
Technical Documentation
AB Mail Robot

Version 1.0

Author: Martin Melin
Date: December 16, 2010

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Martin Melin
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: TechnicalDocumentation v10.pdf



AB Mail Robot II

Status

Reviewed Karl Granström
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1 Introduction

Fido-Dido (Figure 1) is a wheeled mobile robot manufactured by MobileRobots Inc. Its
most important features are a SICK laser range finder, 8 forward-facing ultrasonic array
sonars, odometers and a Micro-Controller. Fido is able to autonomously navigate in an
office-landscape using a pre-defined map which it updates when changes are detected.
Fido is also able to find its way from point A to point B.

Figure 1: Fido-Dido

This document provides a detailed description of how the software and hardware is used
to achieve the goals of the project, specified in Section 1.2.

1.1 Parties

The client of the project is Karl Granström, PhD-student in Automatic Control, Depart-
ment of Electrical Engineering at Linköping University. Supervisor of the project is André
Carvalho Bittencourt, PhD-student in Automatic Control, Department of Electrical En-
gineering at Linköping University. Customer of the project is Marcus Pettersson at ABB
Cooperate Research Center (ABB CRC). The development is performed by the project
group ABB MailMen.

1.2 Purpose and goal

The purpose of the project was to develop software and then implement it on a robot so
that the robot can navigate in an office environment. The project group has evaluated
future possibilities to make this robot able to deliver objects, e.g. mail. The goal of the
project was to develop a system for an autonomous robot which shall be able to navigate
from point A to point B in an office environment, specifically at ABB CRC. The long
term goal of the product is to extend the robot with a robotic arm to enable the delivery
of objects, e.g. mail.
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AB Mail Robot 2

1.3 Usage

The product can be used as a platform for further research at ABB CRC or at Linköping
University.

1.4 Background information

This project is a part of the CDIO-course TSRT10 at Linköping University and is per-
formed in collaboration with ABB CRC. The group consists of eight students with exper-
tise within automatic control and sensor fusion.

1.5 Scope

The robot is limited to operate in an office environment. The robot cannot be expected
to be able to open doors or move objects. The floor on which the robot will operate must
be free from obstacles which the robot cannot detect.
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AB Mail Robot 3

2 Fulfilled requirements

This section lists fulfilled requirements relevant to the technical documentation, as de-
scribed in the requirements specification, and gives references to where in the technical
documentation the functionality of the requirement in question is described. The require-
ments will be listed as follows:

Requirement no. Requirement Chapter/-s

The column ”Requirement no” states the requirement number, the column ”Requirement”
states the requirement and the column ”Chapter/-s” states the chapter or chapters in
which the implementation of the requirement is described.

2.1 Software requirements

This section lists the software requirements as described in the requirements specification.

2.1.1 Mapping requirements

This section lists fulfilled requirements regarding the mapping.

Requirement 1 The software shall be able to build a map by
using sensor data from an unexplored environ-
ment.

5.2

Requirement 2 The software shall be able to update a map
when new obstacles are detected and when old
obstacles are moved or removed.

5.4

Requirement 4 The software shall be able to build a map from
environments that are flat.

5.2

Requirement 5 There shall be a possibility to load a previously
constructed map.

7

2.1.2 Trajectory planning requirements

This section lists fulfilled requirements regarding the trajectory planning.

Requirement 46 The software shall be able to plan a route from
one given position in the map to another po-
sition in the map. The robot shall be able to
follow the route without hitting objects close to
its path.

6

Requirement 11 Whenever a new fixed obstacle is detected, the
software shall be able replan the route if neces-
sary.

7
6.4

2.1.3 Navigation and localization requirements

This section lists fulfilled requirements regarding navigation and localization.
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AB Mail Robot 4

Requirement 15 Given an approximate map and an initial pose
in the map, the software shall be able to esti-
mate the robot pose in the map when the robot
is moving around.

5.3.1

Requirement 16 The software shall be able to give some indica-
tion of the uncertainty in the robots pose.

4
5.3.1

Requirement 17 The software shall be able to estimate the
robot’s pose in environments that are flat.

5.3.1

2.1.4 Other requirements in the software

This section lists other fulfilled requirements in the software.

Requirement 20 There shall be a possibility to maneuver the
robot using the onboard laptop.

3.1.2

Requirement 21 The software shall be written in C++ or MAT-
LAB.

3.1.2

2.2 Robot requirements

This section lists fulfilled requirements regarding the robots physical movement.

Requirement 28 Given the initial position on the route, the
robot shall be able to follow the route and avoid
objects by slowing down when closer than 60cm
from the center of the robot, and stopping when
closer than 30cm.

5
6
7

Requirement 30 If the end position is arbitrary, the robot shall
be able to stop within 4 decimeters from it. The
error of the robot heading is insignificant.

5
6
7

2.3 Requirements regarding further development

This section lists fulfilled requirements regarding further development.

