
Technical Documentation
Diagnosis of ADAPT system

Version 1.0

Author: Daniel Eriksson
Date: December 15, 2009

Status

Reviewed
Approved

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Project Identity

Group E-mail: diagnos2009@googlegroups.com
Homepage: http://www.isy.liu.se/edu/projekt/tsrt10/2009/
Orderer: Erik Frisk, Linköping University

Phone: +46 (0)13 28 2035 , E-mail: frisk@isy.liu.se
Customer: The Division of Vehicular Systems, Linköping University

Phone: +46 (0)13 28 1000 , E-mail: Vehicular.Systems@isy.liu.se
Course Responsible: David Törnqvist, Linköping University

Phone: +46 (0)13 28 1882, E-mail: tornqvist@isy.liu.se
Project Manager: Niklas Wahlström
Advisors: Mattias Krysander, Linköping University

Phone: +46 (0)13 - 28 2198 , E-mail: matkr@isy.liu.se

Group Members

Name Responsibility Phone E-mail
Niklas Wahlström Project manager 0705-122349 nikwa148@student.liu.se
Daniel Eriksson Document manager 073-4405730 daner963@student.liu.se
Erik Almqvist Software manager 0705-149935 erija952@student.liu.se
Emil Nilsson Test manager 073-6766558 emini550@student.liu.se
Andreas Lundberg Design manager 0704-061227 andlu549@student.liu.se

Document History

Version Date Changes made Sign Reviewer
0.1 09-12-02 First draft. Daniel Eriksson
0.2 09-12-04 Second draft. Daniel Eriksson
1.0 09-12-07 First release. Daniel Eriksson

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Contents

1 Introduction 1

1.1 Background . 1

1.2 Goals . 1

2 System overview 1

2.1 Project division . 1

3 System modelling 2

3.1 Battery . 2

3.2 Inverter . 3

3.2.1 Model based on the efficiency . 4

3.2.2 Model based on the voltage . 4

3.3 Load . 5

3.3.1 Power characteristic systems . 7

3.4 Relay . 8

3.5 Circuit breaker . 9

3.6 Sensors . 10

4 The diagnostic algorithm 10

4.1 Test variables . 11

4.1.1 Battery . 11

4.1.2 Inverter . 12

4.1.3 Load . 14

4.1.4 Power characteristic systems . 17

4.1.5 Relay . 19

4.1.6 Circuit breaker . 20

4.1.7 Sensors . 21

4.2 Diagnosis decision logic . 23

5 Analyses 24

5.1 Introduction . 24

5.2 Tools for analysis . 25

5.3 Detectability . 26

5.4 Isolability . 26

5.4.1 Non-isolable faults in battery . 28

5.4.2 Non-isolable faults in the circuit breakers . 28

5.4.3 Non-isolable stuck in load relays . 29

5.4.4 Non-isolable stuck in load relays without loads . 29

5.4.5 Non-isolable StuckClosed in relays except load relays 29

5.4.6 Non-isolable FailedOff in inverter . 30

5.4.7 Non-isolable faults in DC loads . 30

5.4.8 Non-isolable FailedOff in loads . 30

5.4.9 Non-isolable FlowBlocked in Water Pump . 31

5.5 Robustness . 31

5.5.1 Battery . 31

5.5.2 Inverter . 31

5.5.3 Load . 32

5.5.4 Power characteristic systems . 32

5.5.5 Relay . 32

5.5.6 Circuit breaker . 33

5.5.7 Sensors . 33

6 Software 34

6.1 Integration with the DxC Framework . 34

6.1.1 Background . 34

6.1.2 Communication with the DxC Framework . 34

6.2 Implementation . 36

6.2.1 Model and algorithm parameters . 37

6.2.2 Initiation of test quantities . 38

6.2.3 Time limits . 38

6.2.4 Class and file structure . 38

6.2.5 Data storage . 41

6.2.6 Error handling in the software . 41

6.2.7 Software manual . 42

Appendix 43

A Class structure 43

B Communication with the DxC 49

C ADAPT figures 53

D Analysis program 55

References 68

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 1

1 Introduction

This document is a technical documentation for the diagnosis system that has been de-
veloped in the project ”Diagnosis of ADAPT system” at Linköping University by project
group FFF1. This document contains a thorough description and analyses of this project
and the diagnosis algorithm. The code of the diagnosis algorithm is not included in this
document.

1.1 Background

NASA is interested in analyzing different ways to monitor whether or not systems that
are sent into space are working properly, and also in finding out what the faults are when
there are faults present in the system. It is of course beneficial to know exactly which
faults that are present in e.g. a satellite before you send someone to repair it. It may
also be the case that detecting a fault, and smoothly shutting down the system or limit
its activities, can prevent other parts of the system to get damaged. The reasons above
illustrates why NASA together with Palo Alto Research Center (PARC) have started an
annual competition called the Diagnostic Challenge Competition (DCC). The developed
diagnosis algorithm is intended to participate in the DCC’10, in the Industrial Track
System Tier 2 challenge.

1.2 Goals

The goal of the project was to create a diagnosis system that performs as good as possible
in a Diagnostic Challenge Competition (DCC)[dxp09], which primarily means that the
diagnosis algorithm should get as high final score as possible, and secondarily a high final
rank, in the competition.

2 System overview

Advanced Diagnosis and Prognosis Test Bed (ADAPT) is a facility developed at NASA
Ames for testing diagnostic tools and algorithms. The real system that has been monitored
and diagnosed by our diagnosis system is an electrical power system that is set up in a
NASA laboratory. The facilities hardware contains several components, and are intended
to illustrate a typical electrical power system in a satellite. This electrical power system
has components such as batteries, circuit breakers, resistors, relays, fans, inverters, light
bulbs and water pumps. To analyse and observe the circuits there are over 100 sensors
which produces data that NASA records. The recorded data from the sensors is sent in
a data sequence together with commands to a diagnosis algorithm to detect faults. The
appendix contains a schematic overview of the ADAPT testbench (figure 16) as well as a
photograph of the physical testbench (figure 17).

2.1 Project division

The work within the project was divided into the following three subdivisions: system
modeling, diagnostic algorithm and software. These subdivisions are not separate modules
of the system, but rather different work divisions. Also these divisions are not completely
separated from each other, since for example the diagnostic algorithm is based on the

1Finn Fem Fel

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 2

system model, and is implemented in the software. In this document the chapters will be
divided in the same way, with the addition of an analysis section.

3 System modelling

A mathematical model of the electrical power system system is created, based on this
systems circuit diagram [sys09] provided on the DCC homepage. The model is used as
the basis for the diagnosis system algorithm. The different components of the system
is modelled differently (i.e. by more or less complex models) and parameters in the
component models is determined using the sample data[tes09]. This data is also used for
validation of the models.

3.1 Battery

To determine if a battery is degraded or not the internal resistance of the battery is
estimated, since it increases when the battery degrades. The battery is modelled as an
ideal voltage generator, with output voltage V0 (”open circuit voltage”), which depends
on the battery’s charge level, in series with a resistance Ri, the internal resistance. The
voltage generated by the battery is called V , and the current drawn from the battery is
called I. In this model V and I are input signals while V0 is a parameter. The internal
resistance can be calculated from measurements according to Equation 1.

Ri =
V0 − V

I
(1)

The internal resistance Ri varies dynamically with I, and to get around this only station-
ary values of Ri are used. The stationary dependence of Ri by I is modeled according to
Equation 2, where A and e are model parameters.

Ri =
A

Ie
(2)

Although there are three batteries, one of which is of another brand and model than
the other two, their internal resistances (modeled according to Equation 2) can all be
described by the same model parameters. The parameters are A = 0.23 and e = 0.51.
This model is only considered valid for currents above 2.0 A, since no sample data[tes09]
with lower currents was available.

Figure 1 shows stationary internal resistance measurements, calculated using the sample
data[tes09], and the internal resistance model. It also shows two measurements for the
battery from the AdaptLite system (this battery is of the same brand and model as BAT1
and BAT2). These measurements are included partly to illustrate how degradation in a
battery manifests itself.

The open circuit voltage is affected by the charge level of the battery, so as a battery is
discharged during the course of a scenario V0 decreases. The model used for the change in
V0 from time t = t1 to t = t2 is given by Equation 3, where I(t) is the current out from the
battery, K is a model parameter, Tabs is the absolute battery temperature (considered to
be constant), given in degrees Rankine (which is the Fahrenheit scale but with absolute
zero as 0 degrees), and Qnom is the nominal battery capacity. The diagnosis program uses
K = 0.005 V/R, Tabs = 530 R and Qnom = 360000 C (100 Ah: BAT1 and BAT2) or

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 3

Figure 1: Measurements and model of the batteries internal resistances

Qnom = 180000 C (50 Ah: BAT3).

V0(t2) = V0(t1)−K · Tabs ·
1

Qnom

∫ t2

t1

I(t)dt (3)

For some unknown reason (possibly electromagnetic fields from the wires and/or other
components), current out from one battery sometimes affects the voltage output of other
batteries (voltage gets lower), even though they according to the system lay-out and relay
configurations not are connected to each other. Because of this phenomenon V0 has to
be determined for all of the three batteries at times when there is no current drawn
from any of the batteries (current readings below 0.3 A are considered as ”no current”).
Fortunately (as stated in the README.txt file in [tes09]) all relays are open at the start of
the experiments, so the experiments always start in a situation where V0 can be determined
for each battery.

3.2 Inverter

An inverter converts direct current (DC) to alternating current (AC), and these inverters2

in the given electrical power system has an input voltage of 24 V, an output voltage of
120 V and an output frequency of 60 Hz. In the electrical power system there are two
inverters located at different places, based on which load bank that is in use.

2Xantrex prosine 1000, part no. 806-1051.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 4

3.2.1 Model based on the efficiency

To determine if there are any losses of energy in an inverter it is a good idea to look at the
power before and after the inverter. In the direct current case the instantaneous power
can be expressed as

Pin(t) = Uin(t) · Iin(t) (4)

where Uin and Iin represents the voltage and the current in to the inverter. The average
power for sinusoidal voltage and current is

Pout(t) = URMSout(t) · IRMSout(t) · cos(φ) (5)

where URMS and IRMS represents the root mean square values of the sinusoidal alter-
nating voltage and current out of the inverter. The phase angle between the voltage and
the current sine functions is denoted as φ. Furthermore, one can calculate the energy
conversion efficiency, η, to get a ratio that describes the relationship between the input
and the output power.

η =
Pout(t)
Pin(t)

= A(1− e−kPin(t)) (6)

Equation 6 is the model of the inverters behaviour, according to the loss of energy, where
Pin and Pout are input signals while A and k are parameters. The parameter k describes
the exponential gradient and the parameter A describes the ratio between the input and
the output power for the specific inverter. In other words, how much energy the inverter
loses. The estimated parameters differ between the two inverters, ”INV1” and ”INV2”.
For ”INV1” the parameters is A1 = 0.78 and k1 = 0.025 and for ”INV2” the parameters
is A2 = 0.90 and k2 = 0.017. In other words the loss of energy is approximately 22 % for
the inverter one and 10 % for the inverter two, as can be seen in Figure 2.

The red squares in Figure 2 represents the maximal efficiency and the black circles rep-
resents the minimal efficiency in different work areas, estimated from the given test data.
The curve is estimated to lie between the squares and the circles.

3.2.2 Model based on the voltage

One can also express the behaviour of the inverter in a more simple model. In the ideal
case, the relation between the input and output voltage can be expressed as

Uout(t) = 120 ·H
(
Uin(t)− 24

)
(7)

where H is the Heaviside function. This says that if the voltage input is ≥ 24 VDC then
the inverter have an output of 120 VAC, otherwise the output is zero. This equation is
based on the specific type of inverter that is given in the electrical power system.

Each inverter has three different modes and to characterise these, data from sensors that
measure the voltage input and output is needed. To recognize the present mode of the
inverter, Table 1 can be used.

In the NominalOn mode the inverter is expected to work well, with an output voltage
around 120 V (AC) and an input voltage around 24 V (DC). The inverter switches off
when input voltage drops below 22 V. In the NominalOff mode every affected signal should
have a value around zero and the inverter switches on when the input voltage rises above

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 5

Figure 2: The estimated model for the both inverters.

Table 1: The different signals characterize which mode the inverter is in.
Mode Uin > 22 Uout > 120
NominalOn True True
NominalOff False False
FailedOff True False

22 V. In the FailedOff mode the inverter does not transmit current or voltage, even if it
is supplied with a voltage over 22 V.

3.3 Load

The loads can be divided into two groups: the AC loads and the DC loads. The loads
can be light bulbs, fans, water pumps or resistors. The signals affecting the AC loads are
given in Table 2.

Table 2: Signals influencing an AC load
Name Description
URMS(t) The RMS value of the voltage across the load
IRMS(t) The RMS value of current through load
φ(t) Phase shift by which the current is ahead of the voltage.
P (t) The output power from the load.

According to given data, a good model for all loads is to assume that their impedances

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 6

are constant. The voltage, the impedance and the current are obeying Ohm’s law

Ũ(t) = Z̃ · Ĩ(t) (8)

where Ũ(t), Z̃ and Ĩ(t) are the complex representations of these quantities. By represent-
ing the impedance with its magnitude Z and phase θ one gets Z̃ = Zejθ. Ohm’s law then
gives the relations:

URMS(t) = Z · IRMS(t) (9)
φ(t) = θ (10)

and for the output power it follows that

P (t) = URMS(t) · IRMS(t) · cos(θ) (11)

For two loads connected in parallel, the voltage across each of them is the same and the
ratio of currents through any two elements is the inverse ratio of their impedances. The
total impedance is given by the formula:

1
Z̃tot

=
1
Z̃1

+
1
Z̃2

(12)

Since the loads are connected in parallel, they are modelled by their admittance Ỹ , which
is the reciprocal of the impedance Ỹ = Z̃−1 = Z−1e−jθ, in order to make the calculation
of the total admittance easier (the admittances only need to be summed up). The model
parameters can be found in Table 3.

Table 3: Model parameter of an AC load
Name Description
Y The magnitude of the admittance
6 Y The phase of the admittance
V ar(Y) The variance of the magnitude
V ar(6 Y) The variance of the phase
Cov(Y, 6 Y) The covariance of the magnitude and the phase

and the equations coupling the signals and the parameters will be given by:

Y =
IRMS(t)
URMS(t)

(13)

6 Y = −φ (14)
P (t) = URMS(t) · IRMS(t) · cos(6 Y) (15)

For DC loads one have the same signals, parameters and equations without the phase
influencing (or phase equal to zero).

Each mode of each load has a characteristic set of these model parameters (for the mode
FailedOff the admittance is zero).

In the load characteristic scenarios Exp 599-Exp 603 in [tes09] only one load is turned on
at a time and these datasets have been used to estimate the admittances. Also information

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 7

from other scenarios where a certain load is tuned on/off or fails off have been used.
The admittance change of that action corresponds to the admittance of that load. For
each admittance the covariance matrix has been estimated. Since the covariance matrix
Σ(Y, 6 Y) is symmetric

Σ(Y, 6 Y) =
(

V ar(Y) Cov(Y, 6 Y)
Cov(Y, 6 Y) V ar(6 Y)

)
(16)

only the variances of the magnitude and phase, and their covariance have to be regarded
as model parameters and they are included in Table 3. All estimated admittances and
their confidence intervals are presented in Figure (3). According to this figure there are
good chances to isolate most of the loads, whereas all resistive loads, i.e. the light bulbs,
seems to have similar admittances.

−2 −1 0 1 2 3 4 5 6 7 8

x 10
−3

−5

−4

−3

−2

−1

0

1

2

3
x 10

−3 Admittances of the loads

Conductance [S]

S
us

ce
pt

an
ce

 [S
]

LightBulb25W

LargeFan1
LargeFan2

SmallFan

LightBulb55W

WaterPump

LightBulb60W

LargeFanOverSpeed

LargeFanUnderSpeed

From load characteristic data in Exp599−603
From abrupt changes in other data

Figure 3: Measurements and models of the admittances for the AC loads with a confidence
interval of four standard diviations

3.3.1 Power characteristic systems

Some of the loads also have sensors measuring quantities which are affected by the power
output of the load. These are light and temperature sensors for some light bulbs, speed
transmitters for some fans, and flow transmitters for the pumps.

The relations between these quantities and the power output will also be described with
models. The signals affecting the system are described in Table 4.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 8

Table 4: Signals influencing power characteristic systems.
Name Description
y(t) The measured quantity (light, temperature, speed or flow)
P (t) The output power of the corresponding load

These systems usually have a dynamical behaviour, which can be modelled with the ODE
defined as

y′(t) = kt(yP (P (t))− y(t)) (17)

where kt is a proportionality constant, deciding the swiftness of the system, and yP (P (t))
is the working point of the measured quantity as a function of the output power. For the
relation between the working point and the output power a quasi-linear relation can be
used.

(yP (P (t))− y0)p = k0 · P (t) (18)

where k0 is a proportionality constant, y0 the value of the measured quantity without any
power output from the corresponding load, and p is a characteristic exponent coupling
the measured quantity with the output power. Since the power has a quadratic relation
to speed and flows, p = 2 has been chosen for these quantities. For other quantities p = 1,
i.e. there is assumed to be a linear relation between the power and the measured quantity.
All model parameters are summarized in Table 5.

