02 – Numerical Representations

Oscar Gustafsson

Todays lecture

- Finite length effects, continued from Lecture 1
 - Floating-point (continued from Lecture 1)
 - Rounding
 - Overflow handling

Discussion break

- If you are designing an application specific processor where you need floating-point numbers, can you reduce the hardware cost by using a custom FP format?
- For reference: Single precision IEEE-754:
 - 23 bit mantissa (with implicit one)
 - 8 bit exponent
 - 1 sign bit
 - Other features:
 - Rounding (Round to $+\infty$, $-\infty$, 0, and round to nearest even)
 - Subnormal numbers (sometimes called denormalized numbers)

Example: Floating-point Audio Processing

2018-09-07

Example: MPEG-1 Layer III (also known as MP3) decoding

Demo (from last lecture): MP3 decoding with 13 bits wide memory

- 13-bit wide memory for intermediate results (16 was used in the actual research, but we are exaggarating the effects using 13 bits)
- Two alternatives
 - Fixed-point data for all intermediate results in memory
 - Floating-point data for all intermediate results in

ASIP floating-point

- May not adhere to IEEE754 features:
 - Number of bits for exponent/mantissa
 - · Rounding modes
 - Exception handling
 - Denormalized numbers
 - May use different base (e.g. (-1)^s × m × 16^e instead of (-1)^s × m × 2^e (A good choice for FPGA based floating-point adders due to the high cost of shifters)

Block floating-point

- A fixed-point processor does not have a floating-point hardware unit
- Floating-point computations can be emulated by fixed-point DSP processors when larger dynamic range is required
 - (But this is slow!)

Block floating-point

- Block floating-point (also called dynamic signal scaling technique) is an emulation method that is commonly used on fixed-point DSP processors to achieve some of the advantages of floating-point number formats
- Idea: Analyze dynamic range of a block of numbers (Before running an FFT or DCT for example)
 - Scale all values so that overflow is narrowly avoided
 - This will use the available bits as efficiently as possible

Block floating-point

[Liu2008, figure 2.9]

Block floating-point example of a DCT

- First version: 24-bit fixed-point
 - More or less perfect sound
- Second version: 14-bit fixed-point
- Third version: 14-bit fixed-point with dynamic scaling of input values

Finite length DSP: The problem

- A challenge to get the best available precision on the results under a precision-limited datapath and storage system – Focus of the textbook and this course
 - First problem: finite resolution of A/D converter
 - Second problem: DSP processors are typically fixed-point to minimize silicon cost
 - Third problem: extra quantization error introduced while scaling down signals within a finite data length system

A few definitions

- Definition 1: truncation
 - To convert a longer numerical format to a shorter one by simply cutting off bits at the LSB part
- Definition 2: quantization error
 - The numerical error introduced when a longer numeric format is converted (truncated) to a shorter one

Quantization errors

Liu2008 figure 2.11 (with bug in rightmost part corrected!)

Round operation

- Why: To eliminate bias errors after truncation. (Adds approx. 3dB to the Signal-to-Noise ratio)
- To round up the truncated part: Use the truncated MSB as the carry in of an add operation
- Hardware implementation 1: Mask the kept part and add to the original
- Hardware implementation 2: MSB of truncated part as the carry in

Round operation

- In certain scenarios you may be concerned with bias caused by rounding
 - Round to nearest even (IEEE-754)

A cautionary tale

- Saudi Arabia, february 25th, 1991
- An incoming Iraqi Scud missile impacts an army barracks killing 28 soldiers
- Cause: A software bug in the fixed-point math

Discussion break

- Why did things go wrong?
- System description:
 - Time is stored as a fixed-point value
 - Time is incremented every 100 ms by 1/10

Discussion break

- Why did things go wrong?
- System description:
 - Time is stored as a fixed-point value
 - Time is incremented every 100 ms by 1/10
 - **Hint:** How do you represent 1/10 in a fixed-point format?