Requirement 41 Suggestions regarding the implementation of
IRB 120 robot shall be discussed in the tech-
nical documentation

9
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3 Overview of the System

The system consists of a MobileRobots P2-DX robot connected to a HP ProBook 6450b
laptop. The laptop runs the application that controls the robot and can also be used
as an interface if a user wants to manually control the robot or view the robot’s map.
The robot and the laptop communicate via a RS232 serial port. The different parts of
the system and how they communicate can be viewed in Figure 2. The laser and sonars
send range measurements and the odometers send wheel position and speed estimates.
The micro controller (MC) decodes the data from the sonars and odometers and passes it
on to the program. The MC also translates the motion commands from the program to
control signals for the motors. When collecting data for Offline-SLAM, see Section 5, the
user drives the robot with the laptop’s arrow keys. When mapping is done, the user can
tell the program where the robot should go. The output from the program to the user is
a map and the robot’s current position in the map.

Figure 2: Overview of the system.

3.1 Subsytems

This section includes a short description of the subsystems.

3.1.1 Robot

The robot is a wheeled MobileRobots P2-DX model equipped with odometers, a laser,
sonars and a micro controller (MC). The micro controller receives data from the sonars
and odometers. It also sends control signals, calculated by the software on the laptop, to
the servos.
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3.1.2 Laptop

The laptop receives sensor data from the laser and the robot’s micro controller. It is also
responsible for the software which handles SLAM, trajectory planning and calculation of
the control signals.

The application is written in C++ and uses the ActivMedia Robotics Interface for Ap-
plication (ARIA) library for all communication with the robot. ARIA has utilities for
both receiving data from the sensors and controlling the motors. The program can be
divided into three subsystems with specific tasks according to Figure 3. These subsystems
are thoroughly explained in Sections 5 to 7. The SLAM system receives range measure-
ments from the laser. The control system receives a pose estimate from the odometers
and passes it on to the SLAM system together with a calculated covariance matrix. The
SLAM system sends a grid map and an improved pose estimate to the trajectory planner
which plans a trajectory to the goal and sends the next desired position to go to, to the
control system. It, in turn, sends the desired wheel velocities to the motors.

Figure 3: Program structure.
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4 Pose Uncertainty

The robot pose is given by the following vector, where x and y are the position coordinates
and θ is the heading direction, Xi = (xi, yi, θi)

T . To estimate the uncertainty of each pose,
the uncertainties of the odometers are taken into consideration. The uncertainty of a pose
Xi, given the previous pose Xi−1, is described as P (Xi|Xi−1) = uTi · Σ, where ui is the
motion command defined as ui = Xi−Xi−1 = (∆odo

x ,∆odo
y ,∆odo

θ )T , view Figure 4, and Σ

is a diagonal matrix with the variances of ∆odo
x ,∆odo

y and∆odo
θ in the diagonal, defined in

equation 1.

Figure 4: Model of motion command ui

The distribution of the new pose is considered to have a mean equal to the odometer
movement added to the previous pose. To obtain the variance of each odometer, the
initial approximation σ∆odo

x
= 0.1, σ∆odo

y
= 0.1 and σ∆odo

θ
= 0.15 was used, e.g. after

driving 1 meter in the x direction, the standard deviation would be 10cm in x. This
approximation was used while implementing the SLAM and Pathfinding algorithms and
proved to give good results in pose accuracy. Different approaches were used to improve
this accuracy, for example was the motion model described in [3] used, but without any
improvements. Therefore the final variance that was used was also the initial guess.

Σ =

(σ∆odo
x

)2 0 0

0 (σ∆odo
y )2 0

0 0 (σ∆odo
θ )2

 . =

0.12 0 0
0 0.12 0
0 0 0.152

 . (1)
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4.1 Future development regarding pose uncertainty

Further development and tests regarding the pose uncertainty is advised. The use of a
motion model is strongly recommended to increase pose accuracy. To set the covariances
to zero as done above is a major simplification since a standard deviation in θ effects the
standard deviations of x and y.
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5 SLAM

This subsystem is responsible for the simultaneous localization and mapping (SLAM).
Laser scan measurements are used to estimate the robot position and heading in a map
and to update the map as changes are observed. Here, sensor models, odometry and laser
scan measurements are used.

The system contains two different SLAM-algorithms which are called Offline-SLAM and
Online-SLAM. The purpose of Offline-SLAM is to create an accurate map of the environ-
ment in which the robot will operate. This algorithm is too computationally demanding
to be used in real time and therefore Online-SLAM is needed for real time applications.
Online-SLAM runs in real time and it uses a map built with the help of Offline-SLAM in
which it localizes the robot.

