
TSEA 26 exam page 1 of 10 20171019

TSEA 26 exam page 1 of 10 20171019

Examination

Design of Embedded DSP Processors, TSEA26

Date 8-12, 2017-10-19

Room G34, G32, FOI hus G

Time 08-12AM

Course code TSEA26

Exam code TEN1

Course name
Design of Embedded DSP Processors
Konstruktion av inbyggd DSP-processorer

Written examination (skriftlig tentamen)

Department ISY

Number of questions 5

Number of pages (including this page) 5

Course responsible Dake Liu

Teacher visiting the exam room, phone Dake Liu, 0702681256, 281256

Time to visit the exam room About 09.00 and 11.00 (twice)

Course administrator Gunnel Hässler

Permitted equipement None, besides an English dictionary

Other important information

Grading

Points Swedish grade

41-50 5

31-40 4

21-30 3

 0-20 U

Number of exams in the bag

Important information:

 Please answer questions in English (if you cannot remember special technical words, you can use

corresponding Swedish words).

 When designing a hardware unit you should attempt to minimize the amount of hardware. (Unless

otherwise noted in the question.)

 The width of data buses and registers must be specified (with bit accurate annotations) unless

otherwise noted. Likewise, the alignment must be specified in all bit accurate concatenations of signals

or buses. When using a box such as "SATURATE" or "ROUND" in your schematic, you must (unless

otherwise noted) describe the content of this box! (E.g. with RTL code).

 You can assume that all numbers are in two's complement representation unless otherwise noted in the

question.

 In questions where you are supposed to write an assembler program based on pseudo code you are

allowed to optimize the assembler program in various ways as long as the output of the assembler

program is identical to the output from the pseudo code. You can also (unless otherwise noted in the

question) assume that hazards will not occur due to parts of the processor that you are not designing.

Good luck!

TSEA 26 exam page 2 of 10 20171019

TSEA 26 exam page 2 of 10 20171019

Question 1: General questions (10p)

1.1. (2p) Are following two figures correct? If yes, state reasons, if wrong, give correct figures.

 ”+1”

Step 1: Behavior, algorithm selection

Step 2: compile to ASM

Step 4: volume measurements

Step 3: Scaling

(b)

Firmware design/implementation flow

Step 1: Truncation

Step 2: Rounding

Step 3: Scaling

Step 4: Saturation

(a)

Hardware execution order

Question 1.1

Solution

Tow figures are not correct. Correct figures are:

 ”+1”

Step 1: Behavior, algorithm selection

Step 4: compile to ASM

Step 2: volume measurements

Step 3: Scaling

(b)

Firmware design/implementation flow

Step 1: Scaling

Step 2: Rounding

Step 3: Saturation

Step 4: Truncation

(a)

Hardware execution order

1.2. (1p) Using (Gajski) Y-chart and three sentences to describe a SIMD Processor

Solution

SoC

Micro arc

RTL

layout

One vector

instruction and multi

independent data

Parallel data path and

parallel data access,

conditional execution

Manage excessive data parallel induced critical

paths, approach low silicon cost and low power

TSEA 26 exam page 3 of 10 20171019

TSEA 26 exam page 3 of 10 20171019

1.3. (1p) If data and twiddle factors are available in data memories, how many basic arithmetic operations and

data access operations can be found while directly executing a DIT radix-2 butterfly algorithm for FFT using a

RISC processor?

Solution, 10 arithmetic computing (4*, 6+) and 10 data access (6R, 4W)

1.4. (2p) Please describe:

1.4.1. What is the function in the monitoring flow (a) in the following flowchart? (0.5p)

1.4.2. What is the function in the adaptation flow (b) in the following flowchart? (0.5p)

1.4.3. Please find a DSP processor which does not require step (a) and (b) because of the special hardware and

data type (1p).

