02 — Numerical Representations Oscar Gustafsson 2018-09-07

02 — Numerical Representations

Oscar Gustafsson

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Todays lecture

¢ Finite length effects, continued from Lecture 1
+ TFloating-point (continued from Lecture 1)
« Rounding
« Overflow handling

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Discussion break

¢ [fyou are designing an application specific
processor where you need floating-point
numbers, can you reduce the hardware cost by
using a custom FP format?
¢ For reference: Single precision IEEE-754:
« 23 bit mantissa (with implicit one)
» 8 bit exponent
+ 1sign bit
+ Other features:
— Rounding (Round to +oco, —oc0, 0, and round to
nearest even)
— Subnormal numbers (sometimes called
denormalized numbers)

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Example: Floating-point Audio Processing

0001110
I 0 ll MP3 bit stream

Internal Memory 16-bit
f S | EEEEE| MMMMMMMMMM
.
Olmdt S | EEEEE| MMMMMMMMMM
1 S | EEEEE| MMMMMMMMMM
23-bit
'S|E=6] M=16 |
N ‘ H}-.l-.l-ﬁl-,‘ MMMMMMMMMM

Music out 16-bit

LLLLL

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07 4

Example: MPEG-1 Layer lll (also known as MP3)
decoding

Huffman decoder and
sample decoding

‘H Misc calculations ‘
‘_" IMDCT (18 point transform) ‘
|
|

Memory

‘H Misc calculations
‘ — DCT (32 point transform)
'(Windowing (16 tap FIR filter) ’'H B

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07 5

Demo (from last lecture): MP3 decoding with 13 bits
wide memory

¢ 13-bit wide memory for intermediate results (16
was used in the actual research, but we are
exaggarating the effects using 13 bits)

¢ Two alternatives
« TFixed-point data for all intermediate results in

memory
« Floating-point data for all intermediate results in

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

ASIP floating-point

e May not adhere to IEEE754 features:

« Number of bits for exponent/mantissa

+ Rounding modes

« Exception handling

« Denormalized numbers

» May use different base (e.g. (—1)® x m x 16°
instead of (—1)® x m x 2¢ (A good choice for FPGA
based floating-point adders due to the high cost of
shifters)

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Block floating-point

¢ A fixed-point processor does not have a
floating-point hardware unit
¢ Floating-point computations can be emulated by
fixed-point DSP processors when larger dynamic
range is required
o (But this is slow!)

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Block floating-point

¢ Block floating-point (also called dynamic signal
scaling technique) is an emulation method that is
commonly used on fixed-point DSP processors to
achieve some of the advantages of floating-point
number formats

¢ Idea: Analyze dynamic range of a block of numbers
(Before running an FFT or DCT for example)

« Scale all values so that overflow is narrowly
avoided
« This will use the available bits as efficiently as

possible

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Block floating-point

The average amplitude

40dB
30dB L
20dB
Exponcdt=7 \ /
"
10dB 3 7
5 »
£ \ Expdnent=0 /
0dB . /
™, = Pa
—10dBl—> L ~ / .
—20dB B : — :
=
—30dB =
Scale Scale
down

o
15
H

No scaling

—soanl Time,
f

Scale down 42db ‘ 24dB
T

[Liu2008, figure 2.9]

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Block floating-point example of a DCT

Huffiman decoder and
sample decoding

Misc calculations
IMDCT (18 point transform)

E

Memory

Mise calculations
DCT (32 point transform)

Windowing (16 tap FIR filter) g

¢ First version: 24-bit fixed-point
« More or less perfect sound
e Second version: 14-bit fixed-point
e Third version: 14-bit fixed-point with dynamic
scaling of input values

10

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Finite length DSP: The problem

¢ A challenge to get the best available precision on
the results under a precision-limited datapath and
storage system — Focus of the textbook and
this course
+ First problem: finite resolution of A/D converter
« Second problem: DSP processors are typically
fixed-point to minimize silicon cost
« Third problem: extra quantization error
introduced while scaling down signals within a
finite data length system

11

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

A few definitions

¢ Definition 1: truncation
» To convert a longer numerical format to a shorter
one by simply cutting off bits at the LSB part
¢ Definition 2: quantization error
« The numerical error introduced when a longer
numeric format is converted (truncated) to a
shorter one

12

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Quantization errors

Qgf+/ oyl oyl
4T AT AT
x x
—A + 4 1.
Two’s complement: Sign magnitude: Two’s complement round:
O1/x] of positive data -4 QOr[x] of positive data 4 O1/x] of positive data 4/2
Q1/x] of negative data 4 Qr/x] of negative data 4 Qr/x] of negative data 4/2

Liu2008 figure 2.11 (with bug in rightmost part
corrected!)

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Round operation

e Why: To eliminate bias errors after truncation.
(Adds approx. 3dB to the Signal-to-Noise ratio)

¢ To round up the truncated part: Use the truncated
MSB as the carry in of an add operation

¢ Hardware implementation 1: Mask the kept part
and add to the original

¢ Hardware implementation 2: MSB of truncated
part as the carry in

14

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Round operation

¢ In certain scenarios you may be concerned with
bias caused by rounding

« Round to nearest even (IEEE-754)

15

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

A cautionary tale

e Saudi Arabia, february 25th, 1991

¢ An incoming Iraqi Scud missile impacts an army
barracks killing 28 soldiers

e Cause: A software bug in the fixed-point math

16

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Discussion break

¢ Why did things go wrong?
¢ System description:

« Time is stored as a fixed-point value
+ Time is incremented every 100 ms by 1/10

17

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Discussion break

¢ Why did things go wrong?
e System description:
« Time is stored as a fixed-point value
« Time is incremented every 100 ms by 1/10
« Hint: How do you represent 1/10 in a fixed-point
format?

