
Design Plan
Diagnosis of ADAPT system

Version 1.0

Author: Daniel Eriksson
Date: December 4, 2009

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis II

Status

Reviewed 09-10-14
Approved 09-10-14

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Project Identity

Group E-mail: diagnos2009@googlegroups.com
Homepage: http://www.isy.liu.se/edu/projekt/tsrt10/2009/
Orderer: Erik Frisk, Linköping University

Phone: +46 (0)13 28 2035 , E-mail: frisk@isy.liu.se
Customer: The Division of Vehicular Systems, Linköping University

Phone: +46 (0)13 28 1000 , E-mail: Vehicular.Systems@isy.liu.se
Course Responsible: David Törnqvist, Linköping University

Phone: +46 (0)13 28 1882, E-mail: tornqvist@isy.liu.se
Project Manager: Niklas Wahlström
Advisors: Mattias Krysander, Linköping University

Phone: +46 (0)13 - 28 2198 , E-mail: matkr@isy.liu.se

Group Members

Name Responsibility Phone E-mail
Niklas Wahlström Project manager 0705-122349 nikwa148@student.liu.se
Daniel Eriksson Document manager 073-4405730 daner963@student.liu.se
Erik Almqvist Software manager 0705-149935 erija952@student.liu.se
Emil Nilsson Test manager 073-6766558 emini550@student.liu.se
Andreas Lundberg Design manager 0704-061227 andlu549@student.liu.se



Document History

Version Date Changes made Sign Reviewer
0.1 09-09-11 First draft. Daniel Eriksson
0.2 09-10-11 Second draft. Daniel Eriksson
1.0 09-10-14 First release. OK Daniel Eriksson

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 System overview 1

2.1 Project division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3 System modelling 2

3.1 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.2 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.3 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3.1 Power characteristic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.4 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.5 Circuit breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.6 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.7 The flowing current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 The diagnostic algorithm 7

4.1 Test variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1.2 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1.3 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1.4 Power characteristic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.5 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.6 Circuit breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.7 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Diagnosis decision logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Detectability and isolability analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Software 15

5.1 Integration with the DxC Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.2 Communication with the DxC Framework . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Time limits during software execution . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.2 Class structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.3 Fault Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.4 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.5 Error handling in the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.6 Software manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Appendix 29

6 Coding standards 29

7 ADAPT figures 31



Diagnosis 1

1 Introduction

This document is a system design plan for the diagnosis system that will be developed
in the project ”Diagnosis of ADAPT system”, by project group FFF1. This document is
the base from which the project, schedule and tasks, are defined. This document contains
definitions on the software design, suggestions of component models and test quantities.
The diagnosis system will be implemented as a computer program that given measurement
data generates a diagnosis of the real system.

1.1 Background

NASA is interested in analyzing different ways to monitor whether or not systems that
are sent into space are working properly, and also in finding out what the faults are when
there are faults present in the system. It is of course beneficial to know exactly which
faults that are present in e.g. a satellite before you send someone to repair it. It may
also be the case that detecting a fault, and smoothly shutting down the system or limit
its activities, can prevent other parts of the system to get damaged. The reasons above
illustrates why NASA together with Palo Alto Research Center (PARC) have started an
annual competition called the Diagnostic Challange Competition (DCC). The developed
diagnois algorithm is intended to participate in the DCC’10, in the Industrial Track System
Tier 2 challenge.

1.2 Goals

The goal is to create a diagnosis system that performes as good as possible in the Di-
agnostic Challange Competition (DCC)[? ], which primarily means that the diagnosis
algorithm should get as high final score as possible, and secondarily a high final rank, in
the competition.

2 System overview

Advanced Diagnosis and Prognosis Test Bed (ADAPT) is a facility developed at NASA
Ames for testing diagnostic tools and algorithms. The real system that is going to be
monitored and diagnosed by our diagnosis system is an electrical power system that is
set up in a NASA laboratory. The facilities hardware contains several components, and
are intended to illustrate a typical electrical power system in a satellite. This electrical
power system has components such as batteries, circuit breakers, resistors, relays, fans,
inverters, light bulbs and water pumps. To analyse and observe the circuits there are
over 100 sensors which produces data that NASA records. The recorded data from the
sensors will be sent in a data sequence together with a commands to a diagnosis algorithm
to detect faults. The appendix contains a schematic overview of the ADAPT testbench
(figure 5) aswell as a photograph of the physical testbench (figure 6).

2.1 Project division

A reasonable division of the work in the project is into the following three subdivisions:
system modeling, diagnostic algorithm and software. Note that these subdivisions are not
separate modules of the system, but rather different work divisions. Also these divisions

1Finn Fem Fel

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 2

are not completely separated from each other, since for example the diagnostic algorithm
is based on the system model, and will be implemented in the software.

3 System modelling

A mathematical model of the real system will be crated, based on the real systems circuit
diagram [? ] provided on the DCC homepage. To esitmate model parameters the sample
data[? ], available on the DCC homepage will be used. The model will be used as the
basis for the diagnosis system algorithm. The different components of the system may
be modeled differently (i.e. by more or less complex models) and parameters in the
component models will be determined using the sample data[? ]. This data will also be
used for validation of the models.

3.1 Battery

To determine if a battery is degraded or not the internal resistance of the battery is
estimated, since it increases when the battery degrades. The battery is modelled as an
ideal voltage generator, with output voltage V0 (”open circuit voltage”), which depends
on the battery’s charge level, in series with a resistance Ri, the internal resistance. The
voltage generated by the battery is called V , and the current drawn from the battery is
called I. In this model V and I are input signals while V0 and Ri are parameters. The
internal restitance can be calculated according to Equation 1.

Ri =
V0 − V

I
(1)

It turns out that Ri varies dynamically with I. To get around this one compare sta-
tionary values Ri with its expected values given by the function Rexp

i (I), a function
that is estimated from the training data sets [? ]. Different functions,Rexp

i,b (I), b ∈
{BAT1, BAT2, BAT3}, may have to be created for each battery (or maybe for each bat-
tery model since BAT3 is not of the same brand and model as BAT1 and BAT2). It is
likely that due to noise in the training data sets one will have to have a lower limit of the
domain of definition for Rexp

i (I), thus limiting the situations in which the battery model
can be used.

For some unknown reason, current out from one battery affects the voltage output of other
batteries, even though they according to the system lay-out and relay configurations not
are connected to each other. Because of this phenomenon V0 has to be determined for all
of the three batteries at times when there is no current drawn from any of the batteries.
Fortunately (as stated in the README.txt file in [? ]) all relays are open at the start
of the experiments, so the experiments always starts in a situation where V0 can be
determined for each battery.

