
User Manual
Diagnosis of ADAPT system

Version 1.0

Author: Erik Almqvist
Date: December 15, 2009

Status

Reviewed 09-11-29
Approved 09-12-01

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Erik Almqvist
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: UserManual1 0.pdf

Project Identity

Group E-mail: diagnos2009@googlegroups.com
Homepage: http://www.isy.liu.se/edu/projekt/tsrt10/2009/
Orderer: Erik Frisk, Linköping University

Phone: +46 (0)13 28 2035 , E-mail: frisk@isy.liu.se
Customer: The Division of Vehicular Systems, Linköping University

Phone: +46 (0)13 28 1000 , E-mail: Vehicular.Systems@isy.liu.se
Course Responsible: David Törnqvist, Linköping University

Phone: +46 (0)13 28 1882, E-mail: tornqvist@isy.liu.se
Project Manager: Niklas Wahlström
Advisors: Mattias Krysander, Linköping University

Phone: +46 (0)13 - 28 2198 , E-mail: matkr@isy.liu.se

Group Members

Name Responsibility Phone E-mail
Niklas Wahlström Project manager 0705-122349 nikwa148@student.liu.se
Daniel Eriksson Document manager 073-4405730 daner963@student.liu.se
Erik Almqvist Software manager 0705-149935 erija952@student.liu.se
Emil Nilsson Test manager 073-6766558 emini550@student.liu.se
Andreas Lundberg Design manager 0704-061227 andlu549@student.liu.se

Document History

Version Date Changes made Sign Reviewer
0.1 09-11-24 First draft. Erik Almqvist
1.0 09-11-24 Second draft. Erik Almqvist

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Erik Almqvist
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: UserManual1 0.pdf

Contents

1 Introduction 1

1.1 Background . 1

2 Installation and integration into the DXC 1

3 Compiling the diagnosis algorithm 1

4 Running the diagnosis algorithm 2

5 Changing algorithm parameters 3

6 Implementing a new test quantity 3

References 5

Diagnosis 1

1 Introduction

This document is a user manual for the diagnositis algorithm, called FFFDA, which has
been developed during the CDIO-project ”Diagnosis of ADAPT system”, by project group
FFF1 at Linköping University 2009. The project was part of the course ”Reglerteknisk
Projektkurs TSRT10”.

In this manual there are descriptions on how to setup the diagnosis algorithm, how to
compile and run the algorithm together with the DxC framework and how to change
algorithm parameters used within the diagnosis algorithm.

The diagnosis algorithm, FFFDA, is developed for use on a Linux system and requires
the DxC framework and a GCC compiler to be able to compile correctly.

1.1 Background

NASA is interested in analyzing different ways to monitor whether or not systems that
are sent into space are working properly, and also in finding out where the faults are when
there are faults present in the system. It is of course beneficial to know exactly which
faults that are present in e.g. a satellite before you send someone to repair it. It may
also be the case that detecting a fault, and smoothly shutting down the system or limit
its activities, can prevent other parts of the system to get damaged. The reasons above
illustrates why NASA together with Palo Alto Research Center (PARC) have started an
annual competition called the Diagnostic Challange Competition (DCC). The developed
diagnois algorithm is intended to participate in the DCC’10, in the Industrial Track System
Tier 2 challenge.

2 Installation and integration into the DXC

In order to use the diagnosis algorithm, a framework, DxC, developed by NASA for
evaluating diagnosis algorithms must be installed. Instructions on how to install DxC can
be found on the DCC competition homepage[dxp09]. The FFFDA diagnosis algorithm is
developed in a Linux environment, and although it should be perfectly possible to compile
the algorithm in a Windows environment, it has not been tested by the developing team.

Once the installation of the DxC framework is completed the contents of the provided
zip file should be extracted to the catalogue $DXC HOME/Algs/fffda, where $DXC HOME
is the home catalogue for the DxC Framework. This should produce a file structure like
the one shown in figure 1. Once the algorithm is placed correctly it is possible to run the
algorithm as described in section 4.

3 Compiling the diagnosis algorithm

If parameters are changed in the algorithm, it will have to be recompiled. In order
compile the FFFDA diagnosis algorithm the GNU GCC (G++) compilator and the DxC
framework is needed. The G++ compilator can be downloaded at GCC-homepage2.

Once the G++ compilator is installed the fffda algorithm can be compiled by running the
command ’make’ in the FFFDA algorithm’s home catalogue as shown in 2.

1Finn Fem Fel
2http://gcc.gnu.org/

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Erik Almqvist
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: UserManual1 0.pdf

Diagnosis 2

Figure 1: The installation directory once the algorithm is installed.

Figure 2: In order to compile the FFFDA, run the make command in the FFFDA home-
catalogue.

4 Running the diagnosis algorithm

The FFFDA algorithm can be executed through the DxC framework in two different ways.
Either by providing a specific scenario for the algorithm to run, or by running through all
the available scenarios (in the $DXC HOME/Scenarios/ADAPT catalogue).

In order to run all the available scenarios, use the ScenarioLoader executable provided by
the DxC framework. This executable is usually placed in the $DXC HOME/Bin catalogue,
and can be runned by typing ./ScenarioLoader (see Figure 3).

