
Design Specification:
Search and Rescue - Coordination Between Quadcopter and Rover

Version 1.0

Author: Jesper Ahlander
Date: December 15, 2019

Status

Reviewed Jesper Ahlander 2019-10-08
Approved Magnus Malmström 2019-10-15

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author’s E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Specification.pdf

Project Identity

Group E-mail: tsrt10eagle@googlegroups.com
Homepage: Under development
Orderer: Magnus Malmström, Linköping University

E-mail: magnus.malmstrom@liu.se
Customer: Torbjörn Crona, Saab Dynamics

E-mail: torbjorn.crona@saabgroup.com
Course Responsible: Daniel Axehill, Linköping University

E-mail: daniel.axehill@liu.se
Advisors: Kristoffer Bergman, Linköping University/Saab Dynamics

E-mail: kristoffer.bergman@liu.se
Joakim Mörhed, Saab Dynamics
E-mail: joakim.morhed@saabgroup.com
Axel Reizenstein, Saab Dynamics
E-mail: axel.reizenstein@saabgroup.com

Group Members

Initials Name Responsibility Phone E-mail
(@student.liu.se)

AAJ Albin Andersson
Jagesten

Head of ROS 070-4836019 alban567

JJ Jakob Jerrelind Project Manager 073-6121291 jakje413
JG Jens Grundmark Head of Software 0768-161187 jengr562
JA Jesper Ahlander Document Manager 070-3183927 jesah296
JS Jonathan Svensson Head of Testing 070-6333539 jonsv387
LW Linus Wiik Head of Hardware 072-5440119 linwi787
NH Nils Hedner Head of Design 073-2555951 nilhe884

Document History

Version Date Changes made Reviewer
0.1 2019-09-20 First draft. JA
0.2 2019-09-27 Second draft. JA
0.3 2019-10-01 Third draft. JA
0.4 2019-10-08 Fourth draft. JA
1.0 2019-10-08 First version. JA

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author’s E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Specification.pdf

Contents

1 Introduction 1

1.1 Parties . 1

1.2 Purpose and Goal . 1

1.3 Application . 1

1.4 Background Information . 1

1.5 Definitions . 2

2 System Overview 3

2.1 Subsystems . 3

2.2 Mission . 3

3 Rover 5

3.1 Hardware . 5

3.1.1 Computational Hardware . 5

3.1.2 Off-board Hardware . 5

3.1.3 Sensors . 5

3.2 Software . 6

3.3 Modes of operation . 7

3.3.1 Manual Mode . 7

3.3.2 Autonomous Mode . 7

4 Quadcopter 13

4.1 Hardware . 13

4.1.1 Onboard Hardware . 14

4.1.2 Off-board Hardware . 14

4.1.3 Sensors . 14

4.2 Software . 14

4.2.1 Controller and Path Following . 16

4.2.2 Supervisor . 17

4.2.3 Detection and Identification Using the Virtual Camera . 17

4.3 Modes of operation . 18

4.3.1 Manual Mode . 18

4.3.2 Autonomous Mode . 18

5 Communication 20

5.1 Communication Between Rover and the Base Station . 20

5.2 Communication Between Quadcopter and Base Station . 20

5.3 Communication Between Rover and Quadcopter . 20

5.4 Communication Using Qualisys . 20

6 Base Station 21

6.1 GUI . 21

6.1.1 GUI Before Mission . 21

6.1.2 GUI During Mission . 22

6.1.3 GUI After Mission . 22

6.2 Visualisation . 22

6.3 Simulation . 22

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author’s E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Specification.pdf

Search and Rescue 1

1 Introduction

This document is a design specification for the project Search and Rescue in the course TSRT10,
Reglerteknisk projektkurs, CDIO, at Linköping University. A brief overview of the entire system is
presented as well as clear descriptions of the different subsystems within it.