3.2 Inverter

An inverter converts direct current (DC) to alternating current (AC), and the model of
this system2 has an input voltage of 24 V (DC), an output power of 1000 W, an output
voltage of 120 V (AC) and an output frequency of 60 Hz. In the electrical power system
there are two inverters located at different places, based on which load bank that is in
use. The behaviour of the inverter is quite static and a simple model could look like

2Xantrex prosine 1000, part no. 806-1051.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 3

uut(t) = 120H(uin(t)− 22) (2)

where H is the Heaviside function (this equation is based on the Table 2). To create a
model of the inverters, the signals above is needed. The signals needed is also described
in Table 1.

Signal Description Sensors affected(INV1) Sensors affected(INV2)
iout The current out from the inverter. IT167 IT267
uin The voltage in to the inverter. E161 E261
uout The voltage out from the inverter. E165 E265

Table 1: Useful outputs and inputs.

Each inverter has three different modes and to characterise these data from sensors that
especially measure the voltage input and output, but also the current input, is needed.
To recognize which mode the inverter is in, the following table will be very useful

Mode uin > 22 iout > 0 uout > 120
NominalOn True – True
NominalOff False False False
FailedOff True False False

Table 2: The different signals characterize which mode the inverter is in.

In the NominalOn mode the inverted is expected to work well, with an output voltage
around 120 V (AC) and an input voltage around 24 V (DC). The inverter switches off
when input voltage drops below 22 V. In the NominalOff mode every affected signal should
has a value around zero and the inverter switches on when the input voltage rises above
22 V. In the FailedOff mode the inverter does not transmit current or voltage, even if it
is supplied with voltage over 22 V.

3.3 Load

The loads can be devided into two groups: the AC loads and the DC loads. The loads
can be light bulbs, fans, water pumps or resistors. The signals affecting the AC loads are
given in Table 3.

Name Description
URMS(t) The RMS value of the voltage across the load
IRMS(t) The RMS value of current through load
φ(t) Phase shift by which the current is ahead of the voltage.
P (t) The output power from the load.

Table 3: Signals influencing an AC load

According to given data, a good model for all loads is to assume that their impedances
are constant. The voltage, the impedace and the current are obeying Ohm’s law

Ũ(t) = Z̃ · Ĩ(t) (3)

where Ũ(t), Z̃ and Ĩ(t) are the complex represantations of these quatities. By representing
the impedance with its magnitude Z and phase θ we get Z̃ = Zejθ. Ohm’s law then gives
the realations:

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 4

URMS(t) = Z · IRMS(t) (4)
φ(t) = θ (5)

and for the output power we have

P (t) = URMS(t) · IRMS(t) · cos(θ) (6)

For two loads connected in parallel, the voltage across each of them is the same; the ratio
of currents through any two elements is the inverse ratio of their impedances. The total
impedance is given by the formula

1
Z̃tot

=
1
Z̃1

+
1
Z̃2

(7)

Since the loads are connected in parallel, they will be modelled by its admittance Ỹ ,
which is the reciprocal of the impedance Ỹ = Z̃−1 = Z−1e−jθ in order to make the
calculation of the total admittance easier (only have to sum up the admittances). The
modell parameters can be found in Table 4.

Name Description
Y The magnitude of the admittance
6 Y The phase of the admittance

Table 4: Modell parameter of an AC load

and the equations coupling the signals and the parameters will be given by:

Y =
IRMS(t)
URMS(t)

(8)

6 Y = −φ (9)
P (t) = URMS(t) · IRMS(t) · cos(6 Y ) (10)

For DC loads one have the same signals, parameters and eqations without the phase
influencing (or phase equal to 0).

Each mode of each load has a characteristic set of these model parameters (for the mode
FailedOff the admittace is zero).

3.3.1 Power characteristic systems

Some of the loads also have sensors measuring quantities which are caused by the power
output of the load. These are light and temperatur sensors for some light bulbs, speed
transmittors for some fans, and flow transmitters for the pumps.

The relations between these quantities and the power output will also be described with
models. The signals affecting the system are described in Table 5.

These systems usually have a dynamical behaviour, which can be modelled with the ODE
defined in 11.

y′(t) = kt(yP (P (t))− y(t)) (11)

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 5

Name Description
y(t) The measured quantity (light, temperature, speed or flow)
P (t) The output power of the corresponding load

Table 5: Signals influencing power characteristic systems.

where kt is a proportionality constant (deciding the swiftness of the system) and yP (P (t))
is the working point of the measured quantity as a function of the output power. For the
relation between the working point and the output power a quasi-linear relation can be
used.

(y(t)− y0)p = k0 · P (t) (12)

where k0 is a proportionality constant, y0 the value of the measured quantity without any
power output from the corresponding load, and p is a characteristic exponent coupling
the measured quantity with the output power (presumably 2 for the speed and flow
transmittor). All model parameters are summerized in Table 6.

Name Description
kt Proportionality constant describing the swiftness of the system
k0 Proportionality constant between output power and mesured quantity.
y0 Measured quantity without power from the load.
p The characteristic exponent of the power characteristic system

Table 6: Model parameter of the power characteristic systems.

Some of the systems do have a very fast dynamical behaviour (more or less all system
expept the power - temperature system) and for these systems it could be relevant to
consider not to include the dynamical part of the modelling.

3.4 Relay

The relay is a commandable component, which has two boolean signals relatered with
it: the command (0=open, 1=closed) and the actuator measuring the position of the
relay. The relay has four different modes, given in table 7. Note that some input signal
combinations can be explained by two different modes.

Mode Command Actuator
NominalClosed closed closed
NominalOpen open open
StuckOpen - open
StuckClosed - closed

Table 7: Modes of the relay

Futhermore, the relay doesn’t have any model parameter.

When the relay is closed its resistance is virtually zero, resulting in that the voltage drop
across the relay is approximately zero. This result can be used to create test quantities
that compares voltage measurements from different voltage sensors that are separated by
closed relays only.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 6

3.5 Circuit breaker

There are two types of circuit breakers in the system, commandable and non-commandable.
The difference between the two is that the commandable has an input (the command),
and an additional mode (StuckClosed).

Input to the model is the current I(t) through the circuit breaker, the circuit breaker’s
actuator position and for the commandable circuit breaker also an open/close command.
The only parameter in the model is the rated current In of the circuit breaker.

Let Imax(t) = max
τ≤t

I(τ) be the greatest current that (during the present measurement

series) so far has passed through the circuit breaker. A low sampling frequency for I(t)
may result in that we have I(t1) > In but get Imax(t2) 6> In, although t2 > t1. In reality
this event is unlikely since circuit breakers react rather slowly unless the current is many
times greater than In. Because of its unlikeliness one may disregard the above mentioned
event and using the provided description of the modes (AdaptDXC.xml in [? ]) getting
Table 8 and Table 9 for deciding which mode the circuit breaker is in. For those input
signal combinations not described by the two tables, you can’t tell which mode the circuit
breaker is in.

Mode Imax < In Actuator
Nominal true closed
Tripped false open
FailedOpen true open

Table 8: Non-commandable: Relationship between mode, maximal current and actuator
position.