Offline-SLAM only uses data from the odometers and the laser. Therefore, the resulting
map only contains ”what the laser sees”. When the map is built it needs to be converted
for computational reasons. The converted map is a line based map which Online-SLAM
uses for localization. The idea is that the line based map is a filtered version of the map
arising from Offline-SLAM in the way that it manly contains larger objects such as walls.
Because these kind of objects are not likely to be moved, removed or added, Online-SLAM
can use the line based map to achieve good localization without updating it.

However, the line based map cannot be used for navigation. The reason for this is that the
robot has to know about any obstacles that it could collide with and it is not likely that
the line based map contains this information. Therefore an occupancy grid map is built
and used for navigation. Initially the grid map is constructed from the data generated by
the Offline-SLAM algorithm.This map is then updated in real time in the Online-SLAM
algorithm using measurements from the laser.

How these tasks are solved and what sensor models are used is described below.

5.1 Sensor Models

This section describes what data is delivered by each type of sensor and how this data
can be related to a global coordinate system. To derive the sensors locations in the global
coordinate system there is a need to define the robot’s local coordinate system. If a
position is given in the robot’s local coordinate system as (prx, p

r
y)T the corresponding

global position (px, py)T is given by(
px
py

)
=

(
x
y

)
+

(
cos θ − sin θ
sin θ cos θ

)(
prx
pry

)
(2)

where X = (x, y, θ)T is the pose of the robot. This operation is denoted by

(px, py)T = X ⊕ (prx, p
r
y)T . (3)

5.1.1 Laser Scans

The laser sensor delivers scans of the enviroment at a rate of about 4 Hz. One laser
scan is a sequence E = (e0, e1, ..., e360), where ei is a distance measurement taken from
the robot’s position with an angle ψk relative to the robot’s heading. The angle ψk is
given by ψk = −90 + 0.5k. If the robot’s pose is X = (x, y, θ)T and the position of the
laser sensor is (0, 0) in the robot’s local coordinate system, then each measurement ei
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AB Mail Robot 10

corresponds to a physical position (ux, uy)i by

(ux, uy)i = (x, y) + ei(cos(ψi + θ), sin(ψi + θ)) (4)

and a scan E corresponds to a set of positions U =
⋃360
k=0(ux, uy)ki .

5.2 Building the Map

This section describes how the map of the environment, in which the robot will operate,
is built. It is divided into three subsections: Data Collection, Offline-SLAM and Map
Conversion.

5.2.1 Data Collection

The robot is manually maneuvered in some area and at certain moments data are saved.
The saved data contain an estimate of the relative motion since the previous saved point
as well as laser measurements. Instead of saving data at certain points in time, data is
only saved when the robot’s pose has changed significantly. New data is saved if new laser
measurements are collected and if the odometers estimate that the robot has traveled a
distance greater than some distance d, or that the robot has changed its heading with
an angle greater than some angle β. The values of d and β are set experimentally. The
reason why data is saved in this manner is because there is no use of saving a lot of data
if the robot does not change its pose.

5.2.2 Offline-SLAM

Since the laser scans are very accurate, the problem of building an accurate map from
laser scans is the problem of estimating the poses from which the scans were taken as
accurately as possible. Therefore, one can consider the following estimation problem.

Assume that the robot has taken n + 1 laser scans. Let Xi = (xi, yi, θi)
T describe the

robot position and heading when scan i was aquired and simply let X0 = (0, 0, 0)T . Let
the relative pose change of Xi seen from Xj

Dij = Xi 	Xj :=

 cos θj sin θj 0
− sin θj cos θj 0

0 0 1

 (Xi −Xj) (5)

be the measurement equation. An observation Dij of Dij is defined as

Dij = Dij + ∆Dij (6)

where ∆Dij is a random Gaussian noise with zero mean and known covariance matrix
Cij . Assume that there is a set S consisting of pairs (i, j), where 0 ≤ i < j ≤ n such that
there is an observation of Dij with a corresponding covarince matrix Cij for each pair
(i, j) ∈ S.

Then a criterion of optimal estimation can be formed based on the maximum likelihood
concept. By assuming that the observation errors are mutually independent, the criterion
is to minimize the following Mahalanobis distance

W =
∑

(i,j)∈S

(Dij −Dij)
TC−1

ij (Dij −Dij) (7)
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AB Mail Robot 11

If one has an initial estimate

X̂ = (X̂0, X̂1, .., X̂n)T (8)

of
X = (X0, X1, .., Xn)T (9)

an approximate solution of (7) is given by linearization. The solution, which can be found
in [5], yields a new approximation X̂ of X.

The algorithm, which is developed with inspiration from [5], contains two different kinds
of observations, called weak and strong links. A weak link is an estimate, taken from the
odometry, of the relative pose difference between two adjacent poses. While weak links
are taken from the motion model, strong links are more sophisticated. The idea is to find
pairs of poses with scans that are strongly correlated, i.e pairs of poses from which the
laser detects the same physical objects has to be found. By matching the scans with a
scan matching algorithm, an estimate of a relative pose difference can be obtained.