Start

Program booting and parameter initialization

Load input data from ports or external memory

Main flow – Executing the main application function

Post processing, result storing

Monitoring

flow (a)

Adaptation

flow (b)

Others

Programming flow chart using fixed point ASIP

Solution

1, To measure the energy (volume) and the trends of it.

2, To adapt the scaling factors for the best dynamic range on results

3, floating point processor does not require step (a) and (b)

1.5. (1p) What shall a programmer prepare in master program for running a kernel task in a slave device

(master and device are in two programming domains and share the same data set).

Solution
Prolog in mater include at least: loading codes to device, loading/preparing data for the task to run in device,

configure the code accordingly, and finally, start the device task at the right time.

1.6. (1p) What is the difference between an arithmetic right shift and a logic right shift?

Solution: Arithmetic right shift filling sign bits after shift, logic right shift fill in zeros after shift

1.7. (2p) To implement an instruction set simulator ISS, you can execute an instruction by interpreting it or

binary code translation. Please describe them and answer why a high quality ISS consists both interpreter and

binary translator?

TSEA 26 exam page 4 of 10 20171019

TSEA 26 exam page 4 of 10 20171019

Solution: Interpreting means to emulate an assembly instruction of the target machine using a behavior

function call. Binary translation is to find a host instruction the same as the target instruction, translate

parameters, and directly run the host instruction. The reason is that we cannot find all host-target instruction

pare for all target instructions.

Question 2: ALU (8p)

3.1: (6p) Please design a 16b in/out arithmetic computing unit (AU) using only one adder and simple logic

component such as multiplexer and logic gates. The AU is for a single step computing, it is not for iterative

computing. Please design the circuit schematic drawing with complete connections and width annotations on

each connection. The instruction subset of the arithmetic unit is given in the following table and there are 10

instructions. The operands A and B are from the general register file. Specify all control signals and finish a

binary control table.

Instructions Function

ADD with SAT A = A + B with saturation

ADD without SAT A = A + B without saturation

ADD with CIN SAT A = A + B + Cin with saturation

ADD with CIN without SAT A = A + B + Cin without saturation

SUB with SAT A = A - B with saturation

SUB without SAT A = A - B without saturation

CMP with saturation SAT(A – B) set flags for compare

ABS(A) A = ABS(A) Absolute operation, saturation

INC(A) A = A+1 with saturation

DEC(A) A = A-1 with saturation

Solution

Schematic

{A[15], A[15:0]}

Saturation

0 1

{B[15], B[15:0]}

”1”, ”-1”

0 1 2 3 4

0 1

0

1

2

”0”

”1”

Cin

1

0 ”0”

A[15]

C1

C2

C3

C4

{16’b0, A[15]}

17 17

17

17b full adder saturation

Cout=0

if [16] <> [15]

then {

 if [16] out=16'h8000

 else out = 16'h7FFF}

else out[15,0] = in[15,0]
Output = {Cout, out[15:0]}

TSEA 26 exam page 5 of 10 20171019

TSEA 26 exam page 5 of 10 20171019

Control table

Instructions C1 C2 C3 C4

ADD with SAT 0 0 0 0

ADD without SAT 0 0 0 1

ADD with CIN SAT 0 0 2 0

ADD with CIN without SAT 0 0 2 1

SUB with SAT 0 1 1 0

SUB without SAT 0 1 1 1

CMP 0 1 1 0

ABS(A) 1 4 0 0

INC(A) 0 2 0 0

DEC(A) 0 3 0 0

3.2. (2p) Design hardware for executing the ABS (A [3:0]) instruction, give bit accurate circuit schematic

drawing, and try to completely verify the ABS function using three assembly instructions (do not need to verify

the correctness of the full adder).

Solution:
Schematic

{A[3], A[3:0]}

Saturation

0 1

A[3]
{4’b0, A[3]}

5 5

5

5b full adder

saturation

if [4]<>[3]

then {

 out = 4'b0111}

else out=in

4

Verification

ABS(16’h8000) //to verify the corner

ABS(16’h7xxx) //to verify the ABS of a positive value.