2018-09-07

Patriot missile bug

- 1/10 cannot be represented exactly using a binary fixed-point number (nor as a (binary) floating-point number)
 - 1/10 is 0.0001100110011001100110011... in base 2
- After the missile battery had been operational for over 100 hours the time has drifted by ≈ 0.34 s
- An incoming Scud travels at 1.7 km/s, thus the missile battery's tracking was off by over half a kilometer, causing the range gate of the radar to be missed
- For more information, see: http://sydney.edu. au/engineering/it/~alum/patriot_bug.html

Demonstration of rounding effects

- Most of the time you will gain about half a bit when doing proper rounding
- However, in some cases you will get significantly better results
- Example: Iterated vector rotation

Demonstration of rounding effects: Iterated vector rotation

•
$$X_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• $a = 0.003$
• $X_{n+1} = \begin{pmatrix} \cos(a) & -\sin(a) \\ \sin(a) & \cos(a) \end{pmatrix} X_n$

• If you do not round the rotation matrix and *X* properly you'll get pretty bad results

Demonstration of rounding effects: Iterated vector rotation

Overflow, saturation, and guard bits

- Overflow: if the result of a (fractional) calculation (X) is not in the range −1 ≤ X < 1
- Common reasons for overflow:
 - When the result is too large (or small)
 - Too many accumulations

Ways to deal with fixed-point overflow

- Ignore it
- Use a floating-point processor instead
- Redo calculation with scaled down input data
 - Tricky for real-time systems
- Exception \rightarrow System restart
- Use guard bits and saturation arithmetic

Ways to deal with fixed-point overflow

- Ignore it
 - May or may not be a good idea. See Ariane 501 for an example where it was a bad idea...
- Use a floating-point processor instead
- Redo calculation with scaled down input data
 - Tricky for real-time systems
- Exception \rightarrow System restart
- Use guard bits and saturation arithmetic

Managing overflow: Saturation/guard

- Most popular way in DSP systems
- What is guard
 - Add more sign extension bits to operands
 - Increasing the range to: $-2^G \le x < 2^G$

Managing overflow: Saturation/guard

```
if(result >= 1.0) {
    final_result = 0.999999;
} else if(result <= -1.0) {
    final_result = -1.0
} else {
    final_result = result;
}</pre>
```

- Performed after an iterative accumulation
 - Do not do it during a convolution
 - Often better than exception for hard-real time system

Managing overflow: Saturation/guard

- Example of overflow vs saturation
 - Same DCT example as for block floating-point

Discussion break

- What is the correct execution order for the following steps?
 - Truncation and saturation
 - Remove guard bits
 - DSP Kernel computations
 - Add guard bits
 - Round
- **Hint:** Think of a simple scalar product where the input is in fractional format and the output should be in fractional format

•
$$\sum_{i=1}^{N} x_i \times y_i$$

Correct execution order

- Add guard bits
- DSP Kernel computations
- Round
- Truncation and saturation
- Remove guard bits

Corner cases

- When verifying a system it makes sense to concentrate on corner cases that exercises the system in unusual ways
- Example: Corner cases for a divider may be MAX_VAL/MAX_VAL, MAX_VAL/1, 1/MAX_VAL, 0/1, 0/MAX_VAL, 1/0, 0/0, MAX_VAL/0, and similar cases

Corner case, fractional multiplication

- Remember, a fractional number can be between -1 and $1 2^{n-1}$ (inclusive)
- Do you see any problems with a fractional multiplier which gives a fractional result?
- Expression for fractional multiplication:
 - tmp[2*n-1:0] = \$signed(a)*\$signed(b)
 - result=tmp[2*n-2:n-1]

Corner case, fractional multiplication

- (-1) × (-1) = 1 (Answer cannot be represented in fractional!)
- (If not taken into account, the fractional multiplier will produce a -1 in this case.)
- How to handle? Probably best to saturate the result to 0.111111111...
- (Do you think it is unlikely that you will get a -1? What about a broken sensor?)

Corner case, absolute operation

- Same problem, what about |-1|?
- Without guard/saturation:
 - ABS(1000) = INV(1000)+0001 = 0111+0001 = 1000 (?!)

Corner case, absolute operation

- With guard bits/saturation:
 - ABS(1000) calculated as TRUNC(SAT(ABS(GUARD(1000)))) = TRUNC(SAT(ABS(11000)))
 - TRUNC(SAT(ABS(11000))) = TRUNC(SAT(01000)) = TRUNC(00111) = 0111

Designing a minimal instruction set

- What is the smallest instruction set you can get away with while retaining the capability to execute all possible programs you can encounter?
- (Something to think about over the weekend.)

Oscar Gustafsson www.liu.se