Table 5: Model parameter of the power characteristic systems.
Name Description
kt Proportionality constant describing the swiftness of the system
k0 Proportionality constant between output power and measured quantity.
y0 Measured quantity without power from the load.
p The characteristic exponent of the power characteristic system

In order to estimate the parameters, a discrete version of Equations (17) and (18) is
needed. To achieve this, the Euler-approximation has been used:

y′(kT) =
y[k + 1]− y[k]

T
(19)

Where T is the sample time, y[k] = y(kT), and the dynamic Equation (17) can be de-
scribed as:

y[k + 1] = (1− ktT)y[k] + ktT · yP (P [k]) (20)

Some of the systems do have a very fast dynamical behaviour and for these systems it
is relevant not to include this, since that only would result in numerical problems in the
diagnosis algorithm later on. This is done for the flow transmitter and the light sensors
by setting kt = 1/T , since that will cancel out the y[k] term in equation (20).

3.4 Relay

The relay is a commandable component, which has two boolean signals related with it: the
command (0=open, 1=closed) and the actuator measuring the position of the relay. The

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 9

relay has four different modes, given in table 6. Note that some input signal combinations
can be explained by two different modes.

Table 6: Modes of the relay
Mode Command Actuator
NominalClosed closed closed
NominalOpen open open
StuckOpen – open
StuckClosed – closed

Furthermore, the relay doesn’t have any model parameter because the modes are only
described by the logical states of the command and the actuator.

When the relay is closed its resistance is virtually zero, resulting in that the voltage drop
across the relay is approximately zero. This result can be used to create test quantities
that compares voltage measurements from different voltage sensors that are separated by
closed relays only.

3.5 Circuit breaker

There are two types of circuit breakers in the system, commandable and non-commandable.
The difference between the two is that the commandable has a command input, and an
additional mode (StuckClosed).

Input to the model is the current I(t) through the circuit breaker, the circuit breaker’s
actuator position and for the commandable circuit breaker also an open/close command.
The only parameter in the model is the rated current In of the circuit breaker.

Let Imax(t) = max
τ≤t

I(τ) be the largest current that, during the present measurement series,

so far has passed through the circuit breaker. A low sampling frequency for I(t) may result
in that in reality I(t1) > In but Imax(t2) 6> In is received although t2 > t1. In reality
this event is unlikely since circuit breakers react rather slowly unless the current is many
times greater than In. Because of its unlikeliness one may disregard the above mentioned
event and use the provided description of the modes (AdaptDXC.xml in [sys09]). This
will result in Table 7 and Table 8 for deciding which mode the circuit breaker is in.
Those input signal combinations which are not described by the two tables are impossible
(provided that the sensors are working properly).

Table 7: Non-commandable: Relationship between mode, maximal current and actuator
position.

Mode Imax < In Actuator
Nominal true closed
Tripped false open
FailedOpen true open

There is a voltage drop VCB(t) over the circuit breaker. When the circuit breaker is open
VCB(t) can vary widely, but when the circuit breaker is closed, VCB(t) is fairly small. One
natural approach is to consider the closed circuit breaker to be a resistor with constant
resistance, but this model does not describe the behaviour of the circuit breakers in the
ADAPT system. Instead, the model used for VCB(t) is the one given by Equation 21,
where VCB,min and VCB,max are model parameters, and each circuit breaker has its own

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 10

Table 8: Commandable: Relationship between mode, maximal current, actuator position
and command.

Mode Imax < In Actuator Command
Nominal true closed closed
Tripped false open –

true open open
FailedOpen true open closed
StuckClosed true closed open

model parameters.

VCB,min ≤ VCB(t) ≤ VCB,max (21)

3.6 Sensors

The sensors can be divided into two groups: boolean sensors measuring boolean signals
(actuator position sensors measuring positions of the relay) and scalar sensors measuring
real numbers (all other sensors).

The boolean sensors have two modes according to Table 10 and they don’t have any model
parameter.

Table 9: Modes of the boolean sensors
Mode Description
Nominal Reads 1 (true) if actuator is closed, 0 (false) if open.
Stuck Reading is stuck at open or closed.

Scalar sensors measure a certain quantity together with noise. The scalar sensors has an
additional offset mode according to Table 10. The sensor test quantities are modelled
using the sensors working area as described in section 4.1.7. Where the stuck mode is
separated from the offset mode by counting consecutive equal values in a row.

Table 10: Modes of the boolean sensors
Mode Description
Nominal The sensor measures the scalar quantity.
Offset The sensor measures the scalar quantity together with an

added unknown constant value.
Stuck The sensor measures an unknown constant value (without

noise).

4 The diagnostic algorithm

The diagnosis algorithm will be able to detect and isolate faults in the electrical power
system based on the model of the system. For this algorithm to work it must get mea-
surement data from the sensors of the electrical power system, and data for the inputs to
it (e.g. commanded relay positions).

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 11

4.1 Test variables

While designing the test quantities used within the algorithm focus has been placed on
designing sufficient test quantities per component rather than metodically going through
the system from the beginning to the end, creating all possible test quanties for each and
every component thus making sure that isolability is preserved throughout the system.
While designing test quantities, one have instead looked upon a single component and
then focused on creating on what you can get from this specific component.

In the process of creating the test quantities focus has also been to avoid test quantities
giving false positive alarm. This is due to the mechanisms of the diagnosis algorithm (see
Section 4.2) where it’s impossible to withdraw a given diagnosis. Therefore it’s important
that no test quantity delivers a non correct diagnosis to the algorithm that’s calculating
the total diagnosis.

The following subsections describes the different test variables used in the diagnostic
algorithm.

4.1.1 Battery

From the model in chapter 3.1, the test variable for a battery is given by Equations 22-23,
where J = 0.07 is a threshold parameter. A and e are the model parameters from the
modeling chapter. The Ri-measurements, model and threshold are shown in Figure 4.

T = Ri −Ri,thr(I) =
V0 − V

I
−Ri,thr(I) (22)

Ri,thr(I) =
A + J

Ie
(23)

V0 is calculated during the start of each scenario, and it is the average of the battery
voltage measurements until the time when any of the batteries’ current is above 0.3 A.

Assuming correct sensor values, T > 0 means that Ri is significantly greater than ex-
pected, i.e. the battery is degraded.

The sensors may be faulty, so it is always (regardless of the value of T) possible that the
current sensor, giving I, and/or the voltage sensor, giving V , are damaged.

The internal resistance is not calculated if I < 2.0, since the model is only valid for
currents above 2.0 A. Furthermore, the battery test quantity is only active when the
internal resistance is stationary. In this section, the descrete time index n will be used
instead of the continuous time variable t. The method for testing stationarity is the
following:

First Ri is low-pass filtered according to Equation 24, where α = 0.1 is a filter parameter.

Rfilt
i [n] = (1− α)Rfilt

i [n− 1] + αRi[n] (24)

Thereafter a difference measurement ∆Rfilt
i [n] is calculated according to Equation 25,

where N = 20 is a filter parameter that states how many samples to use for calculating
∆Rfilt

i [n].

∆Rfilt
i [n] =

1
N/2

N/2−1∑
i=0

Rfilt
i [n− i]− 1

N/2

N∑
i=N/2

Rfilt
i [n− i] (25)

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 12

Finally, Ri is considered to be stationary if |∆Rfilt
i [n]| < Jdiff holds for all of the M = 20

last values of ∆Rfilt
i . Jdiff = 0.005 is the threshold for the differences.

Figure 4: Measurements, model and threshold for the batteries internal resistances

4.1.2 Inverter

To determine whether the inverter behaves as it should when it is active, these two thresh-
olds, based on the model in equation 6, have been derived

Ju = Au(1− e−kuPin(t)) (26)
Jl = Al(1− e−klPin(t)) (27)

where Ju and Jl are the upper and the lower limit, for the inverters normal working area,
see Figure 5. When creating the test variable exactly as the given model in Equation
6, the allowed working space is Jl < T < Ju. If the test variable, T , goes outside the
allowed limits, assuming stationarity, an alarm is given and a subdiagnois containing that
the inverter(INV) is in the mode FailedOff(FO) is sent to the diagnosis algorithm. There
are a several sensors that is in use when creating this test variable, so the subdiagnosis
also contain the possible faults that these sensors represents, see Table 11 below:

Here are the faults in the sensors that measure voltages (UF), currents (IF) and the phase
angel (PF) present.

Note that this test variable only gives an alarm if:

• The current in to the inverter is over a certain threshold (14 A).

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 13

Table 11: Sub-diagnosis statements for the inverter
Scenario Statement

T > Ju > Jl INV ∈ { FO } ∨ Uin ∈ { UF } ∨ Uout ∈ { UF }
∨ Iin ∈ { IF } ∨ Iout ∈ { IF } ∨ φ ∈ { PF }

T < Jl < Ju INV ∈ { FO } ∨ Uin ∈ { UF } ∨ Uout ∈ { UF }
∨ Iin ∈ { IF } ∨ Iout ∈ { IF } ∨ φ ∈ { PF }

Figure 5: The upper and lower limits for the test variable.

• The voltage in to the inverter is over a certain threshold (22 V).

• The current in to the inverter is in a stationary state/working area. This is deter-
mined by measuring the difference between the present and the previous sample(not
greater than 0.4 A) in a number of samples (20).

• The test variable is outside its allowed working area in 20 samples.

• The circuit breaker before the inverter is closed, see the attached figure 16.

The advantage of this test variable is that it is reliable but on the other side it is reacting
slowly. An alarm is not given until detected a fault during 20 samples (i.e. 10 seconds).

The other test variable, based on the voltage input and output, is more simple. The
decision logic for this test variable is calculated by the table 12. There are three modes for
the inverter (INV) and those are NO (NominalOn), NF (NominalOff) and FO (FailedOff).

In Table 12 the mode UF represents the fault mode for the two voltage sensors (U). As
can be seen in this table there is only during the second case that a sub-diagnosis (FO) is

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 14

Table 12: Sub-diagnosis statements for the inverter
uin > 22 uout > 120 Statement

True True INV ∈ { NO } ∨ U ∈ { UF }
True False INV ∈ { FO } ∨ U ∈ { UF }
False True INV ∈ { NF } ∨ U ∈ { UF }
False False -

sent. One should also know that the voltage sensor before the inverter is only read if the
circuit breaker is closed, analogous to the test variable for the power.

Note that Xantrex, according to their data sheets [xan09], guarantees that the output of
this component does not differ more than three procent.

4.1.3 Load

In order to check whether a load works as expected or not, one wants to know how much
current it draws. Since there are no current sensor for each load (only one for each load
bank), that is not possible. However, together with the voltage sensor and the phase
angle transducer the total admittance on that load bank can be calculated with Equation
13 and Equation 14. Each load has its admittance, which can be represented as a point
with a belonging confidence interval in the complex plane. This representation is shown
in Figure 3 and are parameterized with the model parameter in Table 3.

When an abrupt change in the measured admittance has been detected, this change will
correspond to the admittance of the load that has been added or removed from the load
bank, since one know that parallel coupling of admittances obey the equation 12. This
admittance change will be compared with all admittances of all loads that are turned on
at that load bank.

Since the measurements also have noise, two Kalman filters (one for magnitude and one
for the phase) has been applied and the following simple motion and sensor models will
be used:

Y [n + 1] = Y [n] + e1[n]
6 Y [n + 1] = 6 Y [n] + e2[n]
Y measure[n] = Y [n] + v1[n]

6 Y measure[n] = 6 Y [n] + v2[n]
(28)

Y [n] and 6 Y [n] are the magnitude and phase of the total admittance at time nT , where
T is the sample time, Y measure[n] and 6 Y measure[n] are the measured magnitude and
phase of the total admittance, given by equations 13 and 14, ei[n] and vi[n] are white
noise. The process noise ei[n] is small and should only correspond to the small changes
that occurs for a certain load configuration. Even though the admittances are modelled
to be constant, a small random walk do occur, which here is taken into account by the
process noise ei[n].

To this model two Kalman filters have been applied observing the magnitude and phase
of the total admittance. The filtered value of these quantities will be called Ŷf [n] and
6 Ŷf [n] and are in practise a low-pass version of Y [n] and 6 Y [n].

The Kalman filter algorithm also gives a predicted value of the next sample Yp[n] and

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 15

6 Yp[n] and a variance of this prediction Pmag
p and P phase

p based on all samples until
sample n−1. The variance of the difference between the new measured value Y measure[n]
and the predicted value Yp[n] can be calculated as:

V ar[Y measure[n]− Yp[n]] = V ar[(Y measure[n]− Y [n]]− (Y [n]− Yp[n])
= V ar[Y measure[n]− Y [n]] + V ar[Y [n]− Yp[n]]
= V ar[v1[n]] + Pmag

p (29)

One gets that:

T =
Y measure[n]− Yp[n]√

V ar[v[n]1] + Pmag
p

∼ N(0, 1) (30)

If |T | > J1, which can not be explained by the model, and the conclusion is that the load
configuration has been changed. By this event three things will happen:

• The last filtered value of the admittance before the abrupt change will be saved as
Ỹold.

• The new filtered value will be set to the measured, i.e. Ŷf [n] = Y measure[n].

• The variance of the new filtered value will be set to the measurement noise Pmag
p =

V ar(vi[n]).

The last two steps are done in order to make the filter adapt the abrupt changes quickly.
See also Figure 6(b).

Furthermore, there will be an equivalent calculation for the phase.

The following two complex stochastic variables in Table 13 will be used in our tests.

Table 13: Usable quantities for designing tests of the loads.
Name Description
Ỹold The filtered value of admittance before the abrupt change.
Ỹf [n] The last filtered value of admittance.

According to Equation (12) the admittance of two loads connected in parallel is hold
simply by summing up the admittances of the loads. Therefore the admittance of a load
bank when a load is removed from that load bank is found by subtracting the admittance
of the load from the total admittance of the load bank. Thus, for example, to check if
load i has failed off, the admittance Ỹold − Ỹi is compared with Ỹf [n].

If only a change in the magnitude has been detected the magnitudes will be compared
(see Figure 6(c). If only a change in the phase has been detected, only the phases will be
compared, and when a change in both of them has been detected, their admittances will
be compared (see Figure 6(d))

To make this test graphically described in Figure 6(c) and 6(d), set

Ỹ ∗
i = Ỹold − Ỹi (31)

∆Ỹi = Ỹ ∗
i − Ỹf [n] (32)

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 16

(a) The modelled admittances of the loads (b) An abrupt change in the magnitude measure-
ment has been detected. The old value of the ad-
mittance is saved

(c) All loads will be subtracted from Yold. Since
only the magnitude is known of the new measure-
ment, only this will be compared with the calcu-
lated differences. Load 1,2 or 4 could be the one
that has failed off.

(d) Also the phase measurement has made an
abrupt change. The new measured admittance
compares with the calculated differences. Load 1,2
could be the one that has failed off.

Figure 6: An abrupt change detects in the magnitude measurement, and shortly afterwards
in the phase measurement. With use of the models of the loads a statement can be done
about which loads that have failed off.

for all loads i and define the following test variable.

TFO
i =

|Ỹ ∗
i |−|Ỹf [n]|√

V ar[|Ỹ ∗
i |]+V ar[|Ỹf [n]|]

, when only magnitude measurement has been changed

6 Ỹ ∗
i −6 Ỹf [n]√

V ar[6 Ỹ ∗
i]+V ar[6 (Ỹf [n])]

, when only phase measurement has been changed

√
∆Ỹ T

i (Σ[∆Ỹi])−1∆Ỹi , when both measurements have been changed
(33)

where Σ[∆Ỹi] is the covariance matrix of ∆Ỹi.

With the normalization in equation block 33, one gets that TFO
i ∼ N(0, 1) if the load i

actually had failed off and one single threshold J2 can be used for all tests. Therefore the

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 17

following test statements can be defined.

|TFO
i | < J2 → PFO

i = Li ∈ {FO} (34)

where each (Li) has at least the following modes N = Nominal and FO = FailedOff.

Furthermore, some loads have more fault modes Fk than only FO = FailedOff with a
corresponding characteristic admittance change. In the same manner as above, tests can
be generated testing this changes

|TF
ij | < J2 → PF

ij = Li ∈ {Fj} (35)

for all loads i and faults j.

In the same way, it can be tested if a load relay (Ri) is SO = StuckOpen or SC = Stuck-
Closed by summing up all admittances at this relay and compare this admittance with
the detected admittance change. This will generate tests

|TSO
k | < J2 → PSO

k = Rk ∈ {SO} (36)
|TSC

k | < J2 → PSC
k = Rk ∈ {SC} (37)

(38)

for all load relays k.

The final test statements must then be a disjunction of all test statement within the same
abrupt change.

P = ∨i(PFO
i) ∨ij (PF

ij) ∨k (PSO
k) ∨k (PSC

k) (39)

If only the magnitude or phase measurement have been changed, also an Offset or Stuck
in the current respectively the phase sensor could explain the behaviour and these will be
added to the test statement. However, if both measurement have been changed only an
admittance change is assumed to have taken place.

The test (39) will only be created if a load relay recently has not been changed. In
that case, one would expect an admittance change. By a relay configuration change, if
no admittance change is detected the changed relays are considered to be StuckOpen or
StuckClosed respectively. If a change has been detected everything is considered to be
normal (see Table 14)

Table 14: Sub-diagnosis statements for by command change of a load relay
Command change Admittance change detected? Statement

closed → open no Rk ∈ {SC}
open → closed no Rk ∈ {SO}
closed → open yes -
open → closed yes -

4.1.4 Power characteristic systems

For each power characteristic systems (described in Section 3.3.1) a test could be designed
since there is a sensor measuring the output quantity of that system. However, to decide

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 18

the present mode of the corresponding load, one wants to observe the power output of
that load. To achieve this, a (Kalman) observer has been used, where its motion model
is given by the equation 17. It will observe the working point of the measured quantity,
and the power can be calculated with the equation 18.

If relay of load i is closed, the observed output power P obs
i from the sensor at that load i

can be used to detect if the load Li is failed off (see statement in Table 17). The expected
value of the power Pi of P obs

i when the load in mode Nominal, can be calculated by
Equation (15) and the threshold Ji = P/3 has been used.