The algorithm makes use of the above mentioned ideas in two steps. From the motion
model we have a set of weak links as

DW = (DW,1, DW,2, .., DW,n) (10)

where
DW,i ≈ Xi 	Xi−1. (11)

In the same manner, we define the set of m(n) strong links as

DS = (DS,(i,j)1 , DS,(i,j)2 , .., DS,(i,j)m(n)
) (12)

where
DS,(i,j)l ≈ Xjl 	Xil (13)

with jl 6= il and jl, il ∈ (1, 2, ..., n).

For k ≤ n, let

X̂k = (X̂0, X̂1, .., X̂k)T (14)

be an approximation of
X = (X0, X1, .., Xk)T (15)

and let
DWk

= (DW,1, DW,2, .., DW,k) (16)

and
DSk

= (DS,(i,j)1 , DS,(i,j)2 , .., DS,(i,j)m(k)
). (17)

The main idea of both of the algorithms is as follows

I Initialize X̂k, DWk
and DSk

as X̂k = (0, 0, 0)T and DWk
= DSk

= ∅.

II Update X̂k as X̂k = (X̂0, X̂1, ..., X̂k−1⊕DW,k) and DWk
as DWk

= (DW(k−1)
, DW,k).

III For i = 0, 1..., k − 1 check if there is a possible strong link between X̂i and X̂k. For
every such pair, do scan matching to achieve a new strong link and add this link
to DSk

. How the detection of the strong links is done and how the scan matching
works are explained in the next two sections.
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IV At this stage (7) is formed for the first k+ 1 poses with the two sets of observations
DWk

and DSk
. It is then solved by linearization around X̂k. The solution gives a

new estimate of X̂k.

V If there are any weak links left to add, go back to step II. Otherwise, the algorithm
is finished.

However, considering that the order of the detection of strong links is approximately n,
one might realize that iterating through this algorithm will take too long time if n is large.
Consider again the detection of strong links, the order of iterating through the algorithm
is then approximately n!. Therefore the algorithm is separated into two steps.

In the first step the data given by the robot is separated into equally big pieces. The
first piece consists of the initial pose (0, 0, 0)T together with the first 5 weak links and
corresponding measurements. The above described algorithm is run on this data and
results in an improved estimate of the first 6 poses. The second piece of data then consists
of weak links number 6 to 10, but at this stage the initial pose is set to the last pose
generated by running the algorithm on the first piece. Together with the corresponding
measurements the algorithm is run again. In this way a set of pieces is generated where
the last pose in a piece is the first pose in the next piece. This algorithm is, of course,
only of order n. A piece Pi containing 6 poses and corresponding measurements can
mathematically be described as

Pi = {(X̂5i,M5i), (X̂5i+1,M5i+1), ..., (X̂5i+5,M5i+5)} (18)

where Mi =
⋃360
k=0(mx,my)ki denote the set of points in the scan taken from Xi relative

to Xi.

This algorithm generates pieces that are of high quality on their own, but it might still
be the case that the approximation of the relative pose between the first poses in two
pieces generated far after each other are of low quality. For every piece one can get good
estimates of the relative positions between the measurements in the piece and the first
pose in the piece. By considering the first pose in a piece as the representive pose Xp

i of
the piece

Xp
i = X5i (19)

and the set of measurements Mp
i in a piece relative to Xp

i

Mp
i =

4⋃
k=0

(X5i+k ⊕M5i+k)	X5i (20)

of the piece as the representive measurements of the piece, one can again run the algorithm
on the set of pieces in order to increase the quality of the relative poses between the pieces.
An illustration of two adjacent pieces are shown in Figure 5. Since the last pose in a piece
is the first pose in the next, the set of weak links D

p

W is now naturally given as these
relative poses

D
p

W = (D
p

W,1, D
p

W,2, ..) (21)

where
D
p

W,i = X̂p
i 	 X̂

p
i−1 = X̂5i 	 X̂5(i−1) (22)

.
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Figure 5: Illustration of two adjacent pieces. The big ”+” and ”◦” represents two poses
Xp
i and Xp

i+1. Also shown in the figure are the other poses and the measurements that
generates the whole pieces. Notice that a lot of measurements are thrown before generating
this figure. This was made to make it possible to distinguish the two pieces. The axes are
given in millimeters.

The covariance matrices for the weak links in the first step of the algorithm are given by
the motion model. In the second step, the covariance matrices for the weak links are set
experimentally as a diagonal-matrix CpW

CpW =

0.012 0 0
0 0.012 0
0 0 (0.1π/180)2

 (23)

and so are the covariance-matrices for the strong links in both steps of the algorithm

CS = CpS =

0.052 0 0
0 0.052 0
0 0 (0.5π/180)2

 . (24)

The reason of this is that it is hard to get a good estimate of the covariance matrices from
the scan matching algorithm that is used. However, if one could get a good estimate of
the covariance matrices from the scan matching algorithm, using these would most likely
improve the result. The variances in the covariance matrices are given in [m2] and [rad2].
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The result of the algorithm run at a data set is shown below. In Figure 6 the map
generated from odometry is shown.
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Figure 6: Map generated from the odometry. The axes are given in millimeters.