Mode Imax < In Actuator Command
Nominal true closed closed
Tripped false open –

true open open
FailedOpen true open closed
StuckClosed true closed open

Table 9: Commandable: Relationship between mode, maximal current, actuator position
and command.

When the circuit breaker is closed it has a certain resistance, which is a seen as a model
parameter. By measuring the voltage before and after the circuit breaker, and the current
through it, creating a test variable using Ohm’s law is possible.

3.6 Sensors

The sensors can be devided into two groups: boolean sensors measuring boolean signals
(actuator position sensor measuring the position of the relay) and scalar sensors measuring
real numbers (all other sensors).

The boolean sensors have two modes according to Table 12 and they don’t have any model
parameter.

Scalar senors measure a certain quantity together with noise. The signals influencing the
sensor are given in Table 11.

The sensor could then be described with the equation

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 7

Mode Description
Nominal Reads 1 (true) if actuator is closed, 0 (false) if open.
Stuck Reading is stuck at open or closed.

Table 10: Modes of the boolean sensors

Signal Description
y(t) The measured signal.
x(t) The signal to be measured.
n(t) Measurement noise.

Table 11: Signals influencing scalar sensors

y(t) = x(t) + v(t), where v(t) ∼ N(0, σ) (13)

where σ is the standard deviation of the (white) noise and a parameter of the model.

Mode Description
Nominal The sensor measures the scalar quatity according to equa-

tion 13.
Offset The sensor measures according to equation 13 together with

an added unknown constant value.
Stuck The sensor measures an unknown constant value (without

noise).

Table 12: Modes of the boolean sensors

3.7 The flowing current

Kirchoff’s current law will be useful to explain the circumstances between the flowing
current in the electrical power system:

n∑
k=1

Ik = 0 (14)

All the current into a node is equal to all the current out of the node.

4 The diagnostic algorithm

The diagnosis algorithm will be able to detect and isolate faults in the system based on the
modell of the real system. For this algorithm to work it must get measurement data from
the sensors of the real system, and data for the inputs to the real system (e.g. ambient
temperature and commanded relay positions).

4.1 Test variables

The following section describes the different testvariables used in the diagnostic algortihm.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 8

4.1.1 Battery

From the model in chapter 3.1, the following test variable can be given for a battery:

T = Ri −Rexp
i (I) =

V0 − V

I
−Rexp

i (I) (15)

Assuming correct sensor values:
For T > 0 Ri is greater than expected, i.e. the battery is degraded. Because of noise and
disturbances the battery is concidered to be degraded when T > J , where J > 0 is some
threshold.

The sensors may be faulty, so it is always (regardless of the value of T ) possible that the
current sensor and/or the voltage sensor are damaged.

4.1.2 Inverter

A natural test variable for the model in equation 2 is:

T = |uout(t)− uexp| = |uout(t)− 120H(uin − 22)| < J (16)

Where J is a threshold, greater than zero, based on noise, off-sets and other disturbances.
In the ideal case the test variable should be zero, but it will never be the case because
of different disturbances in the measurements. When the test variable is greater than
the threshold an alarm is given as the inverter supposedly doesn’t work well (or that one
or both of the voltage sensors are faulty). Note that Xantrex, according to their data
sheets [? ], guarantees that the output of this component does not differ more than three
procent. There are three modes for the inverter (IN) and those are NO (NominalOn),
NF (NominalOff) and FO (FailedOff). Here the mode UF is introduced, which represent
fault mode for the two voltage sensors (U). To decide any kind of sub-diagnosis for the
inverter, the following table will be useful:

uin > 22 uout > 120 Statement
True True IN ∈ {NO} ∨ U ∈ {UF}
True False IN ∈ {FO} ∨ U ∈ {UF}
False True IN ∈ {NF} ∨ U ∈ {UF}
False False -

Table 13: Sub-diagnosis statements for the inverter

It is possible to create more test variables for the inverter if needed. There is sensors that
measure the output for the frequency, both the input and output for the current.

4.1.3 Load

In order to check whether a load works as expected or not, one wants to know how much
current it draws. Since there are no current sensors for each load (only one for each
load bank), that won’t be possible. However, together with the voltage sensor and the
phase angle transducer the total admittance on that load bank could be calculated with
equations 8 and 9. Each load combination (and their modes) would theoretically has its
corresponding total admittance, which can be represented as a point in the complex plane.
This total admittance can be calculated by simply adding the admittances of the loads
according to equation 7. By calculating the actual total admittance, we know which load
combination(s) that could sum up to the observed total admittance.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 9

Since the measurements also have noise, a kalman filter will be applied in order to make
the confidence interval of a specific load combination smaller.

After studing the data some problems have been identified with this diagnostic approach:

• The phase angle transducer doesn’t react as fast as the other sensor sensors resulting
in inconsistent behaviour for some samples at abrupt changes. This problem will be
solved by making two test variables, one for the admittance magnitude and one for
its phase. Then there will be one fast and one slow test variable, instead of having
one that measures false (as would be the case if the total admittance were one test
variable).

• The motion model in the kalman filter has to be slow enough to achieve a good filter
performance, however then it will be too slow by abrupt changes. To solve this, the
filtered value will be set to the measured value if it is outside a certain confidence
interval and the covariance matrix will be set accordingly.

• Even though the admittance of the load was stated to be constant in chapter 3.3, it
has in some cases a small slow dynamical behaviour. By including this in the admit-
tance uncertainty for each load, the confidence intervals of the load combinations
will be unnecessary large. Better is to measure the abrupt change in admittance
and compare this with the admittances of the single loads (or groups of them).

To explain this in more concrete terms, the following simple motion and sensor models
will be used:

Y [n + 1] = Y [n] + e1[n]
6 Y [n + 1] = 6 Y [n] + e2[n]
Y measure[n] = Y [n] + v1[n]

6 Y measure[n] = 6 Y [n] + v2[n]
(17)

,where Y [n] and 6 Y [n] are the magnitude and phase of the total admittance at time nT ,
where T is the sample time, Y measure[n] and 6 Y measure[n] are the measured magnitude
and phase of the total admittance, given by equations 8 and 9, ei[n] and vi[n] are white
noise. The process noise ei[n] is small and should only correspond to the small changes
that occurs for a certain load configuration. Even though the admittances are modelled
to be constant, a small random walk do occur, which here is taken into account by the
process noise ei[n].

To this model two kalman filters will be applied observing the magnitude and phase of
the total admittance. The filtered value of these quantities will be called Ŷ [n] and 6 Ŷ [n]
and are in practise a low-pass version of Y [n] and 6 Y [n].