1.1 Parties

The parties in the project are the customer Torbjörn Crona at Saab Dynamics, the client Magnus
Malmström at Linköping University, the three advisors Kristoffer Bergman at Linköping University,
Joakim Mörhed and Axel Reizenstein which both are at Saab Dynamics. Finally there is a project
group led by the project manager Jakob Jerrelind with Albin Andersson Jagesten in charge of ROS,
Jens Grundmark in charge of software, Jesper Ahlander in charge of documentation, Jonathan
Svensson in charge of testing, Linus Wiik in charge of hardware and Nils Hedner in charge of
design.

1.2 Purpose and Goal

The purpose of the project is to design and implement an autonomous system that uses a tracked
vehicle and a quadcopter simultaneously to search an unknown area for people in distress. The
tracked vehicle should do the majority of the search because it has much more fuel and is therefore
not as expensive as the quadcopter to operate. However, the mission takes place in an environment
where there are certain areas which the tracked vehicle cannot reach. In those places the quad-
copter, which is situated on top of the tracked vehicle, should be used instead. When the tracked
vehicle reaches an inaccessible area the quadcopter should take off and start exploring it while
the tracked vehicle proceeds to some other unexplored area. When the quadcopter has searched
through the inaccessible area it should return to the tracked vehicle and land on top of it. All this
should be done autonomously. Hence, the main focus in this project is the cooperation between
the tracked vehicle and the quadcopter.

1.3 Application

The intentional use of this system is to deploy it in an environment that is either dangerous to
people due radiation or some hazardous substance or an area with harsh terrain. The system should
after deployment start searching for people in distress while mapping the surrounding environment.
When or if it finds someone in distress it should send the current position to the rescuing team.

1.4 Background Information

The platform for this project is delivered by Saab Dynamics and it consists of a tracked vehicle and a
quadcopter. The platform has been used in a series of projects that has been conducted throughout
the years. These projects have been a part of the course TSRT10 at Linköping University.

The goal of last year’s project was to use the tracked vehicle together with a simulated quadcopter
to find people in distress in an unfamiliar setting. The quadcopter started searching the unfa-
miliar area from above, sending positional data of people in distress to the tracked vehicle. The
tracked vehicle then started to map the area and proceeded to find the person in distress while the
quadcopter continued its search.

The main focus in this year’s project is therefore to make the system fully autonomous and to use a
real quadcopter instead of a simulated one. Another request for this year’s project is that it should

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author’s E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Specification.pdf

Search and Rescue 2

be able to serve as a demo system. Hence, it is of importance to include satisfying visualisation
features.

1.5 Definitions

This section lists and describes definitions and abbreviations that are used in this document.

� Rover - Tracked vehicle autonomously traversing the ground seeking out people in distress.
Previously called Balrog.

� Quadcopter - Flying vehicle autonomously seeking out people in distress from the air.
Previously called Sauron.

� Qualisys - Motion capturing system in one of ISY’s research labs, Visionen. Used to track
the Quadcopter and Rover.

� Accessible area - The area where it is possible for the Rover to move around and search.

� Inaccessible area - The area where only the Quadcopter can move around and search, due
to the area being surrounded by walls. Inaccessible areas are obstacles as far as the Rover is
concerned.

� ROS - Robot Operating System.

� SLAM - Simultaneous Localisation And Mapping.

� Base Station - Computer than handles information from the Quadcopter and Rover and
also handles the GUI.

� Obstacle - Any object or feature that hinders the Rover.

� Wall - A vertical object that separates one part of an area from another, or makes up the
boundary of an area. Walls are obstacles, not all obstacles are walls.

� Distressed person - A virtual marker that has to be found by the Rover or Quadcopter.
Distressed persons are sensitive to percussive forces, therefore the Rover must not drive over
them. Distressed persons can be considered obstacles and are defined as a circle with a radius
of 0.1 m.

� Topic - In ROS, messages are exchanged between nodes using named buses called topics.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author’s E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Specification.pdf

Search and Rescue 3

2 System Overview

The following sections introduce the system and give an explanation of the subsystems and the
connections between them. Furthermore the there is an explanation of what a mission is and the
�ow of it.