The tuning of this Kalman observer is based on the signal noise making observer for noisy
signals more slower than for those with less noise. The performance of this kalman filter
is presented in Figure 7 for the temperature sensors TE500, has not much signal noise,
and for the temperature sensor TE505 which has significantly more signal noise.

0 50 100 150 200 250
60

80

100

120

140

160

180

200
Temperature for TE500

Time [s]

T
em

pe
ra

tu
re

 [F
]

Measured temperature, y[n]
Observed Working point, yP[n]

(a) Measured temperature and observed working
point for sensor TE500

0 50 100 150 200 250
−5

0

5

10

15

20

25
Power for TE500

Time [s]

P
ow

er
 [W

]

Ture power
Observed power
Threshold

(b) Observed an true power for LGT400 based on
measurements from TE500 with threshold

0 50 100 150 200 250
20

40

60

80

100

120

140

160

180

200
Temperature for TE505

Time [s]

T
em

pe
ra

tu
re

 [F
]

Measured temperature, y[n]
Observed Working point, yP[n]

(c) Measured temperature and observed working
point for sensor TE500

0 50 100 150 200 250
−10

−5

0

5

10

15

20

25
Power for TE505

Time [s]

P
ow

er
 [W

]

Ture power
Observed power
Threshold

(d) Observed an true power for LGT405 based on
measurements from TE505 with threshold.

Figure 7: Performance of the Kalman filter observing the power. The sensor TE500 has
significantly more noise than TE505, which results in a slower Kalman filter. This must
be the case, otherwise would the power observed with TE505 cause false alarm or the
power observed by TE500 be unnecessary slow.

In order not to make a false statement after a command change, the tests will not be
executed a short period of time after such an event.

If the load has more faulty modes than FailedOff (FO), one wants to be able to detect
and isolate even such a mode. Since each faulty mode Fj in load i has a characteristic

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 19

Table 15: Sub-diagnosis statements for a load
Command Observed output power Statement

closed P obs
i < Ji R ∈ L ∈ {FO}

power output (Pij), the statements in Table 16 can be made.

Table 16: Sub-diagnosis statements for the special faulty modes of a load
Observed output power Statement

|P obs
i − Pij | < Jij L ∈ {Fj}

In the same manner, it can be tested if a load relay (Rk) belonging to load i is Stuck-
Open = SO or StuckClosed = SC.

Table 17: Sub-diagnosis statements for a relay
Command Observed output power Statement

open P obs
i > Ji Rk ∈ {SC}

closed P obs
i < Ji Rk ∈ {SO}

All test statements have to be combined with the test statement S ∈ {F}, where S is the
sensors and F = sensor reading is not reliable, i.e. the sensor is stuck or has an offset.

4.1.5 Relay

The relay (R) has the following modes: NC = NominalClosed, NO = NominalOpen,
SO = StuckOpen, SC = StuckClosed. Also, the actuator sensor (A) has fault mode
AF = actuator reading is not reliable, i.e. the actuator sensor is stuck. Based on the relay
model we get Table 18, mapping input signal combinations to sub-diagnosis statements.

V1 and V2 are measurements from two voltage sensors that are separated by relays (R)
only. Create the test variable

T = |V1 − V2| (40)

and alarm when T > J and all relays in R are closed, J > 0 is the alarm threshold. In
case of an alarm the sub-diagnosis statement is that either any of the voltage sensors or
any of the relays are faulty. These controls are split into two tests. If the test alarms
then there is either a fault in one of the voltage sensors or the relay is open. If the latest
command says that the relay should be closed then the relay could be stuck open. If the
position sensor says that the relay is closed then the sensor could be stuck. Here we have
two tests: one that tests if the relay is stuck open and one that tests if the position sensor
is stuck. These test quantities can only detect a fault if the relay is closed. It is only
when the relay is closed that one know that there should be no voltage drop. If the relay
is open we can not say how the voltage should differ before and after the relay.

Another test is to control if the position sensor, which is measuring the relays position,
agrees with the last command to the relay. If the last command says that the relay should
be closed but the sensor says that it is open then there is a problem. This test works all
the time and do not require the system to have a specific setup like the earlier two tests.
The resulting sub-diagnosis for each relay can be seen in Table 18.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 20

Table 18: Sub-diagnosis statements for a relay
Command Actuator Statement

closed open R ∈ {SO} ∨ A ∈ {AF}
open closed R ∈ {SC} ∨ A ∈ {AF}

4.1.6 Circuit breaker

The circuit breaker (C) has, in the non-commandable case, the following modes: N = Nom-
inal, T = Tripped and FO = FailedOpen. The commandable circuit breaker has the mode
SC = StuckClosed in addition to the three modes mentioned above. Also, the current
sensor (I) has fault mode IF = current sensor reading is not reliable, i.e. the sensor is
stuck or has an offset, and the actuator sensor (A) has fault mode AF = actuator reading
is not reliable, i.e. the actuator sensor is stuck. Based on the circuit breaker models we get
Table 19 and Table 20, mapping input signal combinations to sub-diagnosis statements.
The test quantity does not send a sub-diagnosis statement if the statement contains a non-
faulty mode assignment to the circuit breaker. This is because the CPU load increases
very fast when nominal mode sub-diagnoses are sent to the fault isolator. (With only 5-6
circuit breaker test quantities sending nominal diagnoses the fault isolation takes so much
time that the diagnosis program doesn’t finish within the required 0.5 seconds. Also, the
gain for the diagnosis program with using nominal sub-diagnoses has been observed to be
small.)

Table 19: Sub-diagnosis statements for a non-commandable circuit breaker. Only the
italicised statement may be returned by the test variable.

Imax < In Actuator Statement
true closed C ∈ {N} ∨ I ∈ {IF} ∨ A ∈ {AF}
true open C ∈ {FO} ∨ I ∈ {IF} ∨ A ∈ {AF}
false closed I ∈ {IF} ∨ A ∈ {AF}
false open C ∈ {T} ∨ I ∈ {IF} ∨ A ∈ {AF}

Table 20: Sub-diagnosis statements for a commandable circuit breaker. Only italicised
statements may be returned by the test variable.

Imax < In Actuator Command Statement
true closed closed C ∈ {N} ∨ I ∈ {IF} ∨ A ∈ {AF}
true closed open C ∈ {SC} ∨ I ∈ {IF} ∨ A ∈ {AF}
true open closed C ∈ {FO} ∨ I ∈ {IF} ∨ A ∈ {AF}
true open open C ∈ {T} ∨ I ∈ {IF} ∨ A ∈ {AF}
false closed – I ∈ {IF} ∨ A ∈ {AF}
false open – C ∈ {T} ∨ I ∈ {IF} ∨ A ∈ {AF}

Provided voltage measurements V1 before the circuit breaker and V2 after the circuit
breaker a test variable is created according to Equation 41.

T = ∆Vfilt (41)

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 21

where

∆Vfilt =
{

mean(∆V) if ∆V > Jamp and std(∆V) < Jstd

∆V otherwise
(42)

where ∆V = V1−V2 and ∆V is a vector containing the N = 4 previous ∆V values. Jamp

and Jstd are filter parameters, and they are are not the same for all circuit breakers.

The filter computing ∆Vfilt completely filters out one-sample spikes (this is the purpose
of the filter), and the small drawback is that step changes in ∆V are delayed by a few
samples.

The alarm goes off if, when the circuit breaker is closed according to its position sensor,
it does not hold that Jmin < T < Jmax, where

Jmin = min(J1V̂CB,min, V̂CB,min)− J2

Jmax = max(J1V̂CB,max, V̂CB,max) + J2

V̂CB,min and V̂CB,max are empiric estimates (using the sample data[tes09]) of the model
parameters from the modeling chapter (chapter 4.1.6). J1 = 1.5 and J2 = 0.2 are threshold
parameters.

In case of an alarm the sub-diagnosis statement of this test is that any of the voltage
sensors or the circuit breaker actuator position sensor is faulty.

4.1.7 Sensors

The sensors have two or three different modes depending on which type of sensor it is.
The boolean sensors have the modes Nominal (N) and Stuck (S), and for the scalar sensors
it resides another mode called Offset (O).

While designing the test variables for the sensors, it is desirable to be able to detect faults
in the sensor by using the sensor only, without the use of other components within the
system. The reason for this is that once another component is introduced, if a fault is
detected the fault may always be derived from the new component and not only the used
sensors. For the boolean sensors we cannot create any test variable that is sensitive to
faults in the sensor only. For the scalar sensors the test quantity for checking for sensor
faults tries to use the tested sensor only by using the known work areas for each specific
sensor. This is, as explained below, far from a perfect check and the sensors is an area to
be improved in a future improvement of the diagnosis algorithm.

For the scalar sensors there is three different modes as described as above, Nominal (N)
and Stuck (S) and Offset (O). To determine if a sensor is stuck the number of consecutive
elements detected is counted for each sensor. This number is compared to a predefined
value that holds the highest allowed consecutive number of values for a given sensor. This
value has been determined by using Matlab to count the highest detected amount of
consecutive values in a row in all test scenarios that doesn’t contain a fault in the tested
sensor. In other words, a check has been made for all sensors that counts the occurrence
of consecutive values in all scenarios that doesn’t hold a fault for the tested sensor. If
the diagnosis algorithm detects a larger number of consecutive values in a row than the
modelled number, a stucked sensor has been found.

For the offset mode the work area of the sensors has been determined. Once again this
has been done by using Matlab and all test scenarios that doesn’t contain a fault in the
tested sensor itself. If a sensor is stationary outside its modelled working area, an offset
diagnosis has been found.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 22

This reasoning however does not cover all scenarios. Figure 8 and 9 shows the working
area for two of the sensors in the ADAPT. For the first sensor, E135, a voltage sensor
in the beginning of the system, the working area looks clean and nice. Offsets outside of
the working area can easily be detected and alerted. The second sensor, ST515 - a speed
transmitter sensor in the end of the system, it is harder to determine the working area.
This is because relays before ST515 may open resulting in the speed measured by ST515
dropping to zero. The working area of ST515 will therefore be [0 960], and offsets withing
this range in this sensor will not be discovered by this test quantity. There are other test
quantities that might alarm on a offset fault in the area [0 960] and the detection of offset
within this range is left to them. We also note that an offset within the working area can
not be detected. There are no such cases discovered in the test data [tes09] however.

If the ST515 sensor gets stuck at zero this can not be detected by the test quantity
either. This is because the number of consecutive samples in a row may be very large if
a relay before the sensor is open, and the value detected by the sensor goes down to zero
without being stuck at zero. In order to address this matter, a lower threshold has been
implemented for the sensor, where no stuck or offset faults can be detected below this
threshold. For sensors where offset and stuck faults can be detected at zero or negative
values(for example the E135 sensor mentioned above), a negative threshold has been set.

The problem with very large working areas works for both the speed transmitter sensors
(ST), phase sensors (XT), flow sensors (FT) and current sensors (IT). The sensors where
the check of working areas works very well for temperature sensors (TE), the DC voltage
sensors (E) and light sensors (LT).

Figure 8: Working area for sensor E135 and
all non fault scenarios.

Figure 9: Working area for sensor ST515 and
all non fault scenarios.

The sensor test quantity is a strong area for improvement in a future development of the
diagnosis algorithm. To get accurate test quantities for all sensors without the use of
another sensor is not possible for all types of sensors. To improve this, more time for
modelling of the sensors and all relations between the sensors are needed. Time has not
allowed this during the development of the diagnosis algorithm, thus the easier version of
sensor tests has been implemented. An alternative would be to design new test quantities
which could detect and isolate the fault modes of the sensors. Another option might be to
work on a test quantity with variable working areas, adapting to the environment around
them.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 23

4.2 Diagnosis decision logic

To isolate the faults all information has to be considered from the test quantities. The
diagnosis candidates will be the minimum sets of faults which are consistent with the
sub-diagnoses. When a sub-diagnosis is altered, e.g. as a result of a test quantity alarm,
the set of diagnosis candidates will be updated using this new information. If a new
sub-diagnosis is added (i.e. before it did not say anything, but now it says something),
we can update the diagnoses by just plug in this new sub-diagnosis into the algorithm
below ([Nyb06]). When the decision algorithm recieves a new sub-diagnosis it updates
the diagnosis candidates. A description of the algorithm looks as follows:

1. Given old diagnoses Dold and a new sub-diagnosis Pi. D are the new diagnoses. Let
D = ∅.

2. If Dj does not imply Pi:

(a) Remove Dj from Dold.

(b) Extend Dj according to Pi to create diagnoses.

(c) Delete new diagnoses which imply any old diagnose in Dold and add the rest
to D.

3. Add the diagnoses in Dold to D.

This can be very time consuming if the algorithm have to isolate faults of higher order. An
assumption is that multiple faults of higher order is less probable comparing to faults of
lower order. Therefore if a possible diagnosis includes at least a certain number of faults,
we remove it because it is relatively unlikely. We can add this fault dimension limit into
the algorithm above:

1. Given old diagnoses Dold and a new sub-diagnosis Pi. D are the new diagnoses. Let
D = ∅. Add also a upper limit for the dimension for multiple faults l.

2. If Dj does not imply Pi:

(a) Remove Dj from Dold.

(b) Extend Dj according to Pi to create diagnoses.

(c) If Dj has higher dimension than l then remove from Dold.

(d) Delete new diagnoses which imply any old diagnose in Dold and add the rest
to D.

3. Add the diagnoses in Dold to D.

There are some special cases in the system that we have to handle in a proper way with
our fault isolation algorithm. The first thing is that we can create test quantities that can
say that a component is working properly. In our algorithm we handle all modes in the
same way but when we have calculated our diagnosis candidates we don’t want these to
contain nominal modes. To correct this we remove all nominal modes in the candidates.
Because of this it can happen that we get an diagnosis which results in an empty set.

All components have different modes, both nominals and faults, and a component can
only be in one mode at the same time. Therefore there can be diagnosis candidates which
says that a component is in two different modes at the same time which is a contradiction.
The diagnoses which holds contradictions are not possible and are therefore removed. To
handle these cases following steps are added to the algorithm:

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 24

1. Given old diagnoses Dold and a new sub-diagnosis Pi. D are the new diagnoses. Let
D = ∅. Add also a upper limit for the dimension for multiple faults l.

2. If Dj does not imply Pi:

(a) Remove Dj from Dold.

(b) Extend Dj according to Pi to create diagnoses.

(c) If Dj has higher dimension than l remove it from Dold.

(d) If Dj contains a contradiction remove it from Dold.

(e) Delete new diagnoses which imply any old diagnose in Dold and add the rest
to D.

3. Remove all nominal modes in the diagnoses in D.

4. Add the diagnoses in Dold to D.

This is the adjusted decision algorithm that is implemented in the diagnosis algorithm.

5 Analyses

5.1 Introduction

The developed test quantities have different detection and isolation abilities of the faults
in the electrical power system. In order to verify these and the detectability and isolability
for the whole diagnosis system an analysis of their properties will be performed. These
analyses are performed in parallel with creating the test quantities, so poor performance in
terms of isolability or detectability is discovered as early as possible in the diagnosis system
creation process. If such poor performance is discovered, the basic idea for increasing the
performance is to create and add new test quantities to the diagnosis system.

There are different properties which determines how a test quantity reacts to a specific
fault. Different faults need different kinds of test quantities with different kinds of prop-
erties. Some faults might be difficult to detect or isolate and requires a long time before
a test quantity can give a reliable diagnosis. The time interval could be shortened to get
a faster result but then the reliability might deteriorate. There can be faults which are
difficult to isolate or detect because of the behaviour of the different faults.

One noticeable aspect is the size of the faults. A test quantity is designed to react to faults
but not if there are not any. This requires some kind of thresholds or requirements for the
test quantity to react. Because of this there might be faults of small amplitudes which
can not be detected by some test quantities. One could lower the thresholds or ease the
requirements to be able to detects these faults as well, but at the same time you increase
the risk of having false detections. Different test quantities have different thresholds and
therefore different detectability properties. Two faults might not be isolable from each
other. By designing test quantities with different properties, which react to different sets
of faults, a diagnosis system at whole can have isolability and detectability properties
enough to detect faults even if a single test quantity can not.

If one assume that there is a system with four faults F1, F2, F3 and F4 and a diagnosis
system with three test quantities which are able to detects these faults as shown in Ta-
ble 21. The ’X’ represents that the fault can activate the test quantity but as discussed
earlier this is not always assured. The only thing one know is that a test quantity does
not react to a fault marked by ’0’. As can be seen in Table 21, Test1 reacts to faults F1

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 25

and F3, but not F2. If this test reacts it can be said that there is a fault either in F1 or
F3. The faults can not be isolated from each other with only this test.

By adding the test quantity Test2, which reacts to fault F1 and F2, it helps to make a
better analysis depending on the reactions of both tests. If both test reacts the explanation
can either be that F1 has happened or F2 and F3. If only the single faults are considered
then F1 can be isolated from F3. But if only Test1 reacts, F3 can not be the only
explanation because Test2 maybe not be as good as Test1 on reacting to F1. Therefore
with these two tests F1 can be isolated from F3 but not the opposite.

Table 21: Example: Detectability matrix
Test Quantity F1 F2 F3 F4
Test1 X 0 X 0
Test2 X X 0 0
Test3 X X X 0

When Test3 is added, which reacts to all three faults, one see that F3 still can not be
isolated from F1. Even if a new test quantity is added one can not be sure that it gives
a better isolability or detectability of the diagnosis system. By using a fault detection
matrix one can analyse which faults that can be detected but there also have to be made
a deeper analysis to check isolability. For this purpose an isolability matrix is used which
is easily calculated by help from the detectability matrix.