The kalman filter algorithm also gives a predicted value of the next sample Yp[n] and
6 Yp[n], and a variance of this prediction Pmag

p and P phase
p based on all samples until

sample n−1. The variance of the difference between the new measured value Y measure[n]
and the predicted value Yp[n] can be calculated as

V ar(Y measure[n]− Yp[n]) = V ar((Y measure[n]− Y [n])− (Y [n]− Yp[n]))
= V ar(Y measure[n]− Y [n]) + V ar(Y [n]− Yp[n])
= V ar(v1[n]) + Pmag

p (18)

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 10

If (Y measure[n]−Yp[n])2 >> V ar(v[n]1)+Pmag
p this big change can’t be explained by the

model and the conclution is that the load configuration has been changed. By this event
three things will happen:

• This mth abrupt change of the magnitude of the total admittance will be registered
as ∆Ŷm[n] = Y measure[n]− Yp[n]

• The new filtered value will be set to the measured, i.e. Ŷ [n] = Y measure[n]

• The variance of the new filtered value will be set to the measurement noise Pmag
p =

V ar(vi[n])

The last two steps are done in order to make the filter adapt the abrupt changes quickly.

Furthermore, there will be an equivalent calculation for the phase.

The following two quantities in Table 14 will be used in our tests.

Name Description

∆Ŷm[n] The magnitude of the mth abrupt change of the total admittance.
∆ 6 Ŷm[n] The magnitude of the mth abrupt change of the total admittance.

Table 14: Usable quantities for designing tests of the loads.

Each of them will be compared with the magnitude Yi and phase 6 Yi of a specific load i
at the load bank. To make this comparisons the test variables can be defined as follows

T+mag
im = +∆Ŷm[n]− Yi (19)

T−mag
im = −∆Ŷm[n]− Yi (20)

T+phase
im = +6 ∆Ŷm[n]− 6 Yi (21)

T−phase
im = −6 ∆Ŷm[n]− 6 Yi (22)

(23)

These test variables will be created at the mth registration of a new abrupt change in
the total admittance. If the corresponding relay to the load i is considered to be open
only T+mag

im and T+phase
im will be created, if it is considered to be closed, only T−mag

im

and T−phase
im will be created. If one don’t know if it is open or closed, all of them will

be created. Since one only want to detect faulty behaviours, no residuals at all will be
created if there recently has been a change in command affecting the admittance.

Each load (Li) has at least the following modes N = Nominal and FO = FailedOff and
the corresponding relay (Ri) also has different modes: NC = NominalClosed, NO = Nom-
inalOpen, SO = StuckOpen, SC = StuckClosed.

Based on this discussion the following equations describing which statements could be
defined

|T+mag
im | < Ji → P+mag

im = Ri ∈ {SC} (24)
|T−mag

im | < Ji → P−mag
im = Ri ∈ {SO} ∨ Li ∈ {FO} (25)

|T+mag
im | < Ji → P+phase

im = Ri ∈ {SC} (26)

|T−mag
im | < Ji → P−phase

im = Ri ∈ {SO} ∨ Li ∈ {FO} (27)
(28)

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 11

Some loads also have more faulty modes than FailedOff. Each possible admittance change
that could be caused by a mode transit from Nominal to another faulty mode apart from
FailedOff have to be analysed.

Let Ỹi be the admittance for load i in mode Nominal and Ỹij the admittance in faulty
mode Fj . The admittance change of a mode transit for the load i from mode Nominal to
faulty mode Fj can be expressed as

∆Ỹij = Ỹij − Ỹi (29)

In the same whay as before, the following test variables can be defined in order to check
if there is a match

Tmag
ijm = ∆Ŷm[n]− |Ỹij | (30)

T phase
ijm = 6 ∆Ŷm[n]− 6 Ỹij (31)

(32)

with the following statements

|Tmag
ijm | < Jij → P

′mag
ijm = Li ∈ {Fj} (33)

|T phase
ijm | < Jij → P

′phase
ijm = Li ∈ {Fj} (34)

(35)

If two tests belonging to the same abrupt change m (for example |T−mag
1m | < J1 and

|Tmag
22m | < J22) have alarmed, statement P−mag

1m or P
′mag
22m could explain this behaviour

(this is the case if |Ỹ1| ≈ |Ỹ22|)
The final test statements must then be a disjunction of all test statement within the same
abrubt change m

Pmag
m = ∨i(P

+mag
im ) ∨i (P−mag

im ) ∨ij (P
′mag
ijm ) ∨ I ∈ {F} ∨ E ∈ {F} (36)

P phase
m = ∨i(P

+mag
im ) ∨i (P−mag

im ) ∨ij (P
′mag
ijm ) ∨X ∈ {F} (37)

where I, E, X are the current, voltage and phase angle sensors and F = sensor reading is
not reliable, i.e. the sensor is stuck or has an offset.

4.1.4 Power characteristic systems

For each power characteristic systems (described in 3.3.1) a test could be designed since
there is a sensor measuring the output quantity of that system. However, to decide the
present mode of the corresponding load, one wants to observe the power output of that
load. To achieve this, a (kalman) observer will be used, where its motion model is given
by the equation 11. It will observe the working point of the measured quantity, and the
power can be calculated with the equation 12.

The observed output power P obs can be used together with the command signal of the
relay to make the statments in Table 15. In order not to make a false statment after a
command change, the tests will not be executed a short period of time after such an event.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 12

Command Observed output power Statement
open P obs > J1 R ∈ {SC}
closed P obs < J2 R ∈ {SO} ∨ L∈ {FO}
open P obs < J3 R ∈ {NO, SO}
closed P obs > J4 R ∈ {NC, SC} ∧ L ∈ {NF,Fj}

Table 15: Sub-diagnosis statements for a load/relay

If the load has more faulty modes than FailedOff (FO), one wants to be able to detect
and isolate even such a mode. Since the Nominal mode (NF) and each faulty mode Fj

has a characteristic power output (P and Pj , they can be calculated with equation 10, the
statements in Table 16 can be made.

Observed output power Statement
|P obs − P | < J5 L ∈ {NF}
|P obs − Pj | < J5 L ∈ {Fj}

Table 16: Sub-diagnosis statements for the special faulty modes of a load

All test statements have to be combined with the test statement S ∈ {F}, where S is the
sensors and F = sensor reading is not reliable, i.e. the sensor is stuck or has an offset.

4.1.5 Relay

The relay (R) has the following modes: NC = NominalClosed, NO = NominalOpen,
SO = StuckOpen, SC = StuckClosed. Also, the actuator sensor (A) has fault mode
AF = actuator reading is not reliable, i.e. the actuator sensor is stuck. Based on the re-
lay model we get table 17, mapping input signal combinations to sub-diagnosis statements.

V1 and V2 are measurements from two voltage sensors that are separated by relays (R)
only. Create the test variable

T = |V1 − V2| (38)

and alarm when T > J and all relays in R are closed, J > 0 is the alarm threshold. In
case of an alarm the sub-diagnosis statement is that either any of the voltage sensors or
any of the relays are faulty. If case of no alarm, the test quantity does not produce any
sub-diagnosis statement.