In order to run standalone scenarios two different terminals is needed. Place the first termi-
nal in the $DXC HOME/Bin catalouge and run the command ./StandaloneSDS [SCENARIO]
where [SCENARIO] is the path to the scenario that is to be run. Place the other terminal in
the FFFDA/Bin directory and run the command ./fffda to execute the FFFDA diagnosis
algorithm (see Figure 4).

Figure 3: Run the FFFDA by running the DxC’s ScenarioLoader...

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Erik Almqvist
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: UserManual1 0.pdf

Diagnosis 3

Figure 4: ... or run Scenarios by the DxC’s standalone Scenario Data Source.

5 Changing algorithm parameters

The algorithmparameters.h (placed in the fffda/Src directory) contains various pa-
rameters used by the FFFDA to weight contradicting parameters and other common
parameters used withing the algorithm. Contradictional parameters may be things such
as thresholds for when to trigger a test quantity or when a load is thought to be in a sta-
tionary state. Changing these parameters will change the outcome from running scenarios
in different ways. If a threshold is reduced one will get more detections of faults while
running a scenario. But one will also experience an increased amount of false negative
rates and less detection accuracy as more test quantities will detect false faults due to
their altered thresholds.

If one tries to increase a competition score without adding any more test quantities, the
algorithm parameters may be trimmed for increased performance. The FFFDA have been
tuned to try to minimize false positive rates. But as false positive rates only is one of the
metrics used to determine the score the final score may be increased by altered parameters.

The different parameters used in the FFFDA algorithm is described and explained within
the algorithmparameters.h file.

6 Implementing a new test quantity

It’s possible to implement new test quantities to increasing the detectability or isolabil-
ity of the diagnosis algorithm. In order to implement a new test quantity some basic
understanding of the FFFDA algorithm is provided below.

An overview of how the FFFDA diagnosis algorithm can be seen in figure 5. In the
FFFDA object structure there is an class objTestQuantity which is a parent class for all
test quantities. It takes sensor and command data as inputs and delivers a sub-diagnosis,
containing information about what parts that might have a fault. By inheriting the test
quantity parent class into new test quantities it gives the user a large freedom how to
design thier test quantities. Using this object oriented structure of test quantities also
increases the flexibility of the diagnosis algorithm as more test quantities can be added

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Erik Almqvist
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: UserManual1 0.pdf

Diagnosis 4

Figure 5: An overview of how the diagnosis algorithm will be implemented.

without changing the old ones.

Besides from the fact that every new test quantity has to be a subclass (by inheritance) of
the parent class objTestQuantity there is a few other criterias that a new test quantity
must fulfill. These criterias includes input and output data types and running of the test
quantity.

Every test quantity has a function named run(). This function is executed by the FFFDA
diagnosis algorithm each time new sensor data have been recieved. The run() function
takes sensor and command data as input and delivers a sub diagnosis as output as de-
scribed in figure 5.

As input test quantities uses the sensor and command data from a global sensormap and a
global command map. Data is collected by invoking the corresponding function from the
sensormap contained in a class called objData. For example, sensordata from the sensor
”IT181” may be collected by invoking the function:

sensorMap− > getDouble(string(”IT181”));

Some functions for filtering the data is provided withing the parent class objTestQuantity.
What data is needed and if filtering is needed is based on the design of the test quantity.

Output from the new test quantity one will have to deliver a vector of pointers to
objSubDiagnosis objects. This allows a test quantity to deliver more than one subdiag-
nosis if the class holds several different test quantities. The objSubDiagnosis objects is
created in the test quantities and the pointer is sent to the algorithm which deletes them
after they have been analysed. The test quantitiy does not need to take care itself of the
objects it creates. It is also importent that each sent sub-diagnosis is created because if
resuing a pointer to the same object then a fault will occur when the object is deleted.

A sub-diagnosis is a container for faults that is designed so that diagnosis candidates
can be isolated inside the fault isolator (see 5). It contains multiple sub-diagnoses, each
having a set of possible faults. The fault isolator returns possible candidates by using the
isolation algorithm described in [Eri09].

Once a new test quantity have been created, it has to be instantiated in the diagnosis
algorithm. The first step is to make sure that the new test quantity file is compiled by
including it into the makefile of the system. The second step is to include the new test

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Erik Almqvist
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: UserManual1 0.pdf

Diagnosis 5

quantity into the FFFDA diagnosis algorithm. This is done by including and instantiating
the new test quantities in the test quantity handler (see 5). This is done in a special file
called initTestQuantities.cc, as the number of test quantities can become quite large.

More information on how the different classes of the FFFDA diagnosis algorithm works
can be found in the Technical Documentation[Eri09].

References

[dxp09] http://www.dx-competition.org/, september 2009.

[Eri09] Daniel Eriksson. Technical documentation, 2009.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Erik Almqvist
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: UserManual1 0.pdf

	Introduction
	Background

	Installation and integration into the DXC
	Compiling the diagnosis algorithm
	Running the diagnosis algorithm
	Changing algorithm parameters
	Implementing a new test quantity
	References