2.1 Subsystems

There are four main subsystems which are the Base Station, the Rover, the Quadcopter and
Qualisys. The Base Station is a computer containing the GUI from which mission parameters and
the vehicles themselves may be controlled. It also handles the visualisation and holds a simple
simulation environment. The task for the Rover is to generate a map of the mission area by using
SLAM and search for people in distress by exploiting a virtual camera. The Rover will also handle
the path�nding problem and keep track of the mission sent from the Base Station. The Quadcopter
is a UAV with the task of searching for people in distress in areas inaccessible by the Rover. It
will not solve the path�nding problem itself like the Rover but instead it will receive a path from
the Rover and only follow it. Qualisys is a positioning system integrated in Visionen which will be
used to obtain the position and orientation of the Rover and the Quadcopter.

The subsystems mentioned above will be running ROS and the communication between them will
be conducted over WiFi where every subsystem will be able to communicate with each of the
other subsystems. The hand controllers enables the user to control the Rover and the Quadcopter
manually. A schematic overview is visible in Figure 1 below.

Figure 1: Schematic system overview.

2.2 Mission

A mission consists of the following parts: the Rover exploring and mapping the designated area,
the Quadcopter exploring areas inaccessible by the Rover and both vehicles searching for people
in distress. The mission will be divided into di�erent states and an overview of these states can be
seen in Figure 2 while descriptions can be seen below.

� Setup - Start up the system and wait until there is a connection between all subsystems.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 4

� Validation - Checks if the Rover and the Quadcopter are ready and if there is a mission
de�ned.

� Ready - The system is ready when the validation is completed and successful for the Rover,
the Quadcopter and the mission.

� Running - When the system is ready, next step is to start the mission through a button
in the GUI. This makes the Rover transition to the state Exploration and the Quadcopter
transition to the state Wait for Rover .

� Pause - The mission can be paused and then started again by pushing a button in the GUI.
This option enables debugging when a mission is running.

� Done - The result if the mission succeeds.

� Fail - The result if the mission fails.

Figure 2: State machine of a mission.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 5

3 Rover

This section will �rstly give a brief overview of the hardware components that are attached to the
Rover platform. Then the software architecture of the ROS nodes related to the Rover will be
given and the functionality of each node will be described.

3.1 Hardware

The Rover consists of a tracked vehicle base equipped with the hardware components described in
the subsections below. An overview of the system can be seen in Figure 3.

Figure 3: Rover components overview.

3.1.1 Computational Hardware

� Raspberry Pi 4 - This is a single board computer that will run the majority of the code
associated with the Rover.

� 2 x Arduino - An Arduino is a microcontroller that can be used for simple tasks. In this
system there are two, both connected to the Raspberry Pi via USB:Arduino ext forwards
commands from the RC receiver to the Raspberry Pi andArduino int collects data from the
wheel encoders and talks with Sabertooth.

� Sabertooth motor controller - A motor controller that controls the speed of each of the
Rover's track. It receives control commands from Arduino int.

3.1.2 O�-board Hardware

� RC controller - Handheld radio controller for manual steering.

3.1.3 Sensors

� LiDAR - This is a rotating laser range scanner that gives range and bearing measurements
of the environment while it rotates. The data will be used in the SLAM algorithm to build
a map of the environment and give an estimated position of the Rover.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 6

� Wheel encoders - There are two wheel encoders on the Rover, one for each track. A wheel
encoder measures the angular changes of a wheel, in this case a track. This means that the
speed of each track can be measured from it as well as dead reckoning of the Rover's position.

� RC receiver - This sensor receives control commands from the hand controller which are
used to manually control the Rover.

� Virtual camera - The virtual camera is the only sensor on the Rover that can detect people
in distress, hence this sensor is vital for the completion of the mission. This sensor will also
be used when visualising the progress of the mission to the users.

� Qualisys re�ection balls - Re�ective balls that are used with the Qualisys system to track
the Rover within the test area. The balls will be placed in an asymmetric pattern on top of
the Rover.