ABS(16’h8xxx) //to verify the ABS of a negative value, xxx is not H000

Question 3: MAC (12p)

Implement instructions I1 to If, draw a schematic and design a control table. Instructions are listed:

 I1: NOP // No operation

 I2: ACR0 = 0

 I3: ACR1 = 0

 I4: ACR0 = {{8{RFx[15]}}, RFx[15:0], RFy[15:0]}

 I5: ACR1 = {{8{RFx[15]}}, RFx[15:0], RFy[15:0]}

TSEA 26 exam page 6 of 10 20171019

TSEA 26 exam page 6 of 10 20171019

 I6: ACR0 = ACR0 + RFx[15:0] * RFy[15:0] //signed integer multiplication

 I7: ACR0 = ACR0 + RFx[15:0] * RFy[15:0] //unsigned integer multiplication

 I8: ACR0 = ACR0 + RFx[15:0] * RFy[15:0] //signed fractional multiplication

 I9: ACR0 = ACR0 + DM0[ap0] * DM1[ap1] //signed fractional MUL

 Ia: ACR0 = ACR0 + ACR1

 Ib: ACR0 = ACR0 – ACR1

 Ic: ACR0 = Scaling(ACR0) //Scaling factor is 0.75

 Id: ACR1 = ACR0

 Ie: RFx[15:0] = SAT(ROUND(ACR0)) //move ACR0[31:16] to RFx

 If: RFy[15:0] = SAT(ROUND(ACR1)) //move ACR1[31:16] to RFx

Constraints, inputs, outputs, and proposals:

 Both ACR0 and ACR1 are 40b accumulator registers and a RF is a 16-b general register,

 You shall use 17b x 17b signed multiplier as the primitive (component),

 You shall offer bit accurate annotations on connections,

 There are no saturation and round operations for instructions I1 to Id.

Solution

40 bits full adder

output [31:16]

ACR1

C1
11 10 01 00

ACR0

C0
11 10 01 00

signed 17x17 multiplier

{6'b [33], [33,0]}

 2 0 1 C7

11 10 01 00 C9

Ca 0 1

Saturation

{23'b0,[15], 16'b0}

accumulate [39:0]

Ci saturation

if [39, 31] not the same

then {

 if [39] out=40'h80000000

 else out = 40'h7FFFFFFF}

else out=in

AOPA[39, 0]

"0" "0" "0"

 2 0 1 3 C8

{8{{Rx[15]}}, Rx[15,0], Ry[15,0]}

40b 40b

40b 40b

40b

{5'b [33], [33,0], 1’b0}

 0 1 C6

34b 34b

DM0 Rx

16b

17b

C2 0 1

{0, [15,0]} {[15], [15,0]}
C4 0 1

DM1 Rx

16b

17b

C3 0 1

{0, [15,0]} {[15], [15,0]}
C5 0 1

{2’b[39]}, [39,2]}

{[39]}, [39,1]} ”0”

Control table

 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 Ca Cin

I1 00 00 x x x x x x x x x x

I2 11 00 x x x x x x x x x x

I3 00 11 x x x x x x x x x x

I4 01 00 x x x x x x x x x x

TSEA 26 exam page 7 of 10 20171019

TSEA 26 exam page 7 of 10 20171019

I5 00 01 x x x x x x x x x x

I6 10 00 0 0 0 0 0 0 x 00 0 0

I7 10 00 0 0 1 1 0 0 x 00 0 0

I8 10 00 0 0 0 0 1 0 x 00 0 0

I9 10 00 1 1 0 0 1 0 x 00 0 0

Ia 10 00 x x x x x 0 1 11 0 0

Ib 10 00 x x x x x 0 x 10 0 1

Ic 10 00 x x x x x 2 2 11 0 0

Id 00 10 x x x x x 0 3 11 0 0

Ie 10 00 x x x x x 0 0 01 1 0

If 00 10 x x x x x 1 1 01 1 0

Question 4: Address Generation Unit (AGU) (10p)