If you analyse which other faults a specific fault can be isolated from, you get the isolability
matrix. If there is an assumption that a specific fault has occurred you can see which test
quantities that can react to this fault. Then, by analysing all faults the test quantities can
react to, it can be seen if there are any other fault that also reacts to the same combination
of test quantities. The isolability matrix is a matrix with the same number of rows and
columns as detectable faults and for each row all faults that can not be isolated from the
row-specific fault are marked.

Table 22: Example: Isolability matrix
F1 F2 F3

F1 X 0 0
F2 X X 0
F3 X 0 X

If all faults can be isolated then there will only be ’X’ in the diagonal of the isolability
matrix. If one continue with the earlier example and create an isolability matrix from the
three test quantities results in what you can see in Table 22. As realised before you can
see that F1 is isolable, from the other faults, but F2 and F3 can not be isolated from
F1. From this matrix it can now be seen that it is needed to create test quantities which
reacts to F2 or F3 but not to F1 to be able to isolate these faults[NF09].

If you analyse a small system with only a few faults these matrices can easily be created by
hand. But if there is a system with a large amount of possible faults and a large amount
of test quantities then there is needed some kind of help program or algorithm to create
these matrices.

5.2 Tools for analysis

To be able to make the detectability and isolability matrices a program was made in
Matlab. The program is coded with Matlab’s object oriented programming syntax.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 26

The code is presented in Appendix. It takes the test quantities as input an auto-generates
these matrices for analysis. You can also analyse if a new test quantity add any new
information to the diagnosis algorithm or improve the isolability matrix. The information
is presented as a graph where all ’X’ marks are represented by dots. The Matlab code
is presented in Appendix D.

5.3 Detectability

For the developed diagnosis system a detectability matrix for the test quantities has been
made. This gives an optimistic estimation of which test quantities that will react when a
specific fault enters the system. You can’t expect that the test quantities always will react
if there is a fault because, like mentioned earlier, the fault maybe not be large enough or
if the fault does not make the system leave an expected behaviour. One example is the
test quantities that tests if the real valued sensors has an offset. If the offset is outside of
the sensors normal working interval a fault can be detected but if the offset still is within
the expected interval you can not say if there is an offset or if the system is behaving as
expected.

The detectability matrix can only say that one can detect some faults of a certain type,
but not promise that they are always detected because of different circumstances stated
earlier.

Our developed diagnosis system can detect all fault modes defined for the system. Some
faults detectability have a redundancy because several tests can react to the same fault.
For example are most of the sensors used by several test quantities so there are several
chances that these faults can be detected. But again as stated earlier some faults may
not be detected. There are test quantities which controls if the sensors are within their
normal working intervals. If not then there is an offset fault detected but if the offset does
not make the sensor leave its working interval then the fault is not detected. Faults in
the batteries and the inverters are detectable by only one and two respectively per each
component which requires a good detectability from these test quantities.

Test quantities which use relays require that the relays are in specific modes for the tests
to work. For example the tests which controls if the relay is ’Stuck’ compares the voltage
sensors before and after the relay. If the relay is closed then the voltage should be the
same before and after the relay. If it is not closed then no statement can be made about
the relation of the voltage sensors. These tests require that the relays say that they are
closed to see if there are any faults. This gives two tests for each relay: one which can
react if last command to relay says that it should be closed and one which can react if
the relay position sensor says that it should be closed.

A conclusion of the detectability of the diagnosis system can be seen in Figure 10. The
diagnosis system holds 315 different test quantities (different possible sub-diagnoses) and
can detect 222 different faults which is the total amount for the electrical power system.

5.4 Isolability

After the development of the the test quantities and analysis of the detectability of our
diagnosis algorithm one can continue with the isolability analysis. There is still a question
if the developed test quantities are enough to isolate the faults that can be detected.
Just as stated earlier for the detectability matrix the isolability matrix is an optimistic
estimation of the properties of the diagnosis system. The isolability matrix says that if
all test quantities reacts to their expected faults then we can isolate a fault according to
the matrix. If a test quantity is not responding to a fault then the isolability properties

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 27

Figure 10: The detectability matrix of the diagnosis system

might not be as good. But one can say that if two faults can not be isolated from each
other, according to the isolability matrix, then you can never isolate them with our present
diagnosis system.

A conclusion of the isolability of the diagnosis system can be seen in Figure 11. Ideally
this 222×222 isolability matrix should be the identity matrix, since that would imply that
all fault were uniquely isolable. However, this is not the case (even though it is close!)
and the non-isolable faults can be divided into 9 different groups presented in Table 23
and Table 30. For each of these groups the main problem is that only one test quantity
was designed detecting each of the non-isolable fault and an explanation will be given why
that must be the case on basis of the model of that component. Note that this analysis
is not complete, implementation of further tests is needed to improve properties of the
diagnosis algorithm.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 28

Figure 11: The isolability matrix of the diagnosis system

5.4.1 Non-isolable faults in battery

The battery test quantities use the batteries relating voltage and current sensors to com-
pute the internal resistance of the battery. If it is higher than expected, the battery is
assumed to be degraded (see Chapter 4.1.1). However, another explanation could be that
sensors are not reliable (see Table 23). According to our model, a degraded battery will
not affect any other quantities (like the temperature). Therefore no other test can be
designed including the degraded battery. Thus it will not be isolable from sensor faults.

Table 23: Non isolable faults in battery
Fault Can not be isolated from
BAT[1/2/3]:Degraded E[1/2/3]35:Offset/Stuck, IT[1/2/3]40:Offset/Stuck

5.4.2 Non-isolable faults in the circuit breakers

In the circuit breakers the faults FailedOpen and StuckClosed (StuckClosed only possible
for commandable circuit breakers) are not isolable (see Table 24). The problem is that
there is only one possible test to make including the faults of the circuit breakers, namely
a test using the current sensors. A test using voltage sensors will not be possible, since the
circuit breakers have two Nominal modes: Nominal and Tripped and the mode Tripped
only depends on the current and not on the voltage. Thus, only a test including the

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 29

current sensors can separate the nominal mode Tripped from fault modes. To summarize:
the underlying problem is that the two nominal modes Nominal and Tripped in our model
of the circuit breakers are represented as one nominal mode.

Table 24: Non-isolable faults in the circuit breakers
Fault Can not be isolated from
CB[1/2/3]36:FailedOpen/StuckClosed ISH[1/2/3]36:Stuck, IT[1/2/3]40:Offset/Stuck
CB[1/2]62:FailedOpen ISH[1/2]62:Stuck, IT[1/2][6/8]1:Offset/Stuck
CB[1/2]66:FailedOpen ISH[1/2]66:Stuck, IT[1/2]67:Offset/Stuck
CB[1/2]80:FailedOpen ISH[1/2]80:Stuck, IT[1/2]81:Offset/Stuck

5.4.3 Non-isolable stuck in load relays

In the actuator position sensors of load relays the fault mode Stuck is not isolable from the
faulty mode of the relays (see Table 25). The problem is that there are no unique current
or voltage sensors for any of these sensors, as for all other relays. Thus, only one test is
possible to make including the fault mode Stuck, namely a test comparing the actuator
position sensor with the command. Therefore Stuck will not be isolable from relay faults.

Table 25: Non-isolable stuck in load relays
Fault Can not be isolated from
ESH[1/2]7[0/1/2/3/4/5]:Stuck EY[1/2]7[0/1/2/3/4/5]:StuckClosed/StuckOpen
ESH[183/284]:Stuck EY[183/284]:StuckClosed/StuckOpen

5.4.4 Non-isolable stuck in load relays without loads

There are also load relays without any loads directly connected to them. Thus, a fault
mode in the relay will not affect any current or voltage sensors and only one test quantity
including the faults in the actuator position sensor and the relay can be designed, namely
a test comparing the actuator with the command. Therefore these faults can not be
isolated from each other (see Table 26).

Table 26: Non-isolable stuck in load relays without loads
Fault Can not be isolated from
ESH[184/283]:Stuck EY[184/283]:StuckClosed/StuckOpen
EY[184/283]:StuckClosed/StuckOpen ESH[184/283]:Stuck

5.4.5 Non-isolable StuckClosed in relays except load relays

For all other relays (except the load relays) the fault mode StuckClosed can not be isolated
from Stuck in the actuator position sensor (see Table 27). When the relay is in mode
NominalOpen, there is no model for the current or voltage associated with that relay (see
Chapter 3.4). Therefore only one test comparing the command with the actuator can be
made including the fault mode StuckClosed when the relay is open. Thus this fault can
not be isolated from Stuck in the actuator.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 30

Table 27: Non-isolable StuckClosed in relays except load relays
Fault Can not be isolated from
EY[1/2/3][41/44]:StuckClosed ESH[1/2][41/44]A:Stuck
EY[1/2]60:StuckClosed ESH[1/2]60A:Stuck

5.4.6 Non-isolable FailedOff in inverter

The inverter test quantities use the inverters related voltage and current sensors to com-
pute the efficiency of the inverter. If it is higher or lower than expected, the battery is
assumed to be FailedOff (see Chapter 4.1.2)). However, another explanation could be that
the sensors are not reliable (see Table 28). According to our model, a failed off inverter
will not affect any other quantities. Therefore, no other test can be designed including a
failed off inverter. Thus it will not be isolable from sensor faults.

Table 28: Non-isolable FailedOff in inverter
Fault Can not be isolated from
INV[1/2]:FailedOff E[1/2]6[1/5]:Offset/Stuck, ISH[1/2]62:Stuck

5.4.7 Non-isolable faults in DC loads

According to the Table 29 the fault mode FailedOff for a DC load can not be isolated
from the fault modes Offset or Stuck in the corresponding current sensor. Unlike the AC
loads where a test using the phase sensors can be designed, only one test can be made for
the DC loads using the current sensor. Thus, the mode FailedOff in a DC load can not
be isolated from fault in the corresponding current sensor.

Table 29: Non-isolable faults in DC loads
Fault Can not be isolated from
DC48[2/5]:FailedOff IT[1/2]81:Offset/Stuck

5.4.8 Non-isolable FailedOff in loads

The tests comparing the admittances of the loads with an admittance change (see 4.1.3),
make use of the fact that different loads have different characteristic admittance. However,
if two loads have very similar or even the same admittances, an isolation problem will
occur. If some of these loads in addition do not have a sensor measuring some other
output (like temperature, light, speed etc.) it will not be isolable from other loads with
similar/same admittance. That is the reason why the loads in Table 30 are not isolable.

Table 30: Non-isolable FailedOff in loads
Fault Can not be isolated from
LGT481:FailedOff LGT411:FailedOff
LGT484:FailedOff LGT410:FailedOff

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 31

5.4.9 Non-isolable FlowBlocked in Water Pump

The power characteristic test quantity for the water pump compares the measured water
flow with an expected value, and if this value is too small, the water pump is assumed to
be in fault mode FlowBlocked (see Chapter 4.1.4). However, another explanation could
be that the flow transmitter sensor is not reliable (see Table 31). According to our model,
a blocked flow in a water pump not will affect any other quantities (unlike the fault modes
Over-/Underspeed in the large fan, where its admittance changes!). Therefore no other
test can be designed including the the fault mode FlowBlocked. Thus it will not be isolable
from sensor faults.

Table 31: Non-isolable FlowBlocked in Water Pump
Fault Can not be isolated from
PMP42[0/5]:FlowBlocked FT52[0/5]:Offset/Stuck

5.5 Robustness

This section contains an analysis of the robustness of the diagnosis program, i.e. how
sensitive the different test quantities are to modeling errors and signal noise. After an
introduction the analysis is divided into sections discussing one component type at a time.

Since the diagnosis algorithm is never reset during a scenario, all sub-diagnosis statements
are in a way remembered. This design of the diagnosis program makes it crucial that the
test quantities have a very low false alarm rate, i.e. it is important that they do not
send sub-diagnosis statements when there is no fault present. This means that during the
design of the test quantities a low false alarm rate was one of the most important demands
on each test quantity, and this made the test quantities more robust to model errors and
signal noise.

5.5.1 Battery

The battery is a dynamic system that depends on many variables, for example temper-
atures, charge level and output current. With the sample data available and the time
at disposal for modeling, it is inevitable that the battery model will be less precise than
what is wanted. This undermodeling is evident if you look at Figure 4 where each point
is a time-averaged internal resistance calculation, and still the variance is fairly large,
especially compared to the small changes in internal resistance when the battery becomes
degraded. In the same figure is also the threshold for the internal resistance, which as you
can see is some distance away from the modeled internal resistance, implying that with
a better model this gap could be reduced. The point however is that the test quantity is
designed in such a way that this gap is allowed to be large, in order to make sure that the
false alarm rate is low.

5.5.2 Inverter

There are two types of inverter test quantities:

The first one checks whether or not the inverter outputs 120 V when it is being fed with
22 V or more. Problems with robustness arises if the inverter actually requires a little bit
more than 22 V to output 120 V, or the input voltage is just below the 22 V threshold

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 32

but sensor noise makes it seem as thought the input voltage is higher than the threshold.
This problem is however easily solved by increasing the threshold, which gives a somewhat
lower detection rate but more importantly decreases the chances for false alarms due to
signal noise. Hence the uncertainty in the model parameter is taken care of by making
sure the parameter is high enough.

The second one looks at the efficiency of the inverter, i.e. compares power input with
power output. Figure 5 shows efficiency measurements and model (in the shape of upper
and lower thresholds). The measurements in this figure are not averaged, as the efficiency
in the test quantity, but they are instead min and max efficiencies taken from the sample
data, so they include the effect of sensor noise. With that said it is clear that the thresholds
are at a relatively safe distance from the measurements, and an ever safer distance to the
averaged efficiency used by the test quantity. It is possible though that the efficiency of
the inverter degrades as it gets older, and this is not taken into account in the model
used, but this is of course not a problem unless the diagnosis program is used during long
periods of time, e.g. years or tenths of years.

5.5.3 Load

The admittance tests detect changes at the load bank by comparing new measured values
of the current and the phase with the predicted values from the previous iteration. If this
difference is sufficiently large, a fault is assumed to have been detected. An algorithm
parameter weighs how large this difference must be (based on the variances of signal noise)
in order to alarm a detection. Thus, this parameter weighs robustness (to signal noise)
against detectability.

Furthermore, all loads have been modelled to behave as a constant impedance. This as-
sumption is more correct for some loads than for others. However, the modeling procedure
does allow the user to specify variances for the model parameters, making it possible to
reckon with these uncertainties. There is also an algorithm parameter deciding the con-
fidence interval (number of standard deviations) to be used (see Figure 3). Thus, this
parameter weighs robustness (to model errors) against isolability.

With these two parameters the test can be made arbitrary robust at expense of detect-
/isolability performance.

5.5.4 Power characteristic systems

Some of the loads also have sensors measuring quantities which are caused by the power
output of the load. These are light and temperature sensors for some light bulbs, speed
transmitters for some fans, and flow transmitters for the pumps. In the diagnosis algorithm
a kalman filter is used observing the power output from the load (see Chapter 4.1.4).
A tuning parameter decides the variance of the process noise in these kalman filters.
In kalman filters, tuning is a compromise between speed and noise reduction. In the
diagnosis algorithm, the mentioned parameter will therefore weigh robustness (to signal
noise) against detection/isolation time.

However, for this test no algorithm parameter exists weighting robustness (to model errors)
against other performance properties. Therefore the potential robustness properties to
model errors is limited.

5.5.5 Relay

There are two types of relay test quantities:

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 33

The first one compares the relay command with the relay position sensor reading, so the
input signals to the test quantity are all boolean, and there are no model parameters.
Therefore this test quantity has no robustness problems at all.

The second test quantity looks at the voltage difference across the relay at times when the
relay position sensor says that the relay is closed. The voltage difference across a closed
relay is so small that it is impossible to separate from the noise on the voltage sensors,
and therefore the threshold for determining when the voltage difference is large is limited
by the sensor noise. This noise is also rather small, so with the relatively large margin for
the threshold that the test quantity uses, good robustness properties are achieved and at
the same time the detection rate is kept high, since the threshold is much smaller than
the voltage differences for when the relay is faulty.

5.5.6 Circuit breaker

There are two types of circuit breaker test quantities:

The first one uses boolean signals, one of which is constructed by comparing the greatest
current so far through the circuit breaker to a current rating (the rating states at what
current the circuit breaker trips, i.e. opens itself). The only robustness problem with
this test quantity is the case in which the current reaches just above the current rating,
and the circuit breaker doesn’t trip, either because its rating is inaccurate, or because of
current sensor noise. Since this case is rather specific, and it is the only case in which the
test quantity in question may have bad robustness properties, this test quantity may well
be regarded as robust to sensor noise and model errors.

The second circuit breaker test quantity looks at the voltage difference over the circuit
breaker. The model used is that the voltage difference lies within a certain range (when
the circuit breaker is closed), and although this may be regarded as an unsatisfactory
model it works well for detecting when the circuit breaker or any of the used sensors are
faulty. This is a result of the fact that the voltage difference over the circuit breaker is
small. So even though the model (the upper and lower bounds of the voltage difference
range) is rather uncertain it is possible to get good robustness (without loosing much in
detection rate) by adding a pretty large margin to the upper and lower bounds.

5.5.7 Sensors

The sensor tests detect and isolate Stuck and Offset in sensors. By counting how many
samples that are equal in a row Stuck can be detected, and by comparing the sensor value
with its expected working area (some) offsets can be detected (for further information,
see Chapter 4.1.7).

Both of these tests are sensitive to model errors (with false alarm as a result) and there
are no algorithm parameters weighing robustness to such errors against some other per-
formance properties. Therefore, this test in some extent lacks robustness to model errors.