3.2 Software

The operating system installed on the Raspberry Pi will be Raspbian Buster. Since ROS will be
used for the communication between the subsystems a ROS distribution will be installed and in
this case it will be ROS Melodic. The Raspberry Pi will be con�gured to start without a graphical
user interface to save computational power. It will also be con�gured to automatically launch all
of the ROS nodes. The di�erent ROS nodes that will be implemented on the Raspberry Pi will be
described below in section 3.3.2.

In Figure 4 the �owchart of the Rover is visualised. The �rst three states are the same as the
three �rst in the mission chart, see Figure 2. However, in this chart there is an exploration state
instead of a running state. In this state SLAM is used to start mapping the surroundings and
to position the Rover on the map. The Rover then searches for an unknown area on the map
and plans a trajectory to that location. It does this iteratively until the surroundings are entirely
explored. At the same time the map is interpreted in order to �nd inaccessible areas. If such an
area is found a trajectory is planned to that area for the Quadcopter as well as a trajectory for
the Quadcopter that explores that area. The process is �nished when the Rover cannot �nd any
unknown or inaccessible areas. To be able to succeed a mission 95% of the searchable test area
should be explored. The mission fails if the Quadcopter runs out of battery or the connection is
lost and the Quadcopter needs to do an emergency landing.

Figure 4: State machine for autonomous Rover.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 7

3.3 Modes of operation

There are two operational modes for the Rover, manual mode and autonomous mode, which are
described in the two following sections.

3.3.1 Manual Mode

The manual mode is implemented using a ROS node that continuously listens for commands from
Arduino ext (which is connected to the RC receiver). Any input from the hand controller will
cause the Rover to enter manual mode, overriding any mission or other commands currently being
executed. The manual control node will then parse the manual commands and broadcast them on
the ROS network using the same topic as other nodes that control the Rover's movement. This
approach will allow the manual control functionality to be decoupled from any other functions,
reducing complexity and improving code clarity.

3.3.2 Autonomous Mode

This subsection gives an overview of the software system used in the autonomous mode. The
system structure can be seen in Figure 5 below. The software components are also explained in
more detail below.

Figure 5: Autonomous mode program structure.

The autonomous functionality is implemented as several distinct modules which communicate over
the ROS network using standardised ROS message types which are sent on di�erent topics. This
section describes the functionality of each node and lists the input and output topics for each of
them. The listing will be on the following form:

� \topic name : Message type

3.3.2.1 LiDAR

The LiDAR node uses the ROS packagerplidar published by the manufacturer SLAMTEC. This
node communicates with the LiDAR unit and publishes the measurement data to the ROS network.

Output topics:

� \scan : sensor_msgs\LaserScan

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 8

3.3.2.2 SLAM

SLAM is a problem that can be solved in several di�erent ways. There are several ROS integrated
open-sorce SLAM algorithms available, such asgmapping and Google cartographer. This node
publishes map data and the Rover's position and rotation relative to the reference frame. The
map will be a graph where the nodes are either free, unknown or occupied.

Input topics:

- \scan : sensor_msgs\LaserScan

- \rover_odom : geometry_msgs\Twist

Output topics:

- \map : map : nav_msgs\OccupancyGrid

3.3.2.3 Odometry

The odometry node communicates with Arduino int and the IMU, and parses the wheel encoder
and IMU data in order to provide an approximation of the Rover's movement to the ROS network.
This data is primarily needed for the SLAM algorithm.