In Figure 7 a comparsion of the resulting map from the first and second step is shown.
The robot has travelled from the bottom left, up and then back again when collecting the
data. In Figure 8 one can see the improvement made when closing the loop in the second
step of the algorithm. Notice that these maps are generated from the data set which was
used to set all design variables. The axes are given in millimeters.
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Figure 7: To the left, the resulting map after the first step. To the right, the resulting
map generated after the second step. The axes are given in millimeters.
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Figure 8: Closeup of the generated maps, first step on top and second step at the bottom.
The axes are given in millimeters.
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5.2.3 Detection of Strong Links

The detection of the strong links is a key to estimate the poses well. The question is how
to detect that there is a a strong link between two poses. Hence, one must find conditions
such that if they are fulfilled, it is likely that the laser scans overlap. The fact that the
laser scans only cover a field of view of 180 degrees limits the ways of detecting strong
links. However, the following idea will handle the problem of the limited field of view.

In this section translations are given in millimeters and angles are given in radians. Let
Ui =

⋃N
k=0(ux, uy)ki denote the set of points in the scan taken from Xi = (xi, yi, θi)

T . To
decide if there is a strong link i↔ j the following will be done. Define a set Wi as

Wi = {(x, y) = (xi, yi) + r(cosα, sinα) : rmin ≤ r ≤ rmax, |θi − α| ≤ ϕ} (25)

where

rmin = (1− r0) · min
0≤k≤N

||(xi, yi)− (ux, uy)ki ||2 (26a)

rmax = (1 + r1) ·min
(

max
0≤k≤N

||(xi, yi)− (ux, uy)ki ||2, r2

)
(26b)

ϕ = π/2 + ϕ0 (26c)

Let Qij = #(ux, uy) ∈ Uj
⋂
Wi. Define Qji in the same way and regard the link between

i and j as a strong link if and only if min(Qij , Qji) > Q. If the link is strong, Uj
⋂
Wi

and Ui
⋂
Wj is used for scan matching.

Xi Xi

Xj Xj

Wi

Wj

Uj∩Wi Ui∩Wj

phi

phi

rm
ax

rmin

rm
ax

rm
in

Figure 9: Detection of strong link

By setting r2 =∞, the value of rmax becomes

rmax = (1 + r1) · max
0≤k≤N

||(xi, yi)− (ux, uy)ki ||2

which also was the initial idea. An illustration of this, with r0, r1 and ϕ0 all set to zero,
is shown in Figures 9 and 10. The purpose of the parameters r0, r1 and ϕ0 is because
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the pose Xi can only be estimated. With help of the illustrations one might realize that
if the estimations are bad a strong link might be missed if the parameters are set to zero.
By increasing the values of these three parameters, the sets Wi and Wj will grow and the
risk of missing a strong link decreases. However, increasing them too much could result
in a false detection.

Figure 10: Illustration of U and U
⋂
W . The circles represent the measured points U . The

filled circles represent the points that are counted and eventually used for scan matching
U
⋂
W . To the left is Uj and Uj

⋂
Wi and to the right is Ui and Ui

⋂
Wj .

The fact that the operation area of the robot is office landscapes, which often have long
corridors and sometimes windows, lead to the need defining rmax as in (26). In this kind
of environment most scans include a smaller set of points that are very far away from the
robot’s position. This means that the size of Wk for an arbritary k ∈ {0, 1, ..., n} is most
likely very large if r2 =∞, which in turn leads to a lot of false detections. The values of
the parameters are r0 = 0.1, r1 = 0.2, r2 = 10000 and ϕ0 = π/10. Results from running
the algorithm on real data are shown in Figure 11.
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Figure 11: Detection of strong links for the first step. To the left two scans Ui and Uj .
To the right Ui ∩Wj and Uj ∩Wi. The axes are given in millimeters.

The above described algorithm only works in the first step of the SLAM-algorithm, since
in the second step every pose has 5 sets of scans belonging to it and therefore one cannot
define a set Wi as above. To detect strong links in this step the following is done. Consider
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two poses Xp
i and Xp

j with corresponding relative measurements Mp
i and Mp

j . Define W p
ij

as
W p
ij = {(x, y) ∈ Xp

i ⊕M
p
i : min ||(x, y)−Xp

j ⊕M
p
j ||2 < 250} (27)

Define W p
ji in the same way. A strong link i↔ j is detected if and only if

#W p
ij

#Mp
i

> 0.35 (28)

and
#W p

ji

#Mp
j

> 0.35 (29)

In words, this means that the amount of points in the set Mp
i with a distance to the

closest point in Mp
j lower than 250 mm must be more than 35 percent and vice versa.