However, robustness to signal noise is a minor problem for this test. Algorithm parameters
demanding sensor values to be outside the working area for some samples before detecting
offset, guarantee the robustness to signal noise. For the stuck-test, signal noise is even of
benefit making the false alarm rate lower. (For noisy signals the risk is lower that many
samples are equal even though the sensor is not stucked.)

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 34

6 Software

In the following section the diagnosis algorithm is described in terms of how the software
is implemented. This includes information in terms of structure of the algorithm, files,
classes and communication with the DxC framework provided by NASA.

6.1 Integration with the DxC Framework

This section covers how the algorithm is integrated into the DxC framework, and how
communication between the DxC framework and the diagnosis algorithm.

6.1.1 Background

In order to take part of the DCC’10 there was a necessary requirement that the diagnosis
algorithm could be fully integrated into the framework of ADAPT, called the DxC.

It is possible to develop the diagnosis algorithm in any programming language but there
are two languages recommended by NASA. These languages are C++ and Java. These lan-
guages provides a basic class structure and objects to communicate with the DxC frame-
work provided by NASA. Other languages have to communicate with the DxC framework
by using lower level TCP-IP communication.

The chosen language for the diagnosis algorithm is C++. The main reason for choosing
C++ instead of Java was mainly that the knowledge of C++ is greater within the project
group.

6.1.2 Communication with the DxC Framework

The DxC framework takes care of both input to and output from the diagnosis algorithm.
Figure 12 gives a overview of the different classes provided by the DxC and how they
integrate with each other.

The Scenario Loader loads data into the Scenario Data Source, which provides the di-
agnosis algorithm with data. The data comes from previously recorded data sets that
is available for download from the DCC homepage[dxp09]. Several scenarios with dif-
ferent injected faults are available for testing with the implemented algorithm, as well
as some competition data from the DCC’09 where the injected fault is unknown. The
DxC framework also records the output from the diagnosis algorithm (through the Sce-
nario Recorder). Briefly described it records the output from the diagnosis algorithm,
for example the current error state if there is one. It also evaluates the results. This is
done through the last two classes in Figure 12. The results from the scenario is stored in
Scenario Results and evaluated and calculated into points that can be used to compare
the diagnosis algorithm towards other algorithms in a competition using the Evaluator.
How this evaluation is made in a competition is listed in section four of the Diagnostic
Challenge Competition Announcement [KNP+09].

All communication made between the modules in Figure 12 is made using a message
based TCP-IP protocol. There are classes provided by the DxC for this communication.
The communication is made using a Connector and a callback class, that is handling all
kinds of messages to and from the diagnosis algorithm. The diagnosis algorithm sends two
types of messages: a ScenarioStatusData message signaling that the algorithm is ready to
process data, and a DiagnosisData containing the faults detected. It is also possible for
the diagnosis algorithm to send error messages through the DxC, informing the DxC that
something has gone wrong. The diagnosis algorithm also takes three kinds of data types

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 35

Figure 12: An overview of the ADAPT framework[sys09].

as inputs: SensorData, CommandData, and ScenarioStatusData. DxC will begin sending
data once the initial ScenarioStatusData is sent by the diagnosis algorithm.

The different messages are inherited from a parent class called DxC::DxcData. The struc-
ture can be seen in Figure 13.

Figure 13: The messages to and from the DxC are inherited by the parent class DxcData
as follows.

The data types sent from the DxC are inherited from a class called DxC::Value. Details
about internal data storage are described in section 6.2.5. In the appendix B a description
of messages sent to and from the DxC are included.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 36

6.2 Implementation

This section covers how the diagnosis algorithm looks like in terms of structure and classes.

There is a demand that the developed diagnosis algorithm is generic and flexible to changes
in parameters and in sensor configuration. It should be possible to change a components
parameters without changing the whole diagnosis algorithm. An overview of how the
diagnosis algorithm works can be seen in Figure 14.

Figure 14: An overview of how the diagnosis algorithm will be implemented.

The diagnosis algorithm can be divided into a few major parts, namely test quantities,a
sub-diagnosis handler and a fault isolator. Among with a few help classes and containers,
these class objects will form the core of the diagnosis algorithm.

A test quantity is a parent class. It takes in sensor and command data and delivers a
sub-diagnosis. The sub-diagnosis contains information about what parts that might have
a fault. In between the start and finish each test quantity can be formed arbitrary, as long
as it delivers the standardized output as a sub-diagnosis. By using a test quantity parent
class and subclasses for each type of test quantity one may design proficient and suitable
test quantities. Using this object oriented structure of test quantities also increases the
flexibility of the diagnosis algorithm as more test quantities can be added without changing
the old ones.

Test quantities uses the sensor data they need from the global sensor map and filter the
data if needed. What data is needed and what filtering that will be made is based on
which test is to be performed. Several tests only uses data from a few sensors, thus making
it unwise to load data from all sensors into every test quantity.

The information gathered from all the test quantities is placed in a sub-diagnosis con-
tainer class, called a sub diagnosis handler. This container stores information from all
test quantities. When all test quantities has delivered their results to the container, the
container is passed as input to the the fault isolator.

The fault isolator is a decision maker that is taking the sub-diagnoses from all the available
test quantities and finds the correct diagnoses as described in section 4. This diagnosis is
presented back to the DxC through a message of type DxC::DiagnosisData as mentioned
in section 6.1.2. Once a diagnosis has been found (that is not an empty diagnosis), the
fault isolator presents this diagnosis to the DxC every sample. If the diagnosis is altered
in the fault isolator, the new diagnosis is presented instead. This could be a subject

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 37

for optimization as it’s not perfectly clear how the DxC prefers it’s diagnoses to get the
highest competition score in the DCC competition. Once a fault have been detected and
is presented to the DxC, this fault is flagged as detected. If there is only one candidate
at the lowest dimension it also sends that the fault is isolated.

The fault isolator class does not require a named test quantity to be able to produce a
diagnosis, thus increasing flexibility even more. Of course, it might be hard to isolate a
diagnosis without certain test quantities, but that is always the case independent of the
structure of the diagnosis algorithm. This also means that the diagnosis algorithm can
be altered if a sensor is removed from the system. To do this all the test quantities using
this sensor is removed from the diagnosis algorithm.

6.2.1 Model and algorithm parameters

In order to easily be able to change parameters for a component and levels for weighing
contradicting parameters, two separate files for these parameters have been added to
the algorithm. Those files are modelparameters.h and algorithmparameters.h. This
section describes briefly the contents of each of these files and how to modify parameters.
However, all parameters will not be listed here.

Model parameters
The modelparameters.h file contains model parameters that have been determined during
the modelling phase. These include things as parameters for the internal resistance and
parameters for specifying each load’s magnitude and phase as described in section 3.3 etc.
As these parameters have been decided by modeling each component using Matlab TM,
there should be little need to change those parameters while optimizing a test score. If
a component is changed, replaced by another mark for example, some of the parameters
have to be recalculated and modified.

Algorithm parameters
The algorithmparameters.h file contains various parameters used by the FFFDA to
weigh contradicting parameters and other common parameters used within the algorithm.
These parameters may be things such as thresholds for when to trigger a test quantity or
when a load is thought to be in a stationary state. Changing these parameters will change
the outcome from running scenarios in different ways. If a threshold is reduced one will
get more detections of faults while running a scenario. But one may also experience an
increased amount of false negative rates and less detection accuracy as more test quantities
will detect faults due to their altered thresholds. If one is to try to increase a competition
score without adding any more test quantities, the algorithm parameters may be trimmed
for increased performance. This is partly due to the FFFDA have been created to try to
minimize false positive rates, as this is only one of the metrics used to determine the test
score.

The amount of algorithm parameters is quite large, and it may be confusing to find the
right algorithm parameter to tune if one would try to optimize the competition score. This
is basically due to each test quantity having it’s own section in the algorithmparameters.h
file, and there is no method to tune them all together. If one would prefer to have more
detected faults in expense of a higher false negative rate, one would have to look through
all the test quantities to modify each to this new condition. This would be a strong subject
for continued development of the diagnosis algorithm, either by scripting the parameters
in an effort to lower the algorithm parameters to just a few parameters, or by simply
structuring the algorithm parameters better.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 38

6.2.2 Initiation of test quantities

As shown in figure 14 there is a container for storing and handling the test quantities,
called a test quantity handler. This container also initiates all test quantities that is to be
run. Even if the initiation is made inside the test quantity handler a separate file have been
made to make it easier to initiate a new test quantity. This is done because the amount
of test quantities used is quite high, and creating all of those in a separate file will ease
the initiation of new test quantities. The separate file is called initTestQuantities.cc.
If one is interested in adding new test quantities, the new test quantity would have to be
included and instantiated here.

6.2.3 Time limits

As described in the DCC specifications there was two time limits that would have to be
taken into consideration while creating a diagnosis algorithm. Those were start up time
and execution time for the diagnosis algorithm.

According to the DCC specifications the start up time has a maximum limit of 30 seconds.
To check that this criteria is met a combination of occular survey and the command time
./fffda (in Linux) is used. The FFFDA has a start up time of approximately one second.
It is therefore quite far from the limit of 30 seconds, and even if the method for checking
the time limit is not the most scientific, this requirement is obviously met.

There was also a requirement on the execution time of each iteration of the diagnosis
algorithm on 0.5 seconds. The time for executing each iteration of the diagnosis algorithm
depends on how many diagnoses the fault isolator have to process each time. Using the
algorithm of a high number of diagnoses clearly takes more time than if the algorithm
handles just a few diagnoses. The time limit for execution time is checked by starting and
stopping a stop watch before and after each iteration of the diagnosis algorithm. This
stop watch is done by the function clock gettime provided by <time.h> C library, and
gives an accuracy of nanoseconds on the measurement. By doing this and measuring the
highest execution time for one iteration in the scenario, the average usually is somewhere
around 0.003 seconds for one iteration. This is noticeably smaller than the limit, and the
requirement is therefore said to be met. The subject of threading the diagnosis algorithm
so that the diagnosis is done separate from the data gathering have therefore not be
performed.

6.2.4 Class and file structure

In order to use the DxC Framework there is a strong need that the diagnosis algorithm is
implemented in a way that meets the criterions of the DxC. This includes placement of the
algorithm as well as a special xml file that indicates what tracks the diagnosis algorithm
is able to handle. The directory structure of the diagnosis is described in Figure 15. The
home directory of the diagnosis algorithm holds makefile for compiling the algorithm
and the required xml file. The Bin directory holds the executable diagnosis algorithm file.
The Build directory holds the linked objected files (*.o). The Src directory holds the
source code for the algorithm as well as the source code test quantities.

The implementation of the diagnosis algorithm is strongly based on the object-oriented
class structure. In the Appendix (sec A) a UML specification of all the essential classes is
presented. Table 32 presents a table of all provided classes and files, and a brief description
of their usage.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 39

Figure 15: The directory structure of the diagnosis algorithm.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 40

Table 32: Short description of all used classes in the DxC. The file suffix .* states that
both header file (.h) and source file (.cc) is present for the class. The files of type Src files
is placed in fffda/Src and files of type TQ in fffda/Src/TestQuantities.
Type Name Description
Src algorithmParameters.h File that holds all algorithm parameters

that can be tuned for altering performance.
Src diagnosisError.* Error class for throwing exceptions in the

algorithm.
Src initSensorProperties.cc Initiation of the sensor properties.
Src initTestQuantities.cc Initation of TQ’s in the test quantity han-

dler.
Src main.cc File that includes main function and holds

diagnosis algorithm.
Src makefile File that handles the compiling of the al-

gorithm.
Src modelParameters.h File that holds all the modelled parame-

ters.
Src objAdmittance.* Class for calculating admittances.
Src objCallbackHandler.* Class that handles the callbacks with the

DxC.
Src objData.* Class that handles storage of commands

and sensordata.
Src objDiagnosisAlgorithm.* The main algorithm. Holds containers etc.
Src objFaultIsolator.* Class that isolates faults.
Src objSensorHandler.* Class handling sensor levels and attributes.
Src objSubDiagnosis.* A sub-diagnosis. Output from each TQ.
Src objSubDiagnosisHandler.* Container class for the sub-diagnoses.
Src objTestQuantity.* Parent class of TQ’s.
Src objTestQuantityHandler.* Container class for holding TQ’s.
Src structs.* File holding minor structs used every-

where.
TQ objTqAdmittance.* One of the test quantities for the loads.
TQ objTqBattery.* The test quantities for the battery.
TQ objTqCircuitBreaker.* One of the test quantities for the circuit

breakers.
TQ objTqCircuitBreakerVoltage.* One of the test quantities for the circuit

breakers.
TQ objTqInverterOnePower.* One of the test quantities for the inverter.
TQ objTqInverterOneVoltage.* One of the test quantities for the inverter.
TQ objTqInverterTwoPower.* One of the test quantities for the inverter.
TQ objTqInverterTwoVoltage.* One of the test quantities for the inverter.
TQ objTqInverterVoltage.* One of the test quantities for the inverter.
TQ objTqPower.* One of the test quantities for the loads.
TQ objTqRelay.* One of the test quantities for the relays .
TQ objTqRelayCurrent.* One of the test quantities for the relays .
TQ objTqRelayStuck.* One of the test quantities for the relays.
TQ objTqSensors.* One of the test quantities for sensors off-

set/stucked.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 41

6.2.5 Data storage

As mentioned in section 6.1.2 the software handles three kinds of input messages from
the DxC framework. These three are scenario status messages, command messages and
sensor data messages.

The diagnosis algorithm will get a callback signal whenever a command data, sensor data
or a scenario status is received from the DxC framework. A scenario status signals that the
scenario has ended. When sensor- or command data arrives and the corresponding values
is stored at the right place in a global sensor- or command map. When a command data
is arriving, a series of parameters is set. These can then be used by the test quantities.

The sensordata is received from the DxC as a typeid(SensorData) message. This Sen-
sorData object contains a SensorValueMap which holds information about each sensors
values. The structure of the SensorValueMap is

typedef map<std::string, const Value∗ > SensorValueMap

where the string contains a sensorID and the Value points to the sensors value. The
sensorID is used by the test quantities when they query for the sensor values it needs.
The Value in the SensorValueMap can be either a integer, a string, a boolean or a real
(complex) value. However, there is no use for the string value, and the integer value
only occurs when a sensor is delivering exactly zero. Therefore the use of string values is
neglected and the integer values is converted to real values and stored as such.

The command and sensor data is stored in a class called objData. It contains maps for
each type of value described above. For example, there objData container holds maps
such as

typedef map<std::string, double> doubleMap typedef map<std::string, bool>
boolMap

for storing real and boolean values, where the string connects the value with the correct
sensor. The objData stores a chosen number of values in its map. The number of stored
values can be changed by a parameter set in the algorithmparameters.h file.

The storage of the input signals received in a typeid(CommandData) message is done in
the same way as the sensor data, by the use of a objData container and the use of maps.

The handling of the typeid(ScenarioStatusData) message is done directly in the call-
back class. The scenarioStatus message only contains a end of scenario tag that will stop
our algorithm. This is done by setting a flag.

6.2.6 Error handling in the software

Even if this project does not focus on errors and exception handling, some mechanism
for throwing and catching errors have been added. Error handling is done by exceptions
and the use of throw and catch sentences within the code. There is an outer throw/catch
statement around the different callbacks that is handling the running of the test quantities
and the fault isolator. If an error is thrown somewhere within these functions, this error
is caught and sent to the DxC as a DxC::Error data (see 6.1.2). There is also an inner
throw/catch statement around the execution of each test quantity. This prevents one
malfunctioning test quantity to stop the diagnosis algorithm from executing, and instead
displays an error message while running the diagnosis algorithm.

By the addition of a simple exception class to the diagnostic algorithm one gets a simple
error handling that still allows an extra degree of debugging possibilities. This error can
be thrown wherever needed in the diagnostic algorithm, and then be used for debugging
purposes. The exception class in the diagnostic algorithm is very simple. It is inherited

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 42

by the runtime error class as follows:

class diagnostic_error : public runtime_error {
public:
diagnostic_error(const string& argument = " ") : runtime_error(argument){}
};

6.2.7 Software manual

In order to get a basic understanding of the diagnosis algorithm and an overview of how
to change or implement new test quantities in the software, a User Manual[Alm09] is
written. It contains a short description of how fo find and change the different component
parameters, as well as instructions for installing and integrating the algorithm into the
DxC.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 43

A Class structure

Here follows the definitions of the most central classes in the diagnosis algorithm in UML
form.

class objData
Description:
Object that handles and stores data of different datatypes. This class is used to handle
sensor and command data.
Public Functions:

objData()
Constructor
objData(int newLength)
Overloaded constructor which takes maximum
stored data length.
˜objData()
Destructor

void insertBool(std::string name, bool value)
Inserts data value into ’name’ in std::map struc-
ture.

void insertBool(std::string name, std::string value)
Inserts data value into ’name’ in std::map struc-
ture.

void insertBool(std::string name, int value)
Inserts data value into ’name’ in std::map struc-
ture.

void insertBool(std::string name, double value)
Inserts data value into ’name’ in std::map struc-
ture.

std::vector<bool> getBool(std::string name)
Return the stored values from the specific key
’name’.

std::vector<bool> getString(std::string name)
Return the stored values from the specific key
’name’.

std::vector<bool> getInt(std::string name)
Return the stored values from the specific key
’name’.

std::vector<bool> getDouble(std::string name)
Return the stored values from the specific key
’name’.

void clearAll(void)
Erases the object of stored data.