An AGU supports fast access of matrices. The AGU should support the incremental features to generate the

index of the next matrix element. The AGU shall support matrices size (M × N). The matrix is stored in

memory in row-major order. All matrix elements can thus be accessed by the following addresses relative to the

first matrix element (element 0):

 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

To start the matrix data access, an address register always points to the first element of the matrix (element 0),

after which the AGU should generate either the next element in the same row (row-major order), or the next

element in the same column (column-major order). While reaching the last element of a row(/column), the

AGU should wrap around and continue with the next row(/column).

Assuming that the address register is initially set to 0, row-wise increment should generate the following

address sequence (for the example matrix):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Column-wise addressing should instead generate the following sequence:

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

To transpose a matrix, see the assembly example below. The syntax ar0:+=next(row) indicates increment to

the next row element, and ar1:+=next(col) the next column element. A nop instruction is inserted between the

load instruction and the store instruction to avoid access conflict.

transpose:

 // some setup code (which configures the AGU)

 // ...

 repeat $(M*N) loop_end // repeat M*N times

 load r0,DM0[ar0:+=next(row)]

 nop

 store DM0[ar1:+=next(col)],r0

 loop_end:

 ret <ds0>

(a) (8p) Draw a schematic and control table of your AGU.

TSEA 26 exam page 8 of 10 20171019

TSEA 26 exam page 8 of 10 20171019

(b) (2p) Demonstrate the use of your AGU, by completing/modifying the pseudo assembly code above. Special-

purpose register(s), including M and N, can be loaded through general register. Address registers ar0 and ar1

have been initialized to the starting value of the input and output matrix respectively.

Solution:
1. Initial: Start = The first element address of the matrix;

2. Initial offset = 0; Row size = N; Column size = N; Mode K = M*N-1

3. The first (row) addressing model is A=Start + post increment offset

4. The second (column) addressing model is A=Start + (offset + row size) mod K

5. The schematic

Row size M

Mode K

Cin=1

Mode

initial

Row size

initial

When flags

Z<>0 and S=0

Offset

control

offset

New

offset

New offset

Start

initial

Start

Column

Address output

1 0

0 1 2

0 1

0 1

”1”

Row Address

output

AR0

Ar0

control

0 1 2

0

1

Initial value

from RF

 Initial value

from RF

Initial value

from RF

Initial value from RF

Initial value

from RF

6. The control table

 Mode initial Start initial Row size initial Offset control Ar0 control

Load row size M 0 0 1 0 0

Load start 0 1 0 0 0

Load Ar0 0 0 0 0 1

Load mode K 1 0 0 0 0

Offset initial 0 0 0 2 0

Row mode 0 0 0 0 2

Column mode 0 0 0 1 0

7. The assembly code

Specify the row addressing mode as AR ar0:+=next(row)

Specify the column addressing mode as AC ar0:+=next(row)

Move M R15 // suppose that M is in R15

Move Start R14 // suppose that Start is in R14

Move Ar0 R14

Move K R13 // suppose that K is in R13

repeat 16 loop_end // repeat M*N times

 Load r0,DM0[AR]

 Nop

 Store DM0[AC],r0

Nop

loop_end:

TSEA 26 exam page 9 of 10 20171019

TSEA 26 exam page 9 of 10 20171019

Question 5: Program flow control (10p)

The pipeline specification is:

1. P1: Pointed an instruction

2. P2: Fetched an instruction and stored it into the instruction register

3. P3: An instruction is decoded and decoded signals are latched

4. P4: Data from register file are ready on In-ports of the multiplier in a MAC

5. P5: Data are ready on accumulator inputs in a MAC

6. P6: MAC Flags are ready to use

Design part of the control path: The design shall include functions:

4.1. PC[15:0] <= 0; Reset, and starts executing at address 0x0000 after reset,

4.2. PC[15:0] <= PC+1 as the default of the PC FSM,

4.3. PC[15:0] <= immediate [15:0]; unconditional jump, immediate is carried by the jump instruction. The

decoding of the unconditional jump shall be used for jump decision before latching (pipelining),

4.4. PC[15:0] <= RF[15:0] when conditional jump is taken, RF here is a register value from the general

register file, The condition is from MAC flags.