There is one encoder for each track and they count the change in angle between each data trans-
mission. The time is also measured between the transmissions. From this information the position
can be estimated by integrating the angular data. In order to do that the linear and angular
velocities need to be estimated as follows:

vlinear =
r wheel � (� � left + � � right)

2
(1)

vangular =
r wheel � (� � � left + � � right)

2 � wwheelbase
(2)

where vlinear and vangular are the linear and angular velocities,r wheel is the wheel radius, � � is
the change in angle between each data transmission andwwheelbase is the width of the wheelbase.
The linear and angular distance is then computed as:

dlinear = � t � vlinear (3)

dangular = � t � vangular (4)

where dlinear and dangular are the linear and angular distances and� t is the time between the
transmissions. The estimated position of the Rover will then be:

xnew = xprev + cos(dangular) � dlinear (5)

ynew = yprev + sin(dangular) � dlinear (6)

where xnew , xprev , ynew and yprev are the new and previous x- and y-coordinates respectively. The
IMU was not used last year, but might be used to improve the estimated angle of the Rover if
needed.

Output topics:

- \rover_odom : geometry_msgs\Twist

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 9

3.3.2.4 Virtual Cameras

There are in total two virtual cameras to be simulated, one for the Rover and one for the Quad-
copter. Both the cameras will run on the Rover's onboard Raspberry Pi and calculate which parts
of the virtual map have been explored by the vehicles. Since both cameras run on the Rover,
they are both mentioned in this section. There are some key di�erences between the Rover's and
Quadcopter's virtual cameras. Since the Rover cannot see through obstacles, its virtual camera
will only be able to see areas marked as free by the SLAM node. The Quadcopter has a top-down
view of the test area, and can therefore see any part of the map it passes. The virtual cameras will
listen for the positions and poses of the vehicles and reveal the map at the reported locations. The
accuracy of the reported positions will therefore determine the correctness of the virtual cameras.
Since the Rover does not have access to its true position, neither will its associated virtual camera
and thus it is likely that the position of the revealed part of the map will be slightly o� relative
to the Rover's real position. The Quadcopter uses Qualisys to determine its position, and since
Qualisys is quite accurate the Quadcopter's virtual camera will also be accurate. The range of the
Rover's camera is 1.5 m and the �eld of view is50� which results in a maximum width of 1.4 m,
see Figure 6 below. The virtual camera of the Quadcopter is further described in section 4.2.3.

Figure 6: Field of view (FOV) of Rover.

Input topics:

- \real_map : nav_msgs\OccupancyGrid

Output topics:

- \simulated_map : nav_msgs\OccupancyGrid

3.3.2.5 Virtual Map

The persons in distress will be virtual. A node utilizing the interactive_marker interface from the
visualization_msgs package included in ROS will allow markers to be placed on the map in the
GUI. This information will then be provided to the virtual camera node.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 10

Output topics:

- \simulated_obstacles :visualization_msgs\InteractiveMarker

3.3.2.6 Costmap

The costmap node combines the information from the map and explored map in order to assign
costs to each part of the map. An area close to a obstacle will have a higher cost than an area
far away from an obstacle. Obstacles have in�nitely high cost. The ROS packagecostmap2dwill
be used to construct and update the costmap which will be used when planning routes. When
calculating a path from one position to another using A* or similar algorithms, the costmap will
provide a way to "punish" paths that would cause the Rover to drive close to obstacles while
favouring safer paths. One advantage of using this approach instead of using more static rules (for
example making it illegal to travel within a certain distance of obstacles) is that "riskier" paths
can be used when necessary.

3.3.2.7 Mission Supervisor

The mission supervisor is responsible for ensuring that all nodes required to execute a mission
is functioning properly, acting on changes to the mission state and sending goals to the global
planner, for example "explore", "wait for the Quadcopter to land" or "return to start".

Output topics:

- \state : std_msgs/Byte Message

3.3.2.8 Planner

The entire test area needs to be explored in order to �nish the assigned mission. To �nd and plan
paths to the unexplored areas a global path planner is required. The map, as stated above, is a
graph where the value of the nodes de�nes whether that speci�c area is free, occupied or unknown.
The task of the path planner is to �nd an area that is not yet explored and plan a feasible path,
i.e. not colliding with walls or other obstacles, to it. The planner should do this iteratively until
the entire area is explored.