Variables:
int dataLength

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 44

class objDiagnosisAlgorithm
Description:
Main class that holds the whole algorithm. This class communicates with the DxC Frame-
work
Public Functions:

objDiagnosisAlgorithm()
Constructor
˜objDiagnosisAlgorithm()
Destructor

void insertSensorValue(std::string name,bool value)
Overloaded function that stores sensor values de-
pending the data type.

void insertSensorValue(std::string name,std::string
value)
Overloaded function that stores sensor values de-
pending the data type.

void insertSensorValue(std::string name,int value)
Overloaded function that stores sensor values de-
pending the data type.

void insertSensorValue(std::string name,double value)
Overloaded function that stores sensor values de-
pending the data type.

void insertCommandValue(std::string name,bool
value)
Overloaded function that stores command values
depending the data type.

void insertCommandValue(std::string
name,std::string value)
Overloaded function that stores command values
depending the data type.

void insertCommandValue(std::string name,int value)
Overloaded function that stores command values
depending the data type.

void insertCommandValue(std::string name,double
value)
Overloaded function that stores command values
depending the data type.

void runTestQuantities(void)
The functions runs through the test quantity ob-
jects.

void runFaultIsolator(void)
Applies the fault isolator algorithm on the sub-
diagnoses collected from the test quantities.

Variables:
objTestQuantityHandler* testQuantityHandler
objSubDiagnosisHandler* subDiagnosisHandler
objFaultIsolator* faultIsolator

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 45

class objTestQuantity
Description:
Superclass that handles a single test quantity. It takes the sensor data as input and returns
a sub-diagnosis to the objTestQuantityHandler class
Public Functions:

objTestQuantity()
Constructor
objTestQuantity(std::string name)
Overloaded constructor
˜objTestQuantity()
Destructor

virtual
vector<objSubDiagnosis*>*

run(objData* sensorData, objData* command-
Data)
(Virtual) Runs the test quantity object and re-
turns a objSubdiagnosis object

std::string getTestQuantityName(void)
Return the name of the test quantity

Variables:
std::string testQuantityName

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 46

class objTestQuantityHandler
Description:
Container class that holds all objTestQuantity objects.
Public Functions:

objTestQualityHandler()
Constructor
˜objTestQualityHandler()
Destructor

void run(objSubDiagnosisHandler * sdh)
Runs through all test quantities and stores the
subdiagnoses in the variable sdh of type objSub-
diagnosisHandler*.

void addTestQuantity(objTestQuantity *
newTestQuantity)
Add a objTestQuantity object to the handler.

void insertSensorValue(std::string name,bool value)
Overloaded function that stores sensor value de-
pending on data type.

void insertSensorValue(std::string name,std::string
value)
Overloaded function that stores sensor value de-
pending on data type.

void insertSensorValue(std::string name,int value)
Overloaded function that stores sensor value de-
pending on data type.

void insertSensorValue(std::string name,double value)
Overloaded function that stores sensor value de-
pending on data type.

void insertCommandValue(std::string name,bool
value)
Overloaded function that stores command value
depending on data type.

void insertCommandValue(std::string
name,std::string value)
Overloaded function that stores command value
depending on data type.

void insertCommandValue(std::string name,int value)
Overloaded function that stores command value
depending on data type.

void insertCommandValue(std::string name,double
value)
Overloaded function that stores command value
depending on data type.

objData* getCommandMap(void)
Returns all stored commands values.

objData* getSensorMap(void)
Returns all stored sensor values.

Variables:
objData commandMap
objData sensorMap
std::vector<objTestQuantity*> testQuantities

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 47

class objSubdiagnosis
Description:
Holds the sub-diagnosis from a test quantity.
Public Functions:

objSubdiagnosis()
Constructor
˜objSubdiagnosis()
Destructor

void setTestQuantity(std::string newTestQuantity-
Name)
Set the name of the test quantity.

std::string getTestQuantityName()
Returns the test quantity name.

void addFault(Fault* newFault)
Add a fault candidate to the sub-diagnosis.

void addNonFault(Fault* newNonFault)
Add a non fault candidate to the sub-diagnosis.

vector<Fault*> getFaults()
Returns the faults as a vector<Fault*>

Variables:
string testQuantityName
vector<Fault*> faults

class objSubdiagnosisHandler
Description:
Stores the sub-diagnosis received from the objTestQuantity objects to be used later in the
objDiagnosis object.
Public Functions:

objSubdiagnosisHandler()
Constructor
˜objSubdiagnosisHandler
Destructor

void addSubdiagnosis(objSubDiagnosis* newSubDi-
agnosis)
Add a subdiagnosis to the objSubdiagnosisHan-
dler.

std::vector<objSubdiagnosis*> getSubdiagnoses()
Returns all the objSubdiagnosis objects in a vec-
tor.

Variables:
vector<objSubdiagnosis*> subDiagnoses

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 48

class objFaultIsolator
Description:
Takes the faulty and non faulty components in the subDiagnosisHandler and returns a
diagnosis candidate.
Public Functions:

objFaultIsolation()

˜objFaultIsolation()

void run(objSubdiagnosisHandler* subDiagnoses)
Takes all the sub-diagnoses and calculates candi-
date diagnoses and send a possible candidate to
the DxC framework.

Variables:
- -

struct Fault
Description:
Stores a fault in two strings, one for components name and one for fault mode.
Variables:
std::string component Text string that identifies the component.
std::string mode Text string that identifies the fault mode.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 49

B Communication with the DxC

Here follows a description of classes used for communicating with the DxC framework.

Dxc::CommandData
Description:
Message containing the relays on / off values and other signals that can be set in the
diagnostic algorithm.
Public Functions:

CommandData (long long timestamp, const
std::string &commandID, Value *command-
Value)
Constructor.

virtual ostream & put (ostream &) const
Prints DxcData in standardized, parseable for-
mat.

std::string getCommandID () const
Get command ID string.

const Value * getCommandValue () const
Get command Value.

virtual CommandData * clone () const
Virtual copy constructor.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 50

Dxc::ScenarioStatusData
Description:
Message that is being sent when the diagnosis algorithm is ready to receive data,
and when the diagnosis algorithm signals that it is finished.
Public Functions:

ScenarioStatusData (const std::string &sta-
tus)
Constructor.
ScenarioStatusData (Timestamp timestamp,
const std::string &status)
Constructs with timestamp set to current
time.

std::string getStatus () const
Returns status.

virtual ScenarioStatusData * clone () const
Virtual copy constructor.

virtual ostream put (ostream &) const
Prints DxcData in standardized, parseable for-
mat.

Static Public Attributes:
static const DA READY
std::string A Diagnosis Algorithm sends DA READY to

indicate it’s prepared to receive data.
static const std::string SDS ENDED

Signals scenario end. DAs must finalize and
exit properly or risk termination.

Dxc::ErrorData
Description:
Error message that’s can be sent from the diagnosis algorithm to the DxC(more information
in section 6.2.6).
Public Functions:

ErrorData (Timestamp timestamp,
const string &error)
Constructor..

string getError () const
Returns the error message string.

virtual ostream & put (ostream &) const
Prints DxcData in standardized,
parseable format.

virtual ErrorData * clone () const
Virtual copy constructor.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 51

Dxc::DiagnosisData
Description:
Message that’s being sent when a fault is found, containing a candidate list of faulty com-
ponents and weights for each of those components.
Public Types:
typedef std::set CandidateSet
〈 Candidate,ltCandidate 〉 Candidate set typedef.
Public Functions:

DiagnosisData (Timestamp timestamp,
bool detectionSignal=false, bool isola-
tionSignal=false, const CandidateSet &iso-
lation=CandidateSet(), const std::string
¬es=””)
Constructor to initialize the DiagnosisData
with timestamp.
DiagnosisData (bool detectionSignal=false,
bool isolationSignal=false, const Candi-
dateSet &isolation=CandidateSet(), const
std::string ¬es=””)
Constructor to initialize the DiagnosisData
with current time as timestamp.

bool getDetectionSignal () const
True if, according to the diagnosis, the system
is believed to be in a faulty state.

bool getIsolationSignal () const
True if faults have been isolated, i.e. candi-
dates exist.

virtual DiagnosisData * clone () const
Virtual copy constructor.

virtual ostream & put (ostream &) const
Prints DxcData in standardized, parseable for-
mat.

Classes:
struct Candidate

Maps a set of component IDs to (hypothesized)
faulty states.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 52

Dxc::SensorData
Description:
Sensor data sent by the DxC loader contains following message.
Public Types:
typedef std::map 〈 std::string,
const Value * 〉

CandidateSet

Candidate set typedef.
Public Functions:

SensorData (Timestamp timestamp, const
SensorValueMap &sensorMap)
Constructor.

virtual ostream & put (ostream &) const
Prints DxcData in standardized, parseable for-
mat.

SensorValueMap getSensorValueMap () const
Returns the map from sensor to Value.

virtual SensorData * clone () const
Virtual copy constructor.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 53

C ADAPT figures

Figure 16: An overview of the ADAPT system and its components[sys09].

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 54

Figure 17: A picture of the ADAPT system[sys09].

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 55

D Analysis program

Here is the Matlab code of the program used during the analyses.

%% objAnalysis
classdef objAnalysis < handle

properties
TestQuantities = [];

end % properties
methods
%% Constructor
function obj = objAnalysis()
end
%% AddTQ
% Add modes that test quantity reacts to.
% 'component', 'mode', 'component', {'modes'}
function obj = AddTQ(obj, tqName, varargin)

if mod(nargin−2, 2) 6= 0
error('Wrong number of arguments.');

end

%Save name
obj.TestQuantities(end+1).Name = tqName;
%Save modes
for i = 1:2:nargin−2

if ¬isfield(obj.TestQuantities(end), 'Faults')
obj.TestQuantities(end).Faults = [];

end
obj.TestQuantities(end).Faults(end+1).Component = varargin(i);
if iscell(varargin{i+1})

temp = varargin{i+1};
for num = 1:length(temp)

if ¬isfield(obj.TestQuantities(end).Faults(end), 'Modes')
obj.TestQuantities(end).Faults(end).Modes = {};

end
obj.TestQuantities(end).Faults(end).Modes{end+1} = temp{num};

end
else

if ¬isfield(obj.TestQuantities(end).Faults(end), 'Modes')
obj.TestQuantities(end).Faults(end).Modes = {};

end
obj.TestQuantities(end).Faults(end).Modes{end+1} = varargin{i+1};

end
end

end
%% Create Matrix
function [A row col] = GetMatrix(obj)

% Init
A = [];
row = {};
col = {};

component = [];
mode = [];

% Iterate through all test quantities
for r = 1:length(obj.TestQuantities)

row{r} = obj.TestQuantities(r).Name;
% Iterate through all faults
for c = 1:length(obj.TestQuantities(r).Faults)

for m = 1:length(obj.TestQuantities(r).Faults(c).Modes)
% Finns inte felet i listan
if isempty(col)

col{end+1} = [obj.TestQuantities(r).Faults(c).Component{1}, ...

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 56

':',obj.TestQuantities(r).Faults(c).Modes{m}];
A(r, end+1) = 1;

elseif ¬any(strcmp([obj.TestQuantities(r).Faults(c).Component{1}, ...
':',obj.TestQuantities(r).Faults(c).Modes{m}], col))

col{end+1} = [obj.TestQuantities(r).Faults(c).Component{1}, ...
':',obj.TestQuantities(r).Faults(c).Modes{m}];

A(r, end+1) = 1;
else

pos = find(strcmp([obj.TestQuantities(r).Faults(c).Component{1}, ...
':',obj.TestQuantities(r).Faults(c).Modes{m}], col));

A(r, pos) = 1;
end

end
end

end
[col corr] = sort(col);
A = A(:,corr);

end
%% Isolation
% Analyses which faults that can be isolated
function [Q col] = IsolabilityMatrix(obj, varargin)

[A row col] = obj.GetMatrix();
[Q col] = isolation(A, row, col);

% Print the variables that varargin{i} can't be isolated from
if ¬isempty(varargin)

for i = 1:length(varargin)
if isnumeric(varargin{i})

r = varargin{i};
fprintf('[%s] :: ', col{r});

else
r = find(strcmp(varargin{i}, col));
fprintf('[%s] :: ', varargin{i});

end

if isempty(r)
error('Fault not found.');

end

c = col(find(Q(r,:)));

if ¬isempty(c)
c(find(strcmp(col{r},c))) = [];
for j = 1:length(c)

fprintf('[%s] ', c{j});
end

end
fprintf('\n');

end
end

end
%% Usefull
% Check how much extra information a specific TQ gives
function Usefull(obj, varargin)

[A row col] = obj.GetMatrix();

A2 = A;
row2 = row;
for tq = 1:length(varargin)

r = find(strcmp(varargin{tq}, row2));
A2(r,:) = [];
row2(r) = [];

end

Q = isolation(A, row, col);

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 57

Q2 = isolation(A2, row2, col);

figure;
spy(Q2, 'r');hold on;
spy(Q, 'b');

end
%% Print info
function Info(obj, varargin)

[A row col] = obj.GetMatrix();
figure(1);
spy(A);
title('Detectability Matrix');
if ¬isempty(varargin)

for i = 1:length(varargin)
pos = find(strcmp(varargin{i}, col));
if isempty(pos)

error('Incorrect fault entered.');
end
line([pos−0.5 pos−0.5], [0 length(col)+1], ...

'Color', 'r', 'LineWidth', 1);
line([pos+0.5 pos+0.5], [0 length(col)+1], ...

'Color', 'r', 'LineWidth', 1);
end

end

[Q col] = obj.IsolabilityMatrix();
figure(2);
spy(Q);
title('Isolability Matrix');
% Mark selected fault
if ¬isempty(varargin)

for i = 1:length(varargin)
pos = find(strcmp(varargin{i}, col));
if isempty(pos)

error('Incorrect fault entered.');
end
line([0 length(col)+1], [pos−0.5 pos−0.5], ...

'Color', 'r', 'LineWidth', 1);
line([0 length(col)+1], [pos+0.5 pos+0.5], ...

'Color', 'r', 'LineWidth', 1);
line([pos−0.5 pos−0.5], [0 length(col)+1] , ...

'Color', 'r', 'LineWidth', 1);
line([pos+0.5 pos+0.5], [0 length(col)+1], ...

'Color', 'r', 'LineWidth', 1);
end

end

fprintf('# Test quantities: %d\n', length(row));
fprintf('# Detectable faults: %d\n', length(col));

if (length(varargin) == 1)
fprintf('TQs that can detect "%s": ', varargin{1});

col pos = find(strcmp(varargin{1}, col));
for tq i = 1:length(obj.TestQuantities)

tq = obj.TestQuantities(tq i);
for(f i = 1:length(tq.Faults))

f = tq.Faults(f i);
c = f.Component;
for m i = 1:length(f.Modes)

if(strcmp([c{1}, ':', f.Modes{m i}], varargin{1}) == 1)
fprintf('%s, ', tq.Name);

end
end

end
end

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 58

fprintf('\n');
end

end
%% Print Faults
function PrintFaults(obj)

[A row col] = obj.GetMatrix();
Q = isolation(A, row, col);
fprintf('Icke isolerbara fel markeras med ''[fel]''.\n');
% Sortera felen
col = sort(col);
component = '';
for i = 1:length(col)

[c m] = strtok(strrep(col{i}, ':', ' '));
if strcmp(component, c) == 0

component = c;
fprintf('\n%s:', c);

end

if length(find(Q(strcmp(col, col{i}),:))) == 1
fprintf(' %s;', m(2:end));

else
fprintf(' [%s];', m(2:end));

end
end
fprintf('\n');

end
%% Print non−Isolable Faults
% Denna funktion kan verka onödig, men den är snabb som vinden!
function PrintNIFaults(obj)

[A row col] = obj.GetMatrix();
Q = isolation(A, row, col);
% Sortera felen
col = sort(col);
for i = 1:length(col)

[c m] = strtok(strrep(col{i}, ':', ' '));
indices = find(Q(strcmp(col, col{i}),:));
indices = indices(indices 6= i);

if isempty(indices)
continue

end

fprintf('\n%s:', c);

m=strrep(m,' ','');
fprintf('%s −− ', m);

for k=indices
fprintf('%s', col{k});
if (find(indices == k) < length(indices))

fprintf(', ');
end

end
end
fprintf('\n');

end
end % methods

end

% Does there exist different faults on one component
% then there is a contradiction.
function contr = contradicting(f, col)

for i = 1:length(f)
% Get component and mode
[comp1 mode1] = strtok(strrep(col{f(i)},':', ' '));

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 59

for j = 1:length(f)
% Skip if i = j
if i == j

continue;
end
[comp2 mode2] = strtok(strrep(col{f(j)},':', ' '));
if strcmp(comp1, comp2)

if ¬strcmp(mode1, mode2)
contr = 1;
return;

end
end

end
end
contr = 0;

end

% Extend a on b
function D new = extend(a, b)

if iscell(a) | | iscell(b)
error('a and b can''t be a cell');

end
D new = {};
for i = 1:length(b)

D new{end+1} = [a, b(i)];
end

end

% Does a implies b?
function ok = implies(a, b)

if iscell(a) | | iscell(b)
error('a and b can''t be a cell');

end
% If a is empty then return that a implies b
if isempty(a)

ok = 1;
return;

end
% See if any in a is found in b
for i = 1:length(a)

if any(a(i) == b)
ok = 1;
return;

end
end
ok = 0;

end

% Uses the test quantity matrix to localize which other fault
% a specific fault can not be isolated from.
function [Q col] = isolation(A, row, col)

% isolability matrix
Q = zeros(length(col), length(col));
% Check for each column if the reacting fault is equal with
% another fault

sizeA = size(A);
for f = 1:sizeA(2)

% Compare with all other columns
not isolable from = [];
if ¬any(A(:,f))

continue;