The design outputs shall include

1. Design pipeline execution tables for unconditional and conditional jumps,

2. Draw pipeline accurate schematic circuits, and implement functions 4.1, 4.2, 4.3, and 4.4,

3. Design control signal for controlling the Next PC.

Solution
In following tables, MAC is a MAC instruction, JMP is an unconditional jump, MCJMP is MAC conditional

jump instruction, FI is a following instruction

Pipeline execution table for unconditional jump

clock

P stage 1 P stage 2 P stage3 P stage 4 P stage 5

Instruction
pointed

Instruction
fetched

Instruction
decoded

Operand
fetched

ALU/MUL

1 JMP to B --- --- --- ---

2 FI JMP --- --- ---

3 B: MUL R1 R2 Flush FI JMP --- ---

4 --- B: MUL R1 R2 NOP JMP ---

5 --- --- B: MUL R1 R2 NOP JMP

6 --- --- --- B: MUL R1 R2 NOP

7 --- --- --- --- B: MUL R1 R2

Pipeline execution table for conditional jump

clock P stage 1 P stage 2 P stage3 P stage 4 P stage 5 P stage 6

Instruction
pointed

Instruction
fetched

Instruction
decoded

Operand
fetched

MUL MAC flag
available

1 MAC --- --- --- --- ---

2 MCJMP B MAC --- --- --- ---

3 FI 1 MCJMP B MAC --- --- ---

4 FI 2 FI 1 MCJMP B MAC --- ---

5 FI 3 FI 2 FI 1 MCJMP B MAC ---

6 FI 4 FI 3 FI 2 FI 1 MCJMP B MAC

7 B: ADD R1 R2 Flush F4 Flush F3 Flush F2 Flush F1 MCJMP B

TSEA 26 exam page 10 of 10 20171019

TSEA 26 exam page 10 of 10 20171019

8 ADD R1 R2 FI4 =NOP FI3 =NOP FI2 =NOP FI1 =NOP

9 ADD R1 R2 FI4 =NOP FI3 =NOP FI2 =NOP

10 ADD R1 R2 FI4 =NOP FI3 =NOP

11 ADD R1 R2 FI4 =NOP

12 ADD R1 R2

Schematic

PC

1

Program memory

Instruction decoding logic

I-register

Circuit in RF

Control signal register CR1

MUL

Operand registers

MUL pipeline

PC FSM

C Jump

decision

logic

Next PC

JMP

taken

MAC flags

Conditional Jump

target address

Pipeline stage 1

Pipeline stage 2

Pipeline stage 3

Pipeline stage 4

Pipeline stage 5
NOP

CR3

NOP

CR2

Flush FI4

Latched

Delayed1

Flush FI3

Flush FI2

Not Latched

NOP

Flush Z

Accumulator

Flags available

Delayed2
Flush FI1

NOP

CR3

Pipeline stage 6

U
n
co

n
d
itio

n
al ju

m
p
 targ

et ad
d
ress

4 3 2 1 0

0 1

1 0

1 0

1 0

”0”

Delayed3

 Control signal for the Next PC
If reset=0 then Next_PC=2

Elseif MCJMP && Delay3 && MAC_flags_true then Next_PC=4

Elseif JMP_taken then Next_PC=3

Elseif single_instruction_loop then Next_PC=0

Else Next_PC=PC+1