Command Actuator Statement
closed closed R ∈ {NC, SC} ∨ A ∈ {AF}
closed open R ∈ {SO} ∨ A ∈ {AF}
open closed R ∈ {SC} ∨ A ∈ {AF}
open open R ∈ {NO, SO} ∨ A ∈ {AF}

Table 17: Sub-diagnosis statements for a relay

4.1.6 Circuit breaker

The circuit breaker (C) has in the non-commandable case the following modes: N = Nom-
inal, T = Tripped, FO = FailedOpen. The commandable circuit breaker has the mode

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 13

SC = StuckClosed in addition to the three modes mentioned above. Also, the current
sensor (I) has fault mode IF = current sensor reading is not reliable, i.e. the sensor is
stuck or has an offset, and the actuator sensor (A) has fault mode AF = actuator reading
is not reliable, i.e. the actuator sensor is stuck. Based on the circuit breaker models we
get table 18 and table 19, mapping input signal combinations to sub-diagnosis statements.

Provided voltage measurements V1 and V2 before and after the circuit breaker, the current
I through it, and its resistance R, the following test variable is created:

T = (V1 − V2)−R · I (39)

The alarm goes off if T > J , where J > 0 is a threshold, and the circuit breaker is closed.
In case of an alarm the sub-diagnosis statement of this test is that any of the voltage or
current sensors, or the circuit breaker actuator position sensor is faulty. When the alarm
has not gone off the test provides no sub-diagnosis statement.

Imax < In Actuator Statement
true closed C ∈ {N} ∨ I ∈ {IF} ∨ A ∈ {AF}
true open C ∈ {FO} ∨ I ∈ {IF} ∨ A ∈ {AF}
false closed –
false open C ∈ {T} ∨ I ∈ {IF} ∨ A ∈ {AF}

Table 18: Sub-diagnosis statements for a non-commandable circuit breaker

Imax < In Actuator Command Statement
true closed closed C ∈ {N} ∨ I ∈ {IF} ∨ A ∈ {AF}
true closed open C ∈ {SC} ∨ I ∈ {IF} ∨ A ∈ {AF}
true open closed C ∈ {FO} ∨ I ∈ {IF} ∨ A ∈ {AF}
true open open C ∈ {T} ∨ I ∈ {IF} ∨ A ∈ {AF}
false closed – –
false open – C ∈ {T} ∨ I ∈ {IF} ∨ A ∈ {AF}

Table 19: Sub-diagnosis statements for a commandable circuit breaker

4.1.7 Sensors

The sensors have two or three different modes depending on which type of sensor it is.
The boolean sensors have the modes Nominal (N) and Stuck (S), and for the scalar sensors
it resides another mode called Offset (O).

The best way of deciding the mode character for the scalar sensors is to observe the
measured values over an arbitrary time interval ∆t.

T = ∆y = y(t1)− y(t2) (40)

where y(t) = x(t) + n(t).

The sensor is in the mode Nominal (N) when ∆y(t) < n(t) over an arbitrary time interval.

The sensor is in the mode Stuck (S) when ∆y(t) = 0 over an arbitrary long time interval.

The sensor is in the mode Offset (O) when ∆y(t) > n(t), i.e. the noise is greater than the
difference between two values over an arbitrary short time interval.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 14

For the boolean sensors we cannot create any test variable that is sensitive to faults in
the sensor only.

4.2 Diagnosis decision logic

To isolate the faults we have to consider all information that we get from the test quan-
tities. The diagnosis will finally be the fault combinations that are consistent with the
sub-diagnoses. When a sub-diagnosis is altered, e.g. as a result of a test quantity alarm,
the set of diagnoses will be updated using the new information. If a new sub-diagnosis
is added (i.e. before it did not say anything, but now it says something), we can update
the diagnoses by just plug in this new sub-diagnosis into the algorithm below. In the
other case, which is when a sub-diagnosis that did say something before now is saying
something else (or nothing at all), we have to restart the algorithm below, plugging in all
the current sub-diagnosis statements into it([? ]).

1. Given old diagnoses Dold and a new sub-diagnosis Pi. D are the new diagnoses. Let
D = ∅.

2. If Dj does not imply Pi:

(a) Remove Dj from Dold.

(b) Extend Dj according to Pi to create diagnoses.

(c) Delete new diagnoses which imply any old diagnose in Dold and add the rest
to D.

3. Add the diagnoses in Dold to D.

This can be very time consuming if the algorithm have to isolate faults of higher order. An
assumption is that multiple faults of higher order is less probable comparing to faults of
lower order. Therefore if a possible diagnosis includes at least a certain number of faults,
we remove it because it is relatively unlikely. We can add this fault dimension limit into
the algorithm above:

1. Given old diagnoses Dold and a new sub-diagnosis Pi. D are the new diagnoses. Let
D = ∅. Add also a upper limit for the dimension for multiple faults l.

2. If Dj does not imply Pi:

(a) Remove Dj from Dold.

(b) Extend Dj according to Pi to create diagnoses.

(c) If Dj has higher dimension than l then remove from Dold.

(d) Delete new diagnoses which imply any old diagnose in Dold and add the rest
to D.

3. Add the diagnoses in Dold to D.

4.3 Detectability and isolability analyses

In order to determine how well the test quantities enable detection and isolation of the
faults in the electrical power system analyses the fault detectability and isolability for
the diagnosis system will be performed. These analyses are performed in parallell with
creating the test quantities, so poor performance in terms of isolability or detectability

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 15

is discovered as early as possible in the diagnosis system creation process. If such poor
performance is discovered, the basic idea for increasing the performance is to create and
add new test quantities to the diagnosis system.

5 Software

This section describes how the diagnosis algorithm will be implemented in terms of struc-
ture, classes and communication with the DxC framework provided by NASA.

5.1 Integration with the DxC Framework

5.1.1 Background

In order to take part of the DCC’10 there is a strong requirement that the diagnosis
algorithm is fully integrated into the framework of ADAPT, called the DxC.

Although it is possible to develop the diagnosis algorithm in any language, there are two
languages recommended by NASA. Those languages are C++ and Java. Other languages
have to communicate with the DxC framework using lower level TCP-IP communication,
instead of being able to use some of the classes for message passing provided by NASA.

The chosen language for the diagnosis algorithm is C++. The main reason for choosing
C++ ahead of Java is mainly that the knowledge of C++ is greater within the developing
group.

5.1.2 Communication with the DxC Framework

The DxC framework takes care of both input to and output from the diagnosis algorithm.
Figure 1 gives a overview of the different classes provided by the DxC and how they
integrate with each other.

The Scenario Loader loads data into the Scenario Data Source, which provides the di-
agnosis algortihm with data. The data comes from previously recorded data sets that’s
available for download from dx-competition.org. Several scenarios with different injected
fault is available for testing the algorithm, as well as some competition data from the
DCC’09 where the injected fault is unknown. The DxC framework also records the out-
put from the diagnosis algoritm (through the Scenario Recorder). Briefly described it
records the output from the diagnosis algorithm, for example the current error state if
there is one. The DxC also handles storage of the whole scenario. It also evaluates the re-
sults. This is done through the last two classes in Figure 1. The results from the scenario
is stored in Scenario Results and evaulated and calculated into points that can be used
to compare the diagnosis algorithm towards other algortithms in a competition using the
Evaluator. How this evaluation is made in a competition is listed in section four of the
Diagnostic Challange Competition Announcement[? ].