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 60

end
for c = 1:sizeA(2)

if issubset(find(A(:,f)), find(A(:,c)))
not isolable from(end+1) = c;

end
end
if ¬isempty(not isolable from)

Q(f, not isolable from) = 1;
end

end
end

% Is a a subset of b or a==b
function ok = issubset(a, b)

if iscell(a) | | iscell(b)
error('a and b can''t be a cell');

end

for i = 1:length(a)
if ¬any(a(i) == b);

ok = 0;
return;

end
end
ok = 1;
return;

end

clear
analys = objAnalysis();

%% Test quantities

analys.AddTQ('BAT1', 'BAT1', {'Degraded'}, 'E135', {'Offset', 'Stuck'}, ...
'IT140', {'Offset', 'Stuck'});
analys.AddTQ('BAT2', 'BAT2', {'Degraded'}, 'E235', {'Offset', 'Stuck'}, ...
'IT240', {'Offset', 'Stuck'});
analys.AddTQ('BAT3', 'BAT3', {'Degraded'}, 'E335', {'Offset', 'Stuck'}, ...
'IT340', {'Offset', 'Stuck'});

analys.AddTQ('ESH141A', 'E140', {'Offset', 'Stuck'}, 'E142', ...
{'Offset', 'Stuck'}, 'ESH141A', 'Stuck');
analys.AddTQ('ESH141A SC', 'ESH141A', 'Stuck', 'EY141', 'StuckClosed');
analys.AddTQ('ESH141A SO', 'ESH141A', 'Stuck', 'EY141', 'StuckOpen');

analys.AddTQ('ESH144A', 'E140', {'Offset', 'Stuck'}, 'E242', ...
{'Offset', 'Stuck'}, 'ESH144A', 'Stuck');
analys.AddTQ('ESH144A SC', 'ESH144A', 'Stuck', 'EY144', 'StuckClosed');
analys.AddTQ('ESH144A SO', 'ESH144A', 'Stuck', 'EY144', 'StuckOpen');

analys.AddTQ('ESH160A', 'E142', {'Offset', 'Stuck'}, 'E161', ...
{'Offset', 'Stuck'}, 'ESH160A', 'Stuck');
analys.AddTQ('ESH160A SC', 'ESH160A', 'Stuck', 'EY160', 'StuckClosed');
analys.AddTQ('ESH160A SO', 'ESH160A', 'Stuck', 'EY160', 'StuckOpen');

analys.AddTQ('ESH170 SC', 'ESH170', 'Stuck', 'EY170', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH171 SC', 'ESH171', 'Stuck', 'EY171', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH172 SC', 'ESH172', 'Stuck', 'EY172', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH173 SC', 'ESH173', 'Stuck', 'EY173', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH174 SC', 'ESH174', 'Stuck', 'EY174', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH175 SC', 'ESH175', 'Stuck', 'EY175', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH183 SC', 'ESH183', 'Stuck', 'EY183', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH184 SC', 'ESH184', 'Stuck', 'EY184', {'StuckClosed','StuckOpen'});

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 61

analys.AddTQ('ESH241A', 'E240', {'Offset', 'Stuck'}, 'E142', ...
{'Offset', 'Stuck'}, 'ESH241A', 'Stuck');
analys.AddTQ('ESH241A SC', 'ESH241A', 'Stuck', 'EY241', 'StuckClosed');
analys.AddTQ('ESH241A SO', 'ESH241A', 'Stuck', 'EY241', 'StuckOpen');

analys.AddTQ('ESH244A', 'E240', {'Offset', 'Stuck'}, 'E242', ...
{'Offset', 'Stuck'}, 'ESH244A', 'Stuck');
analys.AddTQ('ESH244A SC', 'ESH244A', 'Stuck', 'EY244', 'StuckClosed');
analys.AddTQ('ESH244A SO', 'ESH244A', 'Stuck', 'EY244', 'StuckOpen');

analys.AddTQ('ESH260A', 'E242', {'Offset', 'Stuck'}, 'E261', ...
{'Offset', 'Stuck'}, 'ESH260A', 'Stuck');
analys.AddTQ('ESH260A SC', 'ESH260A', 'Stuck', 'EY260', 'StuckClosed');
analys.AddTQ('ESH260A SO', 'ESH260A', 'Stuck', 'EY260', 'StuckOpen');

analys.AddTQ('ESH270 SC', 'ESH270', 'Stuck', 'EY270', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH271 SC', 'ESH271', 'Stuck', 'EY271', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH272 SC', 'ESH272', 'Stuck', 'EY272', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH273 SC', 'ESH273', 'Stuck', 'EY273', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH274 SC', 'ESH274', 'Stuck', 'EY274', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH275 SC', 'ESH275', 'Stuck', 'EY275', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH283 SC', 'ESH283', 'Stuck', 'EY283', {'StuckClosed','StuckOpen'});
analys.AddTQ('ESH284 SC', 'ESH284', 'Stuck', 'EY284', {'StuckClosed','StuckOpen'});

analys.AddTQ('ESH341A', 'E340', {'Offset', 'Stuck'}, 'E142', ...
{'Offset', 'Stuck'}, 'ESH341A', 'Stuck');
analys.AddTQ('ESH341A SC', 'ESH341A', 'Stuck', 'EY341', 'StuckClosed');
analys.AddTQ('ESH341A SO', 'ESH341A', 'Stuck', 'EY341', 'StuckOpen');

analys.AddTQ('ESH344A', 'E340', {'Offset', 'Stuck'}, 'E242', ...
{'Offset', 'Stuck'}, 'ESH344A', 'Stuck');
analys.AddTQ('ESH344A SC', 'ESH344A', 'Stuck', 'EY344', 'StuckClosed');
analys.AddTQ('ESH344A SO', 'ESH344A', 'Stuck', 'EY344', 'StuckOpen');

analys.AddTQ('EY141', 'E140', {'Offset', 'Stuck'}, 'E142', ...
{'Offset', 'Stuck'}, 'EY141', 'StuckOpen');
analys.AddTQ('EY144', 'E140', {'Offset', 'Stuck'}, 'E242', ...
{'Offset', 'Stuck'}, 'EY144', 'StuckOpen');
analys.AddTQ('EY160', 'E142', {'Offset', 'Stuck'}, 'E161', ...
{'Offset', 'Stuck'}, 'EY160', 'StuckOpen');
analys.AddTQ('EY241', 'E240', {'Offset', 'Stuck'}, 'E142', ...
{'Offset', 'Stuck'}, 'EY241', 'StuckOpen');
analys.AddTQ('EY244', 'E240', {'Offset', 'Stuck'}, 'E242', ...
{'Offset', 'Stuck'}, 'EY244', 'StuckOpen');
analys.AddTQ('EY260', 'E242', {'Offset', 'Stuck'}, 'E261', ...
{'Offset', 'Stuck'}, 'EY260', 'StuckOpen');
analys.AddTQ('EY341', 'E340', {'Offset', 'Stuck'}, 'E142', ...
{'Offset', 'Stuck'}, 'EY341', 'StuckOpen');
analys.AddTQ('EY344', 'E340', {'Offset', 'Stuck'}, 'E242', ...
{'Offset', 'Stuck'}, 'EY344', 'StuckOpen');

analys.AddTQ('CB136VoltageDrop', 'E135', {'Offset', 'Stuck'}, ...
'E140', {'Offset', 'Stuck'}, 'ISH136', 'Stuck');
analys.AddTQ('CB236VoltageDrop', 'E235', {'Offset', 'Stuck'}, ...
'E240', {'Offset', 'Stuck'}, 'ISH236', 'Stuck');
analys.AddTQ('CB336VoltageDrop', 'E335', {'Offset', 'Stuck'}, ...
'E340', {'Offset', 'Stuck'}, 'ISH336', 'Stuck');
analys.AddTQ('CB166VoltageDrop', 'E165', {'Offset', 'Stuck'}, ...
'E167', {'Offset', 'Stuck'}, 'ISH166', 'Stuck');
analys.AddTQ('CB266VoltageDrop', 'E265', {'Offset', 'Stuck'}, ...
'E267', {'Offset', 'Stuck'}, 'ISH266', 'Stuck');
analys.AddTQ('CB180VoltageDrop', 'E161', {'Offset', 'Stuck'}, ...
'E181', {'Offset', 'Stuck'}, 'ISH180', 'Stuck');
analys.AddTQ('CB280VoltageDrop', 'E261', {'Offset', 'Stuck'}, ...
'E281', {'Offset', 'Stuck'}, 'ISH280', 'Stuck');

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 62

analys.AddTQ('CB136 FO', 'CB136', 'FailedOpen', ...
'ISH136', 'Stuck', 'IT140', {'Offset', 'Stuck'});
analys.AddTQ('CB136 SC', 'CB136', 'StuckClosed', ...
'ISH136', 'Stuck', 'IT140', {'Offset', 'Stuck'});
analys.AddTQ('CB136', 'ISH136', 'Stuck', 'IT140', ...
{'Offset', 'Stuck'});
analys.AddTQ('CB236 FO', 'CB236', 'FailedOpen', ...
'ISH236', 'Stuck', 'IT240', {'Offset', 'Stuck'});
analys.AddTQ('CB236 SC', 'CB236', 'StuckClosed', ...
'ISH236', 'Stuck', 'IT240', {'Offset', 'Stuck'});
analys.AddTQ('CB236', 'ISH236', 'Stuck', 'IT240', ...
{'Offset', 'Stuck'});
analys.AddTQ('CB336 FO', 'CB336', 'FailedOpen', ...
'ISH336', 'Stuck', 'IT340', {'Offset', 'Stuck'});
analys.AddTQ('CB336 SC', 'CB336', 'StuckClosed', ...
'ISH336', 'Stuck', 'IT340', {'Offset', 'Stuck'});
analys.AddTQ('CB336', 'ISH336', 'Stuck', 'IT340', ...
{'Offset', 'Stuck'});
analys.AddTQ('CB162 FO', 'CB162', 'FailedOpen', ...
'ISH162', 'Stuck', 'IT161', {'Offset', 'Stuck'}, ...
'IT181', {'Offset', 'Stuck'});
analys.AddTQ('CB162', 'ISH162', 'Stuck', 'IT161', ...
{'Offset', 'Stuck'}, 'IT181', {'Offset', 'Stuck'});
analys.AddTQ('CB262 FO', 'CB262', 'FailedOpen', ...
'ISH262', 'Stuck', 'IT261', {'Offset', 'Stuck'}, ...
'IT281', {'Offset', 'Stuck'});
analys.AddTQ('CB262', 'ISH262', 'Stuck', 'IT261', ...
{'Offset', 'Stuck'}, 'IT281', {'Offset', 'Stuck'});
analys.AddTQ('CB166 FO', 'CB166', 'FailedOpen', ...
'ISH166', 'Stuck', 'IT167', {'Offset', 'Stuck'});
analys.AddTQ('CB166', 'ISH166', 'Stuck', 'IT167', ...
{'Offset', 'Stuck'});
analys.AddTQ('CB266 FO', 'CB266', 'FailedOpen', ...
'ISH266', 'Stuck', 'IT267', {'Offset', 'Stuck'});
analys.AddTQ('CB266', 'ISH266', 'Stuck', 'IT267', ...
{'Offset', 'Stuck'});
analys.AddTQ('CB180 FO', 'CB180', 'FailedOpen', ...
'ISH180', 'Stuck', 'IT181', {'Offset', 'Stuck'});
analys.AddTQ('CB180', 'ISH180', 'Stuck', 'IT181', ...
{'Offset', 'Stuck'});
analys.AddTQ('CB280 FO', 'CB280', 'FailedOpen', ...
'ISH280', 'Stuck', 'IT281', {'Offset', 'Stuck'});
analys.AddTQ('CB280', 'ISH280', 'Stuck', 'IT281', ...
{'Offset', 'Stuck'});

analys.AddTQ('INV1 V', 'INV1', 'FailedOff', 'E161', {'Offset', 'Stuck'}, ...
'E165', {'Offset', 'Stuck'}, 'ISH162', {'Stuck'});
analys.AddTQ('INV2 V', 'INV2', 'FailedOff', 'E261', {'Offset', 'Stuck'}, ...
'E265', {'Offset', 'Stuck'}, 'ISH262', {'Stuck'});
analys.AddTQ('INV1 P', 'E161', {'Offset', 'Stuck'}, 'E165', ...
{'Offset', 'Stuck'}, 'IT161', {'Offset', 'Stuck'}, 'IT181', ...
{'Offset', 'Stuck'}, 'IT167', {'Offset', 'Stuck'}, 'XT167', ...
{'Offset', 'Stuck'}, 'ISH162', {'Stuck'}, 'ISH166', {'Stuck'});
analys.AddTQ('INV2 P', 'E261', {'Offset', 'Stuck'}, 'E265', ...
{'Offset', 'Stuck'}, 'IT261', {'Offset', 'Stuck'}, 'IT281', ...
{'Offset', 'Stuck'}, 'IT267', {'Offset', 'Stuck'}, 'XT267', ...
{'Offset', 'Stuck'}, 'ISH262', {'Stuck'}, 'ISH266', {'Stuck'});

%Load
analys.AddTQ('LOAD1', 'LGT400', 'FailedOff', 'LGT401', 'FailedOff', ...
'LGT402', 'FailedOff');
analys.AddTQ('LOAD2', 'EY170', 'StuckOpen', 'EY173', 'StuckOpen', ...
'EY175', 'StuckOpen', 'LGT481', 'FailedOff', 'LGT411', 'FailedOff');
analys.AddTQ('LOAD3', 'EY171', 'StuckOpen','FAN415', 'FailedOff');
analys.AddTQ('LOAD4', 'EY172', 'StuckOpen','FAN480','FailedOff');
analys.AddTQ('LOAD5', 'EY174', 'StuckOpen','PMP425','FailedOff');

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 63

analys.AddTQ('LOAD6', 'FAN415','OverSpeed');
analys.AddTQ('LOAD7', 'FAN415','UnderSpeed');

analys.AddTQ('LOAD8', 'EY170', 'StuckClosed', 'EY173', ...
'StuckClosed', 'EY175', 'StuckClosed');
analys.AddTQ('LOAD9', 'EY171', 'StuckClosed');
analys.AddTQ('LOAD10', 'EY172', 'StuckClosed');
analys.AddTQ('LOAD11', 'EY174', 'StuckClosed');

analys.AddTQ('DCLOAD1', 'EY183', 'StuckOpen','DC482', ...
'FailedOff', 'IT181', {'Offset','Stuck'});
analys.AddTQ('DCLOAD2', 'EY183', 'StuckClosed');

analys.AddTQ('LOAD12', 'LGT405', 'FailedOff', 'LGT406', ...
'FailedOff', 'LGT407', 'FailedOff');
analys.AddTQ('LOAD13', 'EY274', 'StuckOpen', 'EY271', ...
'StuckOpen', 'EY273', 'StuckOpen', 'LGT410', 'FailedOff', ...
'LGT484', 'FailedOff');
analys.AddTQ('LOAD14', 'EY275', 'StuckOpen','FAN416', ...
'FailedOff');
analys.AddTQ('LOAD15', 'EY272', 'StuckOpen','FAN483', ...
'FailedOff');
analys.AddTQ('LOAD16', 'EY270', 'StuckOpen','PMP420', ...
'FailedOff');
analys.AddTQ('LOAD17', 'FAN416','OverSpeed');
analys.AddTQ('LOAD18', 'FAN416','UnderSpeed');

analys.AddTQ('LOAD19', 'EY271', 'StuckClosed', 'EY273', ...
'StuckClosed', 'EY274', 'StuckClosed');
analys.AddTQ('LOAD20', 'EY270', 'StuckClosed');
analys.AddTQ('LOAD21', 'EY272', 'StuckClosed');
analys.AddTQ('LOAD22', 'EY275', 'StuckClosed');

analys.AddTQ('DCLOAD3', 'EY284', 'StuckOpen','DC485', ...
'FailedOff', 'IT281', {'Offset','Stuck'});
analys.AddTQ('DCLOAD4', 'EY284', 'StuckClosed');

analys.AddTQ('LOAD2f','LGT481', 'FailedOff', 'LGT411', ...
'FailedOff');
analys.AddTQ('LOAD3f', 'FAN415', 'FailedOff');
analys.AddTQ('LOAD4f', 'FAN480','FailedOff');
analys.AddTQ('LOAD5f', 'PMP425','FailedOff');
analys.AddTQ('LOAD6f', 'FAN415','OverSpeed');
analys.AddTQ('LOAD7f', 'FAN415','UnderSpeed');

analys.AddTQ('DCLOAD1f', 'DC482', 'FailedOff', 'IT181', ...
{'Offset','Stuck'});

analys.AddTQ('LOAD13f', 'LGT410', 'FailedOff', 'LGT484', ...
'FailedOff');
analys.AddTQ('LOAD14f', 'FAN416', 'FailedOff');
analys.AddTQ('LOAD15f', 'FAN483','FailedOff');
analys.AddTQ('LOAD16f', 'PMP420','FailedOff');
analys.AddTQ('LOAD17f', 'FAN416','OverSpeed');
analys.AddTQ('LOAD18f', 'FAN416','UnderSpeed');

analys.AddTQ('DCLOAD3f', 'DC485', 'FailedOff', 'IT281', ...
{'Offset','Stuck'});

analys.AddTQ('LOAD AC1 IT', 'IT167', {'Offset','Stuck'});
analys.AddTQ('LOAD AC1 XT', 'XT167', {'Offset','Stuck'});

analys.AddTQ('LOAD AC2 IT', 'IT267', {'Offset','Stuck'});
analys.AddTQ('LOAD AC2 XT', 'XT267', {'Offset','Stuck'});

analys.AddTQ('LOAD DC1 IT', 'IT181', {'Offset','Stuck'});