A search strategy called frontier-based exploration solves this problem and is described in [1]. The
strategy uses frontiers to explore an area autonomously. A frontier is a region between open space
and unexplored space, see Figure 7. Hence, if the Rover i situated where a frontier is located it
can see into the unknown area and gain further information about it, thus expanding the mapped
area. Hence, by letting the Rover successively move to frontiers it can autonomously explore the
test area.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 11

Figure 7: Frontier illustration. The line separating the unknown and known area is the frontier.

There is a ROS package that has the frontier-based exploration strategy implemented [2]. This
package will be used in this project as the path planner. The package requires:

� A sensor connected to the ROS network.

� A navigation stack that accepts action goals.

� A global map.

The package will be used together with theA � algorithm to compute a path to the goal position.
The node will therefore publish a path consisting of an array of poses.

Output topics:

- \goal_path : nav_msgs/Path

3.3.2.9 Controller

The local planner reads the global plan and calculates movement commands accordingly, taking
the vehicle's dynamics into account. This will be implemented with a pure pursuit algorithm. It
is a simple control technique to compute an arc that the Rover needs to follow for getting back on
the path. This is done by de�ning a look-ahead horizon for the Rover, and with this horizon de�ne
a circle with the horizon as the radius. From this circle waypoints will be de�ned from where the
circle intersects the planned path. The Rover then moves towards the waypoint. This will be done
repeatedly to make the Rover line up with the trajectory and then follow it towards the end of the
planned path. What will be calculated is the steering angle which will be translated into linear
and angular velocities for the motor controller to use. The motor controller is described in section
3.3.2.10.

Input topics:

- \goal : geometry_msgs/Pose

Output topics:

- \cmd_vel : geometry_msgs/Twist

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 12

3.3.2.10 Motor Control

The motor control node reads and executes the commands published by the local planner. The
commands from the local planner will be linear and angular velocities. These velocities need to be
translated into velocities for each track. Thus the node needs a model on the form

(vleft ; vright) = f (vx ; vy ; ! z)

where vleft and vright are velocities of the left and right track, vx and vy are the linear velocities in
the direction of the x- and y-axis and ! z is the angular velocity around the z-axis. Martínez et al.
derive such a relationship for tracked vehicles and the expressions are [3]:

vleft =
q

jjvjj2 � y2
ICR ! 2

z + x ICR left ! z

vright =
q

jjvjj2 � y2
ICR ! 2

z + x ICR right ! z

The de�nitions of the variables can be seen in Figure 8 below. The node is also responsible for
executing commands originating from the hand controller.

Figure 8: Rotation of Rover.

Input topics:

- \cmd_vel : geometry_msgs/Twist

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 13

4 Quadcopter

The Quadcopter's objective is to search for people in distress in areas that the Rover cannot access.
The Quadcopter takes o� and lands on the Rover between search missions. The Quadcopter will
communicate with both the Rover and with the Base Station to which position data and other
information will be sent.

The Quadcopter has six degrees of freedom for its orientation. It has a position in space and
orientation around the axes de�ned by the angles roll, pitch and yaw. The orientation in space will
be retrieved from the Qualisys system in Visionen. Thex-; y-; z-axes are de�ned in the Quadcopter
as it is de�ned from Qualisys where thex-axis is de�ned in the forward direction of the Quadcopter,
see Figure 9 for a full illustration.

Figure 9: De�nition of the axes in the local coordinate system of the Quadcopter.

4.1 Hardware

The Quadcopter consists of a base structure equipped with the hardware components described in
the subsections below. An overview of the system can be seen in Figure 10. The Quadcopter was
assembled at Saab Dynamics, where the hardware and sensors were attached.

Figure 10: Quadcopter components overview.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 14

4.1.1 Onboard Hardware

� BeagleBone Blue - Single board computer with integrated IMU and WiFi.

� Motor and ESC - Four motors and four ESCs from manufacturer Lumenier.

� LiPo-battery - 11.1V Lithium Polymer battery.

4.1.2 O�-board Hardware

� RC controller - Handheld radio controller for manual �ying.

4.1.3 Sensors

� RC receiver - This sensor receives control commands from the hand controller which are
used to manually control the Quadcopter.