Results from running the algorithm on real data are shown in Figure 12.
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Figure 12: Detection of strong links for the second step.To the left, Mp
j small blue circles,

Mp
i small red squares and W p

ij red big squares. To the right, Mp
i small blue circles, Mp

j

small red squares and W p
ji red big squares.

5.2.4 Scan Matching

Scan matching is the process of aligning an observed set of measurement positions Uo
with a reference set of measurement positions Ur. Here Uo and Ur refers to the sets of
measurement positions generated by a laser range scans at two different robot poses Xo

and Xr. A set of measurement positions can be described as U =
⋃360
k=0(ux, uy)k in the

local cartesian coordinate system of the specific pose according to Eq. (4).

For scan matching an ICP (Iterative Closest Point) algorithm is used. The ICP algorithm
is iterative and consists of two steps. First, corresponding measurement positions from
the observed and reference measurement positions sets are paired to form (ol, rm) using an
initial guess of the relative pose and a nearest neighbor approach where ol = (ux, uy)lo ∈ Uo
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and rm = (ux, uy)mr ∈ Ur. Here positions are only paired if a measurement position in
the observed set has a squared distance smaller than E to a position in the reference set.
Also a position in the reference set can be paired with many positions in the observed set.
Second, a new relative pose is estimated by calculating the relative pose that minimizes
the least-mean-squared error between the associated measurement positions. Denote the
set of all associated measurement position pairs as A and ∆ = (∆x,∆y,∆θ)T as the
relative pose displacement. By using ∆, ol can be projected onto the reference frame in
which rm is described by

orl =

(
cos(∆θ) sin(∆θ)
−sin(∆θ) cos(∆θ)

)
ol +

(
∆x
∆y

)
= Rol + T (30)

where R is a clockwize rotation by the angle ∆θ about the origin and T = (∆x,∆y)T a
translation. The aim of ICP is to obtain the rotation and translation between two scans
that minimizes the MSE (mean square error) which is defined by

ε2 = min
∆

∑
∀(ol,rm)∈A

‖rm −Rol − T‖2 (31)

Each iteration will yield a new estimation of relative pose displacement

∆new = (∆xnew,∆ynew,∆θnew)T

and our initial guess is the odometry estimation of Dor = ∆ini. In every iteration E is
decreased until E ≤ Emin. Initially E = Emax where Emax is an upper bound of the
expected squared odometric errors between the two scans, i.e. Emax = σ2

x + σ2
y. Emin

is based on the uncertainty of the laser measurements. If the uncertainty of the laser
is modeled as a normal distribution with standard deviation σlaser, the squared match
errors ‖rm − orl ‖2 can be modeled as a chi-squared distribution of one degree of freedom
according to [7]. Then the squared threshold value that concentrates 99% of valid point
correspondences is (χ2

0.99)2 = (6.63σlaser)
2 and thus Emin = (6.63σlaser)

2. For a thorough
explanation of ICP and the analytical solution of the optimization problem, refer to [7].The
ICP algorithm will give a new estimate of Dij i.e. Dij for the strong links. Since it is
difficult to get a good estimate of the uncertainty of Dij the corresponding Cij is set to
a constant diagonal matrix. δx and δy are given in m and δθ is given in rad and are set
experimentally to from:

Cij =

δ2
x 0 0
0 δ2

y 0
0 0 δ2

θ

 =

0.052 0 0
0 0.052 0
0 0 (0.5π/180)2

 (32)

5.2.5 Mapping and Map Conversion

The Offline-SLAM algorithm generates a set of estimated robot poses that together with
their corresponding laser measurements form a data set from which maps can be con-
structed. From this data a grid map is constructed to be used for trajectory planning.
Using the extracted data set one can plot every measurement in a global coordinate sys-
tem forming a map consisting of points. This map is not particularly useful and needs
to be converted. A line based map to be used in Online-SLAM is extracted from these
points.
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5.2.6 Line Based Map

To minimize the computation in the Online-SLAM algorithm a set of lines are extracted
from the point map described in the previous section. These form a line based map. The
lines are computed by an iterative procedure which is based on the Hough transform [4].
The algorithm is similar to the one used in [8]. The algorithm consists of the following
steps.

First the algorithm is initialized by computing the Accumulator A of the Hough transform
for all the points described in a global coordinate system. The Accumulator is a two-
dimensional matrix where an element A(i, j) describes how many times a line on the
form

ρ = xcos(θ) + ysin(θ) (33)

has been generated. Here i and j corresponds to actual angles and distances θ and ρ. The
parameters ρ and θ are defined as illustrated by Figure 13.