All communication made between the modules in Figure 1 is made using a message based
TCP-IP protocol. There are classes provided by the DxC for this communication. The
communication is made using a Connector and a callback class, handling all kinds of
messages to and from the diagnosis algorithm. The diagnosis algorithm only need to send
two kinds of messages: a ScenarioStatusData message signalling they are ready to receive
data, and DiagnosisData. DiagnosisData is a message containing information on when
the system is believed to be in a faulty state. The diagnosis algorithm will also need
to handle three kinds of datatypes as input. Once the initial ScenarioStatusData is sent

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 16

Figure 1: An overview of the ADAPT framwork[? ].

by the diagnosis algorithm, the DxC will begin sending data of tree types: SensorData,
CommandData, and ScenarioStatusData.

The different messages are inherited from a parent class called DxC::DxcData. The struc-
ture can be seen in Figure 2.

Figure 2: The messages to and from the DxC are inherited by the parent class DxcData
as follows.

The datatype sent from the DxC is beeing inherited from a class called DxC::Value.
(Read more about internal data storage in section 5.2.4). Here follows a description of
all the different messages that are being sent to and from the DxC framework. From the
constructors and functions one can see how a message of a certain type can be handled
and how a output messages should be passed. The following section describes each of the
messages that beeing sent to and from the DxC.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 17

Dxc::CommandData
Description:
Message containing the relays on / off values and other signals that can be set in the
diagnostic algorithm.
Public Functions:

CommandData (long long timestamp, const
std::string &commandID, Value *command-
Value)
Constructor.

virtual ostream & put (ostream &) const
Prints DxcData in standardized, parseable for-
mat.

std::string getCommandID () const
Get command ID string.

const Value * getCommandValue () const
Get command Value.

virtual CommandData * clone () const
Virtual copy constructor.

Dxc::ScenarioStatusData
Description:
Message that’s beeing sent when the diagnosis algorithm is ready to recieve data,
and when the diagnosis algorithm signals that it’s finished.
Public Functions:

ScenarioStatusData (const std::string &sta-
tus)
Constructor.
ScenarioStatusData (Timestamp timestamp,
const std::string &status)
Constructs with timestamp set to current
time.

std::string getStatus () const
Returns status.

virtual ScenarioStatusData * clone () const
Virtual copy constructor.

virtual ostream put (ostream &) const
Prints DxcData in standardized, parseable for-
mat.

Static Public Attributes:
static const DA READY
std::string A Diagnosis Algorithm sends DA READY to

indicate it’s prepared to receive data.
static const std::string SDS ENDED

Signals scenario end. DAs must finalize and
exit properly or risk termination.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 18

Dxc::ErrorData
Description:
Error message that’s can be sent from the diagnosis algorithm to the DxC(more information
in section 5.2.5).
Public Functions:

ErrorData (Timestamp timestamp,
const string &error)
Constructor..

string getError () const
Returns the error message string.

virtual ostream & put (ostream &) const
Prints DxcData in standardized,
parseable format.

virtual ErrorData * clone () const
Virtual copy constructor.

Dxc::DiagnosisData
Description:
Message that’s being sent when a fault is found, containing a candidate list of faulty com-
ponents and weights for each of those components.
Public Types:
typedef std::set CandidateSet
〈 Candidate,ltCandidate 〉 Candidate set typedef.
Public Functions:

DiagnosisData (Timestamp timestamp,
bool detectionSignal=false, bool isola-
tionSignal=false, const CandidateSet &iso-
lation=CandidateSet(), const std::string
&notes=””)
Constructor to initialize the DiagnosisData
with timestamp.
DiagnosisData (bool detectionSignal=false,
bool isolationSignal=false, const Candi-
dateSet &isolation=CandidateSet(), const
std::string &notes=””)
Constructor to initialize the DiagnosisData
with current time as timestamp.

bool getDetectionSignal () const
True if, according to the diagnosis, the system
is believed to be in a faulty state.

bool getIsolationSignal () const
True if faults have been isolated, i.e. candi-
dates exist.

virtual DiagnosisData * clone () const
Virtual copy constructor.

virtual ostream & put (ostream &) const
Prints DxcData in standardized, parseable for-
mat.

Classes:
struct Candidate

Maps a set of component IDs to (hypothesized)
faulty states.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 19

Dxc::SensorData
Description:
Sensordata sent by the DxC loader contains following message.
Public Types:
typedef std::map 〈 std::string,
const Value * 〉

CandidateSet

Candidate set typedef.
Public Functions:

SensorData (Timestamp timestamp, const
SensorValueMap &sensorMap)
Constructor.

virtual ostream & put (ostream &) const
Prints DxcData in standardized, parseable for-
mat.

SensorValueMap getSensorValueMap () const
Returns the map from sensor to Value.

virtual SensorData * clone () const
Virtual copy constructor.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 20

5.2 Implementation

This section covers how the diagnosis algorithm will be developed and how the structure
of the diagnosis algorithm will look like.

There is a demand that the developed diagnosis algorithm is generic and flexible to changes
in parameters and in sensor configuration. This suits the object oriented programming
style very well, and as a result of these demands on the software the diagnosis algorithm
will be object oriented. An overview of how the diagnosis algorithm will work can be seen
in Figure 3.

Figure 3: An overview of how the diagnosis algorithm will be implemented.

The diagnosis algorithm can be divided into a few major parts, namely test quantities,a
sub-diagnosis handler and a fault isolator. Among with help classes and containers, these
class objects will form the core of the diagnosis algorithm.

A test quantity is a parent class. It takes in the sensor data and delivers a sub-diagnosis,
containing information about what parts that might have a fault, or if some parts can be
guaranteed not having a fault. In between the start and finish, test quantities can be quite
different however. A test quantity for checking a relay might look very different from a test
quantity that’s checking a load. Test quantities will need to be programmed specifically
for each type of test. This will be implemented so that each specific test quantity will
be a subclass from the parent test quantity class. In this way you can specify how each
algorithm will be designed. Exactly how these tests will be coded is a hard to predict
before the modelling part of the project is done.

Test quantities take the sensor data it needs from the global sensor map and filter the
data. What data is needed and what filtering will be done is based on which test is to be
performed. Several tests will only need data from a few sensors, thus making it unwise
to load data from all sensors into every test quantity. If possible the calculating of test
quantities can be a subject of threading (using pthreads) for increased speed up.

The information gathered from all the test quantities will be placed in a sub-diagnosis
container class. This container will store information from all test quantities. When all
test quantities has delivered its result to the container, the container will be passed as
input to the the fault isolator.

