
02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 0

02 – Numerical RepresentaƟons
Oscar Gustafsson

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 1

Todays lecture

• Finite length effects, continued from Lecture 1
• Floating-point (continued from Lecture 1)
• Rounding
• Overflow handling

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 2

Discussion break

• If you are designing an application specific
processor where you need floating-point
numbers, can you reduce the hardware cost by
using a custom FP format?

• For reference: Single precision IEEE-754:
• 23 bit mantissa (with implicit one)
• 8 bit exponent
• 1 sign bit
• Other features:

– Rounding (Round to +∞, −∞, 0, and round to
nearest even)

– Subnormal numbers (sometimes called
denormalized numbers)

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 3

Example: FloaƟng-point Audio Processing

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 4

Example: MPEG-1 Layer III (also known as MP3)
decoding

Memory

Huffman decoder and
sample decoding

Misc calculations

IMDCT (18 point transform)

Misc calculations

DCT (32 point transform)

Windowing (16 tap FIR filter)

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 5

Demo (from last lecture): MP3 decoding with 13 bits
wide memory

Huffman decoder and
sample decoding

Misc calculations

IMDCT (18 point transform)

Misc calculations

DCT (32 point transform)

Windowing (16 tap FIR filter)

Memory

Width is
13 bits

• 13-bit wide memory for intermediate results (16
was used in the actual research, but we are
exaggarating the effects using 13 bits)

• Two alternatives
• Fixed-point data for all intermediate results in

memory
• Floating-point data for all intermediate results in

memory

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 6

ASIP floaƟng-point

• May not adhere to IEEE754 features:
• Number of bits for exponent/mantissa
• Rounding modes
• Exception handling
• Denormalized numbers
• May use different base (e.g. (−1)s ×m× 16e

instead of (−1)s ×m× 2e (A good choice for FPGA
based floating-point adders due to the high cost of
shifters)

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 7

Block floaƟng-point

• A fixed-point processor does not have a
floating-point hardware unit

• Floating-point computations can be emulated by
fixed-point DSP processors when larger dynamic
range is required
• (But this is slow!)

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 8

Block floaƟng-point

• Block floating-point (also called dynamic signal
scaling technique) is an emulation method that is
commonly used on fixed-point DSP processors to
achieve some of the advantages of floating-point
number formats

• Idea: Analyze dynamic range of a block of numbers
(Before running an FFT or DCT for example)
• Scale all values so that overflow is narrowly

avoided
• This will use the available bits as efficiently as

possible

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 9

Block floaƟng-point

0dB

−10dB

−20dB

−30dB

10dB

20dB

30dB

40dB

Scale down 42db

E
xp

on
en

t=
4

Exponent=0

E
x

po
n

en
t=

3

The average amplitude

Time
Scale
down
24dB

Exponent=7

No scaling

Scale
down
18dB

−80dB

[Liu2008, figure 2.9]

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 10

Block floaƟng-point example of a DCT

Memory

Huffman decoder and
sample decoding

Misc calculations

IMDCT (18 point transform)

Misc calculations

DCT (32 point transform)

Windowing (16 tap FIR filter)

• First version: 24-bit fixed-point
• More or less perfect sound

• Second version: 14-bit fixed-point
• Third version: 14-bit fixed-point with dynamic
scaling of input values

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 11

Finite length DSP: The problem

• A challenge to get the best available precision on
the results under a precision-limited datapath and
storage system – Focus of the textbook and
this course
• First problem: finite resolution of A/D converter
• Second problem: DSP processors are typically

fixed-point to minimize silicon cost
• Third problem: extra quantization error

introduced while scaling down signals within a
finite data length system

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 12

A few definiƟons

• Definition 1: truncation
• To convert a longer numerical format to a shorter

one by simply cutting off bits at the LSB part
• Definition 2: quantization error

• The numerical error introduced when a longer
numeric format is converted (truncated) to a
shorter one

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 13

QuanƟzaƟon errors

Liu2008 figure 2.11 (with bug in rightmost part
corrected!)

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 14

Round operaƟon

• Why: To eliminate bias errors after truncation.
(Adds approx. 3dB to the Signal-to-Noise ratio)

• To round up the truncated part: Use the truncated
MSB as the carry in of an add operation

• Hardware implementation 1: Mask the kept part
and add to the original

• Hardware implementation 2: MSB of truncated
part as the carry in

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 15

Round operaƟon

• In certain scenarios you may be concerned with
bias caused by rounding
• Round to nearest even (IEEE-754)

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 16

A cauƟonary tale

• Saudi Arabia, february 25th, 1991
• An incoming Iraqi Scud missile impacts an army
barracks killing 28 soldiers

• Cause: A software bug in the fixed-point math

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 17

Discussion break

• Why did things go wrong?
• System description:

• Time is stored as a fixed-point value
• Time is incremented every 100 ms by 1/10

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 18

Discussion break

• Why did things go wrong?
• System description:

• Time is stored as a fixed-point value
• Time is incremented every 100 ms by 1/10
• Hint: How do you represent 1/10 in a fixed-point

format?

