaluate a processor

« Good assembly instruction set
+ Good (open and scalable) architecture
« (Max clock frequency, low power, less area)

¢ Use benchmarking techniques!

47

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

General benchmarks

¢ Algorithm benchmarks/kernel benchmarks

¢ Normal precision and native word length
e What to check:

« Cycle costs of kernels, prologs, and epilogs
» Program/data memory costs

e Algorithms including
. FIR, IIR, LMS, FFT, DCT, FSM

48

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Third Party Benchmarks

¢ BDTI: Berkeley Design Tech Incorporation
+ Professional hand written assembly
« http://www.bdti.com
e EEMBC (the EDN Embedded Microprocessor
Benchmark Consortium), fall into five classes:
« automotive/industrial, consumer, networking,
office automation, and telecommunication
« http://www.eembc.org

49

LINKOPING
Il.u UNIVERSITY

04 — DSP Architecture and Microarchitecture Oscar Gustafsson September 14, 2018

Ideal benchmark

¢ The application you are interested in!
e Preferably optimized for your DSP architecture
 Difficult in practice

50

LINKOPING
Il.u UNIVERSITY

Oscar Gustafsson

www.liu.se

LINKOPING
IIQ" UNIVERSITY

www.liu.se