The fault isolator is a decision maker that is taking the subdiagnoses from all the available
testquantities and finds the diagnoses of them as described in section 4. This diagnosis

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 21

will be presented back to the DxC through a message of type DxC::DiagnosisData as
mentioned in section 5.1.2. Using this way of representing the test quantities, with a
parent class that contains only a few general functions and specific subclasses for different
types of tests, increases the generic and flexible touch of the diagnosis algorithm, due to
the fact that the fault isolator class does not require a named test quantity to be able to
produce a diagnosis. Of course, it might be hard to isolate a diagnosis without certain test
quantities, but that will be the case even without an object oriented form of programming.

In order to make sure that the requirement that says that ”The diagnosis algorithm shall
be designed so that it is possible to handle a change in a model parameter for a specific
component” (Requirement 23 in), it shall be mentioned that all model parameters shall be
placed in a separate file containing definitions of all model parameters. Model parameters
shall instead be defined like:

#define RELAY 1 RESISTANCE 140

5.2.1 Time limits during software execution

According to the Requirement List the start up time has a maximum limit of 30 seconds.
There is also a maximum cycle time limit of 500 ms to make sure that everything is finished
before the next cycle begins. During the implementation and testing of the software these
time limits will be tested against and necessary adaptation of the software will be made.

5.2.2 Class structure

The implementation of the diagnosis algorithm is strongly based on the object-oriented
class structure. Here follows a list of tables that describes the included class objects.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 22

class objDiagnosisAlgorithm
Description:
Main class that holds the whole algorithm. This class communicates with the DxC Frame-
work
Public Functions:

objDiagnosisAlgorithm()
Constructor
˜objDiagnosisAlgorithm()
Destructor

int collectSensorData(map<string, DxVariable> sen-
sorData)
Takes a map of sensor data where the map key is the
sensor name. The function returns 1 if ok and 0 if
error.

int collectCommandData(map<string, DxVariable>
commandData)
Takes a map of command data where the map key is
the relay name. The function returns 1 if ok and 0
if error.

int collectScenarioData(map<string, DxVariable> sce-
narioData)
Takes a map of scenario data where the map key is
the relay name. The function returns 1 if ok and 0
if error.

map<string, DxVariable> runTestQuantities(void)
The functions runs through the test quantity objects.

int runFaultIsolator(void)
Applies the diagnosis calculator on the sub-diagnoses
collected from the test quantities.

Variables:
objTestQuantityHandler
*

testQuantityHandler

objFaultIsolator * faultIsolator

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 23

class objTestQuantity
Description:
Superclass that handles a single test quantity. It takes the sensor data as input and returns
a sub-diagnosis to the objTestQuantityHandler class
Public Functions:

objTestQuantity()
Constructor
˜objTestQuantity()
Destructor

objSubdiagnosis * run()
Run the testquantity and return a objSubdiagnosis

object
void addSensorDependencies()

Function to add a sensor dependency to a single
testquantity

void getSensorData()
Function that fetches the correct sensor data from
the big sensor map in the diagnosis algorithm class.
This function gets the sensorvalues that a particular
testquantity needs. the list of sensor

string getTestQuantityName()
Returns the name of the test quantity

Variables:
string testQuantityName
map < std :: string, localSensors
vector < V alue∗ >>

class objTestQuantityHandler
Description:
Container class that holds all objTestQuantity objects.
Public Functions:

objTestQualityHandler()
Constructor
˜objTestQualityHandler()
Destructor

objSubdiagnosisHandler * run(void)
Runs through all test quantities and returns a obj-
SubdiagnosisHandler.

int addTestQuantity(objTestQuantity * newTestQuan-
tity)
Add a objTestQuantity object to the handler.

Variables:
vector<objTestQuantity> testQuantities

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 24

class objSubdiagnosisHandler
Description:
Stores the sub-diagnosis recieved from the objTestQuantity objects to be used later in the
objDiagnosis object.
Public Functions:

objSubdiagnosisHandler()
Constructor
˜objSubdiagnosisHandler
Destructor

int addSubdiagnosis()
Add a sub-diagnosis to the objSubdiagnosisHandler.
The function returns 1 if of and 0 if error.

vector<objSubdiagnosis>* getSubdiagnosis()
Returns all the objSubdiagnosis objects as a vector.

Variables:
vector<objSubdiagnosis> subDiagnoses

class objSubdiagnosis
Description:
Holds the sub-diagnosis from a test quantity.
Public Functions:

objSubdiagnosis()
Constructor
˜objSubdiagnosis()
Destructor

void setTestQuantity(std::string testQuantityName)
Set the name of the test quantity

std::string getTestQuantity()
Returns the test quantity name.

void addFault(std::string fault)
Add a fault candidate to the sub-diagnosis

void addNonFault(std::string nonFault)
Add a non fault candidate to the sub-diagnosis

vector<std::string> getFaults()
Returns the faults as a vector<std::string>

vector<std::string> getNonFaults()
Returns the non faults as a vector<std::string>

Variables:
string testQuantity
vector<Fault> faults
vector<string> nonFaults

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 25

class objFaultIsolation
Description:
Takes the faulty and non faulty components in the subDiagnosisHandler and returns a
diagnosis.
Public Functions:

objFaultIsolation()

˜objFaultIsolation()

Dxc::DiagnosisData returnDiagnosis(objSubdiagnosisHandler subdiag-
nosises)
Takes all the sub-diagnoses and calculates the diag-
nosis.

Variables:
- -

struct Fault
Description:
Stores a fault in two strings, one for components name and one for fault mode.
Variables:
std::string component Text string that identifies the component.
std::string mode Text string that identifies the fault mode.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 26

5.2.3 Fault Isolation

The object structure handles the sensor data and gives the test quantities this information
as input and from these test quantities come the sub-diagnoses. How to interpret this in-
formation to decide the most probable diagnosis is handled in the objDiagnosisCalculator
class.

The algorithm will be implemented as described in section 4.2.

5.2.4 Data storage

As mentioned in section 5.1.2 the software need to handle three kinds of input messages
from the DxC framework. These three are scenario status messages, command messages
and sensor data messages. The information from these messages needs to be stored some-
where in the software.

The diagnosis algorithm will get a callback signal whenever a command data, sensor data
or a scenario status is recieved from the DxC framework. When a command data is
recieved a series of parameters will be set. When a scenario status arrives the algorithm
will be set ready to start. When sensor data arrives all sensor values will be stored in
a global sensor map. After this the task of checking for faulty parts and calculating, a
diagnosis will take place.

The handling of the typeid (ScenarioStatusData) message will be done directly in the
callback class. The scenarioStatus message only contains a end of scenario tag that will
stop our algorithm. This is done by setting a flag.

As multiple scenarios looks to be run one after another, the algorithm needs to clear out
it’s old scenariodata and send out a new message to the DxC telling the scenario that it’s
ready to go again.