Figure 13: Line (blue) on the form ρ = xcos(θ) + ysin(θ)

For every point, with coordinates (x, y), ρ is caluculated by inserting x, y and discrete
values of θ, where 0 ≤ θ ≤ π, into Eq. (33). For every line that is generated in this way
the corresponding element in the Accumulator is increased by 1. Extracting the indexes
that corresponds to the maximum value of the Accumulator gives the parameters ρ and
θ that corresponds to the line that intersects the largest amount of points.

The following steps are then iterated:

I The line corresponding to the largest value of the Accumulator is calculated and
points that are within a distance a1 from this line are extracted.

II The extracted points are split into a number of segments. This is done by iteratively
adding points to a segment if the distance between any of the points in the segment
and the current point is less than a certain value a2. If a segment consists of less
than a3 points the segment is disregarded.

III The remaining segments are then evaluated to see if they correspond to lines of
sufficient length. This is done by calculating the maximum distance between all
points in a segment and extracting the two points corresponding to this value if the
maximum distance is larger than a4. If the distance is less than a4 the segment is
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disregarded. By calculating the intersection of the segment line and the lines that
are orthogonal to the segment line and goes through the two extracted points, the
end points of the segment line are extracted.

IV The points corresponding to the remaining segments will be removed from the total
set of points, i.e from the map consisting of points, and the extracted end points are
saved. In addition these points are removed from the Accumulator. The process is
then iterated for the remaining points until the maximum value of the Accumulator
falls below the threshold a5.

Since the lines that have been extracted has to be of at least length a4 and be generated
by at least a3 points, small objects will be filtered out.

The map that can be constructed from the extracted end points have undesired line
gaps that needs to be connected. This is done in the following way. First the distance
between all the extracted end points are calculated. If the distance between two end
points is less than a6 the intersection point between these lines is calculated as well as the
squared distances r1 and r2 from the end points to the intersection point. If the criteria
r1+r2 ≤ 2a2

6 is fulfilled the corresponding end points of the lines are set to the intersection
point. If the lines can not be extended in this way but the distance between end points
is less than a6 a new line will be added to fill the gap. The value a6 is low meaning that
only very short lines can be generated and that lines cannot be extended much.

The values of the distances a1, a2, a4, a6 , the number of points a3 and the value a5 are set
experimentally. The following values are used a1 = 10, a2 = 15, a4 = 25, a6 = 20, a3 = 8
and a5 = 2. All distances are in cm.

Figure 14 illustrates the extraction of a line based map from real data. To the left is
the map consisting of points. To the right the lines have been extracted. The red points
represent points that have been discarded or that has not contributed to any line and the
green points represent points that have contributed to a line.
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Figure 14: To the left is a point map extracted from real data generated by Offline-SLAM.
To the right is a line map that has been extracted from the point map. The red points
are discarded or redundant and the green points have contributed to a line

Figure 15 displays the line map extracted from the point map in Figure 14.
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Figure 15: The line map extracted from the Offline-SLAM point map in Figure 14

The algorithm can generate lines that are redundant. One way to improve the algorithm
and get rid of these lines could be to simulate laser scans from different robot poses in
the generated map and remove lines that are never intersected. Typically one could use
the estimated poses from the Offline-SLAM algorithm to simulate measurements.
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5.3 Online-SLAM

This section describes how the localization and mapping is performed when the robot is
operating.

5.3.1 Monte Carlo Localization

The robot localizes itself using a Monte Carlo Localization (MCL) algorithm. The MCL
uses a collection of samples (also known as particles) to estimate the robot’s pose. These
particles are spread out on the predefined map which is built as described above. All
particles describe a possible pose for the robot and the possibility (importance weight)
that the robot actually have that pose.

The MCL algorithm, also illustrated by Figure 16, is:

I All particles are uniformly distributed within a radius of 0.8 meter from the robots
inital pose on the map, with equal importance weights.

II The robot continuously scans the surroundings using the laser range sensor. When
the robot receives new measurement data it checks if the robot has moved a distance
greater than 0.5 meter or changed its heading with an angle greater than 15 degrees.
When the condition is reached the robot will proceed to the next step or else wait
for new data and redo the procedure.

III All particles poses are updated by sampling new positions from the motion model.

IV Each robot laser scan consists of 361 measurements. The 180 degree field of view
is divided into nine segments. Each segment is filtered to remove measurements
which has detected short distances. This is to prevent that smaller objects close
to the robot affect the next step where one measurement is extracted from each
segment. To determine which samples to choose the ordinary least squares(OLS) is
applied to each segment and the sample that is closest to the line is chosen. If the
number of samples remaining in a segment after the filtering step is less than half,
a random sample is instead chosen from the segment. The nine samples’ measured
distances and their corresponding angles are stored. Then each particle simulates
nine sensor measurements in the same angles as the previously extracted samples.
The simulated laser rays are vectors originating from the particle locations. When
they intersect with a line segment in the map the measured distance from the particle
to the intersection is stored.