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 64

analys.AddTQ('LOAD DC2 IT', 'IT281', {'Offset','Stuck'});

analys.AddTQ('LT500 PCM1','LT500',{'Offset','Stuck'}, ...
'EY170', 'StuckOpen');
analys.AddTQ('TE500 PCM1','TE500',{'Offset','Stuck'}, ...
'EY170', 'StuckOpen', 'LGT400', 'FailedOff');
analys.AddTQ('TE501 PCM1','TE501',{'Offset','Stuck'}, ...
'EY170', 'StuckOpen', 'LGT401', 'FailedOff');
analys.AddTQ('TE502 PCM1','TE502',{'Offset','Stuck'}, ...
'EY170', 'StuckOpen', 'LGT402', 'FailedOff');
analys.AddTQ('ST515 PCM1','ST515',{'Offset','Stuck'}, ...
'EY171', 'StuckOpen', 'FAN415', 'FailedOff');
analys.AddTQ('ST515 OS PCM1','ST515',{'Offset','Stuck'}, ...
'FAN415', 'OverSpeed');
analys.AddTQ('ST515 US PCM1','ST515',{'Offset','Stuck'}, ...
'FAN415', 'UnderSpeed');
analys.AddTQ('FT525 PCM1','FT525',{'Offset','Stuck'}, ...
'EY174', 'StuckOpen', 'PMP425', 'FailedOff');

analys.AddTQ('FT525 PCM1','FT525',{'Offset','Stuck'}, ...
'PMP425', 'FlowBlocked');
analys.AddTQ('TE511 PCM1','TE511',{'Offset','Stuck'}, ...
'EY175', 'StuckOpen','LGT411', 'FailedOff');

analys.AddTQ('FT520 PCM1','FT520',{'Offset','Stuck'}, ...
'EY270', 'StuckOpen', 'PMP420', 'FailedOff');
analys.AddTQ('FT520 PCM1','FT520',{'Offset','Stuck'}, ...
'PMP420', 'FlowBlocked');
analys.AddTQ('TE510 PCM1','TE510',{'Offset','Stuck'}, ...
'EY271', 'StuckOpen','LGT410', 'FailedOff');

analys.AddTQ('LT505 PCM1','LT505',{'Offset','Stuck'}, ...
'EY274', 'StuckOpen');
analys.AddTQ('TE505 PCM1','TE505',{'Offset','Stuck'}, ...
'EY274', 'StuckOpen', 'LGT405', 'FailedOff');
analys.AddTQ('TE506 PCM1','TE506',{'Offset','Stuck'}, ...
'EY274', 'StuckOpen', 'LGT406', 'FailedOff');
analys.AddTQ('TE507 PCM1','TE507',{'Offset','Stuck'}, ...
'EY274', 'StuckOpen', 'LGT407', 'FailedOff');

analys.AddTQ('ST516 PCM1','ST516',{'Offset','Stuck'}, ...
'EY275', 'StuckOpen', 'FAN416', 'FailedOff');

analys.AddTQ('ST516 OS PCM1','ST516',{'Offset','Stuck'}, ...
'FAN416', 'OverSpeed');
analys.AddTQ('ST516 US PCM1','ST516',{'Offset','Stuck'}, ...
'FAN416', 'UnderSpeed');

analys.AddTQ('LT500 PCM0','LT500',{'Offset','Stuck'}, ...
'EY170', 'StuckClosed');
analys.AddTQ('TE500 PCM0','TE500',{'Offset','Stuck'}, ...
'EY170', 'StuckClosed');
analys.AddTQ('TE501 PCM0','TE501',{'Offset','Stuck'}, ...
'EY170', 'StuckClosed');
analys.AddTQ('TE502 PCM0','TE502',{'Offset','Stuck'}, ...
'EY170', 'StuckClosed');
analys.AddTQ('ST515 PCM0','ST515',{'Offset','Stuck'}, ...
'EY171', 'StuckClosed');
analys.AddTQ('FT525 PCM0','FT525',{'Offset','Stuck'}, ...
'EY174', 'StuckClosed');

analys.AddTQ('TE511 PCM0','TE511',{'Offset','Stuck'}, ...
'EY175', 'StuckClosed');

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 65

analys.AddTQ('FT520 PCM0','FT520',{'Offset','Stuck'}, ...
'EY270', 'StuckClosed');

analys.AddTQ('TE510 PCM0','TE510',{'Offset','Stuck'}, ...
'EY271', 'StuckClosed');

analys.AddTQ('LT505 PCM0','LT505',{'Offset','Stuck'}, ...
'EY274', 'StuckOpen');
analys.AddTQ('TE505 PCM0','TE505',{'Offset','Stuck'}, ...

'EY274', 'StuckOpen', 'LGT405', 'FailedOff');
analys.AddTQ('TE506 PCM0','TE506',{'Offset','Stuck'}, ...

'EY274', 'StuckOpen', 'LGT406', 'FailedOff');
analys.AddTQ('TE507 PCM0','TE507',{'Offset','Stuck'}, ...

'EY274', 'StuckOpen', 'LGT407', 'FailedOff');

analys.AddTQ('ST516 PCM0','ST516',{'Offset','Stuck'}, ...
'EY275', 'StuckOpen', 'FAN416', 'FailedOff');

% Sensor TQ'S
analys.AddTQ('E135 S','E135','Stuck');
analys.AddTQ('E140 S','E140','Stuck');
analys.AddTQ('E142 S','E142','Stuck');
analys.AddTQ('E161 S','E161','Stuck');
analys.AddTQ('E165 S','E165','Stuck');
analys.AddTQ('E167 S','E167','Stuck');
analys.AddTQ('E181 S','E181','Stuck');
analys.AddTQ('E235 S','E235','Stuck');
analys.AddTQ('E240 S','E240','Stuck');
analys.AddTQ('E242 S','E242','Stuck');
analys.AddTQ('E261 S','E261','Stuck');
analys.AddTQ('E265 S','E265','Stuck');
analys.AddTQ('E267 S','E267','Stuck');
analys.AddTQ('E281 S','E281','Stuck');
analys.AddTQ('E335 S','E335','Stuck');
analys.AddTQ('E340 S','E340','Stuck');
analys.AddTQ('FT520 S','FT520','Stuck');
analys.AddTQ('FT525 S','FT525','Stuck');
analys.AddTQ('IT140 S','IT140','Stuck');
analys.AddTQ('IT161 S','IT161','Stuck');
analys.AddTQ('IT167 S','IT167','Stuck');
analys.AddTQ('IT181 S','IT181','Stuck');
analys.AddTQ('IT240 S','IT240','Stuck');
analys.AddTQ('IT261 S','IT261','Stuck');
analys.AddTQ('IT267 S','IT267','Stuck');
analys.AddTQ('IT281 S','IT281','Stuck');
analys.AddTQ('IT340 S','IT340','Stuck');
analys.AddTQ('LT500 S','LT500','Stuck');
analys.AddTQ('LT505 S','LT505','Stuck');
analys.AddTQ('ST165 S','ST165','Stuck');
analys.AddTQ('ST265 S','ST265','Stuck');
analys.AddTQ('ST515 S','ST515','Stuck');
analys.AddTQ('ST516 S','ST516','Stuck');
analys.AddTQ('TE128 S','TE128','Stuck');
analys.AddTQ('TE129 S','TE129','Stuck');
analys.AddTQ('TE133 S','TE133','Stuck');
analys.AddTQ('TE228 S','TE228','Stuck');
analys.AddTQ('TE229 S','TE229','Stuck');
analys.AddTQ('TE328 S','TE328','Stuck');
analys.AddTQ('TE329 S','TE329','Stuck');
analys.AddTQ('TE500 S','TE500','Stuck');
analys.AddTQ('TE501 S','TE501','Stuck');
analys.AddTQ('TE502 S','TE502','Stuck');
analys.AddTQ('TE505 S','TE505','Stuck');
analys.AddTQ('TE506 S','TE506','Stuck');
analys.AddTQ('TE507 S','TE507','Stuck');
analys.AddTQ('TE510 S','TE510','Stuck');

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 66

analys.AddTQ('TE511 S','TE511','Stuck');
analys.AddTQ('XT167 S','XT167','Stuck');
analys.AddTQ('XT276 S','XT267','Stuck');

analys.AddTQ('E135 O','E135','Offset');
analys.AddTQ('E140 O','E140','Offset');
analys.AddTQ('E142 O','E142','Offset');
analys.AddTQ('E161 O','E161','Offset');
analys.AddTQ('E165 O','E165','Offset');
analys.AddTQ('E167 O','E167','Offset');
analys.AddTQ('E181 O','E181','Offset');
analys.AddTQ('E235 O','E235','Offset');
analys.AddTQ('E240 O','E240','Offset');
analys.AddTQ('E242 O','E242','Offset');
analys.AddTQ('E261 O','E261','Offset');
analys.AddTQ('E265 O','E265','Offset');
analys.AddTQ('E267 O','E267','Offset');
analys.AddTQ('E281 O','E281','Offset');
analys.AddTQ('E335 O','E335','Offset');
analys.AddTQ('E340 O','E340','Offset');
analys.AddTQ('FT520 O','FT520','Offset');
analys.AddTQ('FT525 O','FT525','Offset');
analys.AddTQ('IT140 O','IT140','Offset');
analys.AddTQ('IT161 O','IT161','Offset');
analys.AddTQ('IT167 O','IT167','Offset');
analys.AddTQ('IT181 O','IT181','Offset');
analys.AddTQ('IT240 O','IT240','Offset');
analys.AddTQ('IT261 O','IT261','Offset');
analys.AddTQ('IT267 O','IT267','Offset');
analys.AddTQ('IT281 O','IT281','Offset');
analys.AddTQ('IT340 O','IT340','Offset');
analys.AddTQ('LT500 O','LT500','Offset');
analys.AddTQ('LT505 O','LT505','Offset');
analys.AddTQ('ST165 O','ST165','Offset');
analys.AddTQ('ST265 O','ST265','Offset');
analys.AddTQ('ST515 O','ST515','Offset');
analys.AddTQ('ST516 O','ST516','Offset');
analys.AddTQ('TE128 O','TE128','Offset');
analys.AddTQ('TE129 O','TE129','Offset');
analys.AddTQ('TE133 O','TE133','Offset');
analys.AddTQ('TE228 O','TE228','Offset');
analys.AddTQ('TE229 O','TE229','Offset');
analys.AddTQ('TE328 O','TE328','Offset');
analys.AddTQ('TE329 O','TE329','Offset');
analys.AddTQ('TE500 O','TE500','Offset');
analys.AddTQ('TE501 O','TE501','Offset');
analys.AddTQ('TE502 O','TE502','Offset');
analys.AddTQ('TE505 O','TE505','Offset');
analys.AddTQ('TE506 O','TE506','Offset');
analys.AddTQ('TE507 O','TE507','Offset');
analys.AddTQ('TE510 O','TE510','Offset');
analys.AddTQ('TE511 O','TE511','Offset');
analys.AddTQ('XT167 O','XT167','Offset');
analys.AddTQ('XT276 O','XT267','Offset');
analys.AddTQ('E135 SO','E135',{'Stuck','Offset'});
analys.AddTQ('E140 SO','E140',{'Stuck','Offset'});
analys.AddTQ('E142 SO','E142',{'Stuck','Offset'});
analys.AddTQ('E161 SO','E161',{'Stuck','Offset'});
analys.AddTQ('E165 SO','E165',{'Stuck','Offset'});
analys.AddTQ('E167 SO','E167',{'Stuck','Offset'});
analys.AddTQ('E181 SO','E181',{'Stuck','Offset'});
analys.AddTQ('E235 SO','E235',{'Stuck','Offset'});
analys.AddTQ('E240 SO','E240',{'Stuck','Offset'});
analys.AddTQ('E242 SO','E242',{'Stuck','Offset'});
analys.AddTQ('E261 SO','E261',{'Stuck','Offset'});

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 67

analys.AddTQ('E265 SO','E265',{'Stuck','Offset'});
analys.AddTQ('E267 SO','E267',{'Stuck','Offset'});
analys.AddTQ('E281 SO','E281',{'Stuck','Offset'});
analys.AddTQ('E335 SO','E335',{'Stuck','Offset'});
analys.AddTQ('E340 SO','E340',{'Stuck','Offset'});
analys.AddTQ('FT525 SO','FT525',{'Stuck','Offset'});
analys.AddTQ('FT525 SO','FT525',{'Stuck','Offset'});
analys.AddTQ('IT140 SO','IT140',{'Stuck','Offset'});
analys.AddTQ('IT161 SO','IT161',{'Stuck','Offset'});
analys.AddTQ('IT167 SO','IT167',{'Stuck','Offset'});
analys.AddTQ('IT181 SO','IT181',{'Stuck','Offset'});
analys.AddTQ('IT240 SO','IT240',{'Stuck','Offset'});
analys.AddTQ('IT261 SO','IT261',{'Stuck','Offset'});
analys.AddTQ('IT267 SO','IT267',{'Stuck','Offset'});
analys.AddTQ('IT281 SO','IT281',{'Stuck','Offset'});
analys.AddTQ('IT340 SO','IT340',{'Stuck','Offset'});
analys.AddTQ('IT281 SO','IT281',{'Stuck','Offset'});
analys.AddTQ('IT340 SO','IT340',{'Stuck','Offset'});
analys.AddTQ('LT500 SO','LT500',{'Stuck','Offset'});
analys.AddTQ('LT505 SO','LT505',{'Stuck','Offset'});
analys.AddTQ('ST165 SO','ST165',{'Stuck','Offset'});
analys.AddTQ('ST265 SO','ST265',{'Stuck','Offset'});
analys.AddTQ('ST515 SO','ST515',{'Stuck','Offset'});
analys.AddTQ('ST516 SO','ST516',{'Stuck','Offset'});
analys.AddTQ('TE128 SO','TE128',{'Stuck','Offset'});
analys.AddTQ('TE129 SO','TE129',{'Stuck','Offset'});
analys.AddTQ('TE133 SO','TE133',{'Stuck','Offset'});
analys.AddTQ('TE228 SO','TE228',{'Stuck','Offset'});
analys.AddTQ('TE229 SO','TE229',{'Stuck','Offset'});
analys.AddTQ('TE328 SO','TE328',{'Stuck','Offset'});
analys.AddTQ('TE329 SO','TE329',{'Stuck','Offset'});
analys.AddTQ('TE500 SO','TE500',{'Stuck','Offset'});
analys.AddTQ('TE501 SO','TE501',{'Stuck','Offset'});
analys.AddTQ('TE502 SO','TE502',{'Stuck','Offset'});
analys.AddTQ('TE505 SO','TE505',{'Stuck','Offset'});
analys.AddTQ('TE506 SO','TE506',{'Stuck','Offset'});
analys.AddTQ('TE507 SO','TE507',{'Stuck','Offset'});
analys.AddTQ('TE510 SO','TE510',{'Stuck','Offset'});
analys.AddTQ('TE511 SO','TE511',{'Stuck','Offset'});
analys.AddTQ('XT167 SO','XT167',{'Stuck','Offset'});
analys.AddTQ('XT276 SO','XT267',{'Stuck','Offset'});

analys.Info();

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

Diagnosis 68

References

[Alm09] Erik Almqvist. User manual, 2009.

[dxp09] http://www.dx-competition.org/, september 2009.

[KNP+09] Tolga Kurtoglu, Sriram Narasimhan, Scott Poll, David Gar-
cia, Lucas Kuhn, Johan de Kleer, and Alexander Feldman.
https://dashlink.arc.nasa.gov/static/dashlink/media/topic/dxc09 announcement.pdf,
september 2009.

[NF09] Mattias Nyberg and Erik Frisk. Model based diagnosis of technical processes,
October 2009.

[Nyb06] Mattias Nyberg. A fault isolation algorithm for the case of mutiple faults and
multiple fault types. In Proceedings of IFAC Safeprocess’06, 2006.

[sys09] https://dashlink.arc.nasa.gov/static/dashlink/media/topic/adaptdxc 2008-
12-09.zip, september 2009.

[tes09] https://dashlink.arc.nasa.gov/static/dashlink/media/topic/adapttier2data 2009-
02-14.zip, september 2009.

[xan09] http://www.megahz.com/specimages/statpower/prosinepdf, october 2009.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: TechnicalDoc1 0.pdf

	Introduction
	Background
	Goals

	System overview
	Project division

	System modelling
	Battery
	Inverter
	Model based on the efficiency
	Model based on the voltage

	Load
	Power characteristic systems

	Relay
	Circuit breaker
	Sensors

	The diagnostic algorithm
	Test variables
	Battery
	Inverter
	Load
	Power characteristic systems
	Relay
	Circuit breaker
	Sensors

	Diagnosis decision logic

	Analyses
	Introduction
	Tools for analysis
	Detectability
	Isolability
	Non-isolable faults in battery
	Non-isolable faults in the circuit breakers
	Non-isolable stuck in load relays
	Non-isolable stuck in load relays without loads
	Non-isolable StuckClosed in relays except load relays
	Non-isolable FailedOff in inverter
	Non-isolable faults in DC loads
	Non-isolable FailedOff in loads
	Non-isolable FlowBlocked in Water Pump

	Robustness
	Battery
	Inverter
	Load
	Power characteristic systems
	Relay
	Circuit breaker
	Sensors

	Software
	Integration with the DxC Framework
	Background
	Communication with the DxC Framework

	Implementation
	Model and algorithm parameters
	Initiation of test quantities
	Time limits
	Class and file structure
	Data storage
	Error handling in the software
	Software manual

	Appendix
	Class structure
	Communication with the DxC
	ADAPT figures
	Analysis program
	References