The storage of the input signals recieved in a typeid (CommandData) message will be
stored within the testQuantityHandler. The command data contains information on
whether or not a certain switch or relay is set open or closed, and this information will
be kept as a map containing the id of the relay and a bool value containing information
about if the relay is open or not.

map<string,bool> commandType; commandType commandMap;

The sensordata is recieved from the DxC as a typeid(SensorData) message. This Sensor-
Data object contains a SensorValueMap that holds information about each sensors values.
The structure of the SensorValueMap is

typedef map<std::string, const Value∗ > SensorValueMap

where the string contains a sensorID and the Value points to the sensors value. The
sensorID is used by the test quantities when they query for the sensor values it needs.
The Value in the SensorValueMap can be either a integer, a string, a boolean or a real
(complex) value.

The Value parameter of the sensorValueMap is of the type DxcValue. DxcValue is a
parentclass to that got subclasses for integer, string, boolean and real as seen in figure 4.
The value inserted should be of the correct subclass to the DxcValue so that each sensor
will get the correct datatype.

In order to be able to filter sensor signals and take averages it needs to store a number of
sensor values from each sensor in the diagnosis algorithm. The number of values stored
should be set as a parameter, and is an object for tuning later on. The sensor values

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 27

Figure 4: The values of the sensordata are beeing inherited from a parentclass called
DxcValues.

received from the DxC will therefore be transformed into a map container that stores the
latest arrived sensor values in a vector.

typedef map<std::string, const vector<Value4∗ >>
sensorValueTypeMap sensorValueTypeMap sensorMap;

For example. If a sensor measures an integer value, the look of the element in the sen-
sorMap containing this item would be something like:

map<string,vector<int>>.

In general, sensor IDs and fault IDs is chosen to be stored as strings. However, this may
not be the fastest way to calculate data. Comparison between strings do take more time
than comparison between integers. With performance as an aspect, storing these values
as a string might not be the best call. This decision is instead made as a try to ease the
understanding of the code. Sensor ID will arrive to the diagnostis algorithm from the DxC
as strings, thus making it natural to keep that chain through the diagnosis algorithm. The
option here would be to create a table that maps all sensor IDs and possible diagnosises
to an integer value, that would have to be casted back to a string once the fault isolator
have calculated its intersection between the subdiagnosises. Mapping all faults and sensor
to integers tends to be quite time consuming. That’s why strings are kept as a primary
option until performance becomes a factor.

5.2.5 Error handling in the software

Even if this project does not focus on errors and exeption handling, adding some mech-
anism for throwing and catching errors might make it easier to detect bugs inside the
diagnostic algorithm itself. Figure 2 in section 5.1.2 shows that the DxC supports an
additional message type called DxC::ErrorData. This class is a simple class that allows
simple passing of error messages between the DxC and the Diagnostic Algorithm. The
structure of the DxC::ErrorData can be seen 5.1.2.

By adding a simple exception class to the diagnostic algorithm and putting a try and catch
block around the callbacks for handling sensordata commanddata and scenariostatusdata,
one should get a simple error handling that still allows and extra degree of debugging
possibilities. This error can be thrown wherever needed in the diagnostic algorithm, and
can be used for debugging purposes.The exeptionclass in the diagnostic algorithm should
for simplicitys sake be inherited by the runtime error class as follows:

class diagnostic_error : public runtime_error {
public:
diagnostic_error(const string& argument = " ") : runtime_error(argument){}
};

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 28

5.2.6 Software manual

In order to get an easy understanding of how to change or implement new test quantities
in the software, an manual will be written. It will also hold a short tutorial of how fo find
and change the different component parameters.

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 29

6 Coding standards

In order to make it easier to maintain a good overall impression in the code, this section
introduces some coding standards that is to be used within the project. A good start is
to always try to give functions and variables names that connects to its use, and to use
indentation. In addition, the following can be taken as a recommendation for coding:

• Header files shall allways end with .h and implementation files should end with .cc.

• Header files should have a guard to prevent multiple inclusions
#ifndef FOO H
#define FOO H
#endif

• Each class shall have it’s own headerfile and cc file, containing it’s functions.

• Objects shall allways be named with the prefix obj.
Example:
class objDiagnosis;
would define a class called Diagnosis.

• Functions shall always be named with a lower-case letter for the first word, and then
a capital letter for the remaining words. This is to be done without a separation
with an underline.
Example:
void setName()
is prefered ahead of
void set name()

• If the use isn’t obvious a strategical comment is to be place before a code section,
for example before a function or a module, that describes what use the following
section does.

• A tactical comment usually explains the use of a certain row. It’s to be placed at
the end of the row if possible, otherwise just before the row.

• When creating functions and statements, allways place the { on a separate row.
This is to support the unified look with the rest of the DxC framework.

if (value)
{

return (1);
}

is prefered ahead of:

if (value) {
return(1);

}

In addition, all files should start with a tag that briefly explains the use of the file and who
made the file. This section will look abit different in header files and in implementation
files. Simply copy the following section to each header file:

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 30

/*
* CDIO DIAGNOSIS ALGORITHM - PROJECT FFF
*
* IDENTIFY
* Filename: foo.h
* Type: Module declaration
* Written by:
*
* DESCRIPTION
* Brief description
*/

#ifndef FOO_H
#define FOO_H

/*
* USED LIBRARIES AND MODULES
*/

#include <*.h>
#include "*.h"
#endif

and the following into each implementation file. The // commands in the end is just to
clarify order of placement for local variables and functions:

/*
* CDIO DIAGNOSIS ALGORITHM - PROJECT FFF
*
* IDENTIFY
* Filename: foo.cc
* Type: Definitions that belongs to module Foo, non inline
* Written by:
*/

/*
* USED LIBRARIES AND MODULES
*/

#include "Foo.h"

// LOCAL OBJECTS
int localInt;

//LOCAL DECLARATIONS
void fie(...);

//LOCAL DEFINITIONS
void fie(...)
{

...
}

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 31

7 ADAPT figures

Figure 5: An overview of the ADAPT system and its components[? ].

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf



Diagnosis 32

Figure 6: A picture of the ADAPT system[? ].

Course name: Control Project E-mail: diagnos2009@googlegroups.com
Project group: FFF Document responsible: Daniel Eriksson
Course code: TSRT10 Author’s E-mail: daner963@student.liu.se
Project: Diagnosis Document name: Designplan1 0.pdf


	Introduction
	Background
	Goals

	System overview
	Project division

	System modelling
	Battery
	Inverter
	Load
	Power characteristic systems

	Relay
	Circuit breaker
	Sensors
	The flowing current

	The diagnostic algorithm
	Test variables
	Battery
	Inverter
	Load
	Power characteristic systems
	Relay
	Circuit breaker
	Sensors

	Diagnosis decision logic
	Detectability and isolability analyses

	Software
	Integration with the DxC Framework
	Background
	Communication with the DxC Framework

	Implementation
	Time limits during software execution
	Class structure
	Fault Isolation
	Data storage
	Error handling in the software
	Software manual


	Appendix
	Coding standards
	ADAPT figures