� IMU - The IMU measures the angular rate around each axis and the acceleration along each
axis.

� Barometer - This is a sensor measuring the air pressure and is integrated into the IMU.

� Qualisys re�ection balls - Re�ective balls that are used with the Qualisys system to track
the Quadcopter within the test area. The balls will be placed in an asymmetric pattern on
the Quadcopter.

4.2 Software

The Quadcopter software will be divided into two parts: the controller and the supervisor. Figure
11 presents an overview of the software structure. The controller will be based on the existing
Quadcopter software, while the supervisor will be new. In order to execute a successful mission
the Base Station, Rover and Quadcopter need to work together and exchange information with
each other. To enable information transfer between the subsystems ROS will be used.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 15

Figure 11: Quadcopter software overview.

In Figure 12 a �owchart of the Quadcopter is visualised. The �rst three states are the same as the
three �rst in the mission chart, see Figure 2. In the state Wait for Rover the Quadcopter waits for
a trajectory to an inaccessible area from the Rover. When the Quadcopter has �nished exploring
the inaccessible area it waits for a new command from the Rover. Either the command will tell the
Quadcopter to return to the Rover or it will send a new trajectory for the Quadcopter to follow.
The Quadcopter transitions to the fail state if it runs out of battery or if the connection is lost
and the Quadcopter needs to do an emergency landing.

Figure 12: State machine for autonomous Quadcopter.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

Search and Rescue 16

4.2.1 Controller and Path Following

The controller will receive input from the supervisor and from the ROS network. Qualisys will
transmit data through ROS. As output the controller will send diagnostic data to ROS, information
to the supervisor and control signals to the ESCs.

Figure 13: Control structure for the Quadcopter.

4.2.1.1 Position Control

The position controller will consist of three PID controllers. One that takes a height as input and
calculates thrust as output. The second will take the y-position and calculate a roll reference angle
and the third will take x-position and calculate a pitch reference angle.

� Input : A reference position (x, y, z) that the Quadcopter should move to.

� Output : Reference values for roll, pitch, yaw and thrust for the orientation controller.

4.2.1.2 Orientation Control

The orientation controller will consist of three PID controllers, one for each orientation. The pitch
and roll controllers will take the references as input. The yaw controller will always try to keep
the yaw equal to zero. However, in manual mode it will still be possible to control the yaw. Each
PID calculates a contribution to the four ESC signals that are added to the input thrust.

� Input : Reference values for roll and pitch, thrust.

� Output : Four control signals for the ESCs.

4.2.1.3 Path Following

The Rover will determine the planned path of the Quadcopter, but the Quadcopter will determine
how to follow the path. This will be done by implementing a path following controller, which in
this case will be a pure pursuit controller. This type of controller has been described in section
3.3.2.9.

Course name: Reglerteknisk projektkurs, CDIO E-mail: tsrt10eagle@googlegroups.com
Project group: EAGLE Document responsible: Jesper Ahlander
Course code: TSRT10 Author's E-mail: jesah296@student.liu.se
Project: Search and Rescue Document name: Design_Speci�cation.pdf

	Introduction
	Parties
	Purpose and Goal
	Application
	Background Information
	Definitions

	System Overview
	Subsystems
	Mission

	Rover
	Hardware
	Computational Hardware
	Off-board Hardware
	Sensors

	Software
	Modes of operation
	Manual Mode
	Autonomous Mode

	Quadcopter
	Hardware
	Onboard Hardware
	Off-board Hardware
	Sensors

	Software
	Controller and Path Following
	Supervisor
	Detection and Identification Using the Virtual Camera

	Modes of operation
	Manual Mode
	Autonomous Mode

	Communication
	Communication Between Rover and the Base Station
	Communication Between Quadcopter and Base Station
	Communication Between Rover and Quadcopter
	Communication Using Qualisys

	Base Station
	GUI
	GUI Before Mission
	GUI During Mission
	GUI After Mission

	Visualisation
	Simulation