18

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Patriot missile bug

¢ 1/10 cannot be represented exactly using a binary
fixed-point number (nor as a (binary)
floating-point number)
« 1/10is0.0001100110011001100110011 ... in base 2

e After the missile battery had been operational for
over 100 hours the time has drifted by ~ 0.34 s

¢ An incoming Scud travels at 1.7 km/s, thus the
missile battery’s tracking was off by over half a
kilometer, causing the range gate of the radar to be
missed

¢ For more information, see: http://sydney.edu.
au/engineering/it/~alum/patriot_bug.html

19

LINKOPING
Il.u UNIVERSITY

http://sydney.edu.au/engineering/it/~alum/patriot_bug.html
http://sydney.edu.au/engineering/it/~alum/patriot_bug.html

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Demonstration of rounding effects

e Most of the time you will gain about half a bit when
doing proper rounding

® However, in some cases you will get significantly
better results

e Example: Iterated vector rotation

20

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07 21

Demonstration of rounding effects: Iterated vector
rotation

o=(s)

a = 0.003
Xy = (cos(a) —sin(a))Xn

sin(a) cos(a)

If you do not round the rotation matrix and X
properly you’'ll get pretty bad results

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07 22

Demonstration of rounding effects: Iterated vector
rotation

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Overflow, saturation, and guard bits

e QOverflow: if the result of a (fractional) calculation
(X)isnotintherange -1 < X <1
e Common reasons for overflow:

« When the result is too large (or small)
+ Too many accumulations

23

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Ways to deal with fixed-point overflow

Ignore it

Use a floating-point processor instead
Redo calculation with scaled down input data
+ Tricky for real-time systems

e Exception — System restart

Use guard bits and saturation arithmetic

24

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Ways to deal with fixed-point overflow

® Ignore it
« May or may not be a good idea. See Ariane 501 for
an example where it was a bad idea...

Use a floating-point processor instead
Redo calculation with scaled down input data
+ Tricky for real-time systems

¢ Exception — System restart

Use guard bits and saturation arithmetic

25

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Managing overflow: Saturation/guard

¢ Most popular way in DSP systems
e What is guard

» Add more sign extension bits to operands
« Increasing the range to: —2¢ < z < 2¢

26

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Managing overflow: Saturation/guard

if (result >= 1.0) {
final_result = 0.99999;
} else if(result <= -1.0) {

final_result = -1.0
} else {
final_result = result;

¢ Performed after an iterative accumulation
« Do not do it during a convolution
« Often better than exception for hard-real time
system

27

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Managing overflow: Saturation/guard

Huffiman decoder and
sample decoding

Misc calculations
IMDCT (18 point transform)
Memory

Mise caleulations
DCT (32 point transform)

Windowing (16 tap FIR filter) ig

¢ Example of overflow vs saturation
« Same DCT example as for block floating-point

28

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07 29

Discussion break

e What is the correct execution order for the
following steps?
« Truncation and saturation
« Remove guard bits
« DSP Kernel computations

» Add guard bits
+ Round

¢ Hint: Think of a simple scalar product where the
input is in fractional format and the output should
be in fractional format

N
i Zi:l Ti X Y

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson

Correct execution order

Add guard bits

DSP Kernel computations
Round

Truncation and saturation

Remove guard bits

2018-09-07

30

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Corner cases

¢ When verifying a system it makes sense to
concentrate on corner cases that exercises the
system in unusual ways

e Example: Corner cases for a divider may be
MAX_VAL/MAX_VAL, MAX_VAL/1,
1/MAX_ VAL, o/1,0/MAX_VAL, 1/0, 0/0,
MAX_VAL/o, and similar cases

31

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Corner case, fractional multiplication

¢ Remember, a fractional number can be between
—1land 1 — 2! (inclusive)

¢ Do you see any problems with a fractional
multiplier which gives a fractional result?

¢ Expression for fractional multiplication:

o tmp[2#n-1:0] = $signed(a)*$signed(b)
e result=tmp[2*n-2:n-1]

32

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Corner case, fractional multiplication

® (—1) x (—1) = 1 (Answer cannot be represented in
fractional!)

¢ (If not taken into account, the fractional multiplier
will produce a —1 in this case.)

¢ How to handle? Probably best to saturate the
resultto 0.1111111111...

¢ (Do you think it is unlikely that you will get a —1?
What about a broken sensor?)

33

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Corner case, absolute operation

e Same problem, what about | — 1|?
e Without guard/saturation:

» ABS(1000) = INV(1000)+0001 = 0111+0001 =
1000 (?!)

34

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Corner case, absolute operation

e With guard bits/saturation:

« ABS(1000) calculated as
TRUNC(SAT(ABS(GUARD(1000)))) =
TRUNC(SAT(ABS(11000)))

« TRUNC(SAT(ABS(11000))) =
TRUNC(SAT(01000)) = TRUNC(00111) = 0111

35

LINKOPING
Il.u UNIVERSITY

02 — Numerical Representations Oscar Gustafsson 2018-09-07

Designing a minimal instruction set

e What is the smallest instruction set you can get
away with while retaining the capability to execute
all possible programs you can encounter?

¢ (Something to think about over the weekend.)

36

LINKOPING
Il.u UNIVERSITY

Oscar Gustafsson

www.liu.se

LINKOPING
II." UNIVERSITY

www.liu.se