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 19

Patriot missile bug
• 1/10 cannot be represented exactly using a binary
fixed-point number (nor as a (binary)
floating-point number)
• 1/10 is 0.0001100110011001100110011 . . . in base 2

• After the missile battery had been operational for
over 100 hours the time has drifted by ≈ 0.34 s

• An incoming Scud travels at 1.7 km/s, thus the
missile battery’s tracking was off by over half a
kilometer, causing the range gate of the radar to be
missed

• For more information, see: http://sydney.edu.
au/engineering/it/~alum/patriot_bug.html

http://sydney.edu.au/engineering/it/~alum/patriot_bug.html
http://sydney.edu.au/engineering/it/~alum/patriot_bug.html

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 20

DemonstraƟon of rounding effects

• Most of the time you will gain about half a bit when
doing proper rounding

• However, in some cases you will get significantly
better results

• Example: Iterated vector rotation

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 21

DemonstraƟon of rounding effects: Iterated vector
rotaƟon

• X0 =

(
1
0

)
• a = 0.003

• Xn+1 =

(
cos(a) − sin(a)
sin(a) cos(a)

)
Xn

• If you do not round the rotation matrix andX
properly you’ll get pretty bad results

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 22

DemonstraƟon of rounding effects: Iterated vector
rotaƟon

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

12 bits, no rounding
12 bits, rounding

16 bits, no rounding

• Ideally: X follows the unit circle
• In practice: Rounding effects causesX to deviate
as seen in the figure

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 23

Overflow, saturaƟon, and guard bits

• Overflow: if the result of a (fractional) calculation
(X) is not in the range −1 ≤ X < 1

• Common reasons for overflow:
• When the result is too large (or small)
• Too many accumulations

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 24

Ways to deal with fixed-point overflow

• Ignore it
• Use a floating-point processor instead
• Redo calculation with scaled down input data

• Tricky for real-time systems
• Exception→ System restart
• Use guard bits and saturation arithmetic

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 25

Ways to deal with fixed-point overflow

• Ignore it
• May or may not be a good idea. See Ariane 501 for

an example where it was a bad idea…
• Use a floating-point processor instead
• Redo calculation with scaled down input data

• Tricky for real-time systems
• Exception→ System restart
• Use guard bits and saturation arithmetic

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 26

Managing overflow: SaturaƟon/guard

• Most popular way in DSP systems
• What is guard

• Add more sign extension bits to operands
• Increasing the range to: −2G ≤ x < 2G

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 27

Managing overflow: SaturaƟon/guard

if(result >= 1.0) {
final_result = 0.99999;

} else if(result <= -1.0) {
final_result = -1.0

} else {
final_result = result;

}

• Performed after an iterative accumulation
• Do not do it during a convolution
• Often better than exception for hard-real time

system

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 28

Managing overflow: SaturaƟon/guard

Memory

Huffman decoder and
sample decoding

Misc calculations

IMDCT (18 point transform)

Misc calculations

DCT (32 point transform)

Windowing (16 tap FIR filter)

• Example of overflow vs saturation
• Same DCT example as for block floating-point

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 29

Discussion break

• What is the correct execution order for the
following steps?
• Truncation and saturation
• Remove guard bits
• DSP Kernel computations
• Add guard bits
• Round

• Hint: Think of a simple scalar product where the
input is in fractional format and the output should
be in fractional format

• ∑N
i=1 xi × yi

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 30

Correct execuƟon order

• Add guard bits
• DSP Kernel computations
• Round
• Truncation and saturation
• Remove guard bits

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 31

Corner cases

• When verifying a system it makes sense to
concentrate on corner cases that exercises the
system in unusual ways

• Example: Corner cases for a divider may be
MAX_VAL/MAX_VAL, MAX_VAL/1,
1/MAX_VAL, 0/1, 0/MAX_VAL, 1/0, 0/0,
MAX_VAL/0, and similar cases

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 32

Corner case, fracƟonal mulƟplicaƟon

• Remember, a fractional number can be between
−1 and 1− 2n−1 (inclusive)

• Do you see any problems with a fractional
multiplier which gives a fractional result?

• Expression for fractional multiplication:
• tmp[2*n-1:0] = $signed(a)*$signed(b)
• result=tmp[2*n-2:n-1]

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 33

Corner case, fracƟonal mulƟplicaƟon

• (−1)× (−1) = 1 (Answer cannot be represented in
fractional!)

• (If not taken into account, the fractional multiplier
will produce a −1 in this case.)

• How to handle? Probably best to saturate the
result to 0.1111111111...

• (Do you think it is unlikely that you will get a −1?
What about a broken sensor?)

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 34

Corner case, absolute operaƟon

• Same problem, what about | − 1|?
• Without guard/saturation:

• ABS(1000) = INV(1000)+0001 = 0111+0001 =
1000 (?!)

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 35

Corner case, absolute operaƟon

• With guard bits/saturation:
• ABS(1000) calculated as

TRUNC(SAT(ABS(GUARD(1000)))) =
TRUNC(SAT(ABS(11000)))

• TRUNC(SAT(ABS(11000))) =
TRUNC(SAT(01000)) = TRUNC(00111) = 0111

02 – Numerical RepresentaƟons Oscar Gustafsson 2018-09-07 36

Designing a minimal instrucƟon set

• What is the smallest instruction set you can get
away with while retaining the capability to execute
all possible programs you can encounter?

• (Something to think about over the weekend.)

Oscar Gustafsson

www.liu.se

www.liu.se