V The N measured distances for each particle are subtracted with the M actual mea-
sured distances. The error between the measurements is accumulated and is used
to determine the importance weight for the particles. The weight for each parti-
cle is the inverse of the error divided by the total error of all particles so that the
importance weights sum up to one. If the particles measurement data is similar
to the actual data the environment for both the particle and the robot are similar
therefore the importance weight increases. In the case when the measurement data
are very different the importance weight decreases. A point estimation of the robots
pose is done by calculating a weighted mean of all particles. To be able to deter-
mine a measure of the uncertainty of the estimated robot pose a new measurement
simulation is performed from the estimated pose. The squared error between these
measurements and the robots measurements serves as an indication of the robots
uncertainty.
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VI A new set of particles is created. By sampling(with replacement) from the current
set the new particles will be distributed according to the importance weights of
the current particles. More particles will be sampled from the particles with high
importance weight since they have a higher probability. This method is used to
draw 90 percent of the new particles. The remaining 10 percent are randomly
distributed around the estimated position of the robot similarly to I. This solution
adds a possibility to correct the estimated robot pose if the particles have wrong
poses.

VII This new set will replace the old set of particles and all particles will have an equal
importance weight. After this the whole procedure is repeated from step II.

An addition to the MCL algorithm presented above is a function that has been named
saveSlam. This function is called upon when the robot has been stuck in the same pose
more than a few seconds for some reason. The function reinitializes all particles and
spreads them uniformly around the last estimated pose. In almost all cases when the
robot gets stuck it does that because it has a bad estimate of its pose. The reinitialization
solves this problem since the particles get a new chance of making a better estimation of
the pose.

As already mentioned, the map used for localization consists of a set of lines. The reason
for this choice is to make the MCL as efficient as possible. By using a line based map, the
environment can be described by a relative small set of objects without loss of resolution.
Also, since the only measurements used for localization arise from the laser sensor and
since a laser ray can be described as a line, the simulation of the measurements is simple.
However, as mentioned earlier, the map used for localization will almost never contain
small objects and therefore it is important that measurements arising from small objects
are detected and filtered out as described in IV.

5.3.2 Online Mapping

The online mapping differs from the offline mapping previously described. For the navi-
gation to work the map needs to be updated when new objects are detected and objects
that are no longer present should be removed from the map. This is done by using two
different maps, one grid map and one map containing line segments.

The grid map based is dynamic and is continuously updated if changes in the map are
detected so that the control unit knows about the environment. The line based map is
static and is only used by the MCL algorithms particles for localization. The reason for
this is that the main objects in the line based map, e.g. walls, will not likely be moved or
removed. Therefore, the big difference between the line based map and the reality will be
dynamic objects such as people, smaller objects such as tables and chairs and objects that
the laser cannot detect, e.g. glass. This is why the algorithm that chooses the angles at
which the particles simulate range measurements in MCL, is used to filter out the possible
outliers caused by objects not included in the grid map. However the algorithm is not
able to detect all dynamic objects which cause the robot to be more uncertain of its pose
at those locations. Since the MCL is used, the particles will spread out over a larger area
when the robot moves in an environment where the map differs from the reality. But when
it exits that area the particles will gather around the robot again making the uncertainty
of the pose smaller.
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Figure 16: The MCL algorithm

5.4 Grid mapping

The grid map is constructed from laser measurements. Since this map is used for trajec-
tory planning it will be much more detailed than its line based counterpart. This map
will also be updated by the Online-SLAM algorithm. Throughout this section, we will
use the terms grid, cell and grid cell interchangeably.

5.4.1 Occupancy grid mapping

Occupancy grid mapping generate maps under the assumption that the robot pose is
known, from noisy and uncertain sensor measurement data. The basic idea of the occu-
pancy grid is to represent a map of the environment as binary random variables. Each
random variable is binary and represents the presence of an obstacle at that location in
the environment. Occupancy grid algorithms compute approximate posterior estimates
for these random variables. The occupancy grid is used after solving the SLAM problem
and therefore take the path estimate as given. Hence the controls and odometry data
have no part in the occupancy grid since the path is assumed to be known.
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The occupancy grid is used to estimate the posterior probability over maps given the data
[9],

p(m|z1:t, x1:t), (34)

where m is the map, z1:t is the set of measurements from time 1 to t, and x1:t is the set of
robot poses from time 1 to t. An occupancy grid represents the map as a fine-grained grid
over the area in the environment that represent the map m. Consequently this posterior
is almost impossible to calculate because an occupancy map divides the environment into
finitely many grid cells. The number of maps that can be represented by a map with
10000 grid cells is 210000. Therefore it is intractable to calculate the posterior probability
for each single map. The map that have been generated for this case contains 405000 grid
cells, see Figure 22.

Denote mi as the grid cell with index i, then p(mi) represents the probability that grid
cell i is occupied. The idea is then to break down the problem into smaller problems of
estimating

p(mi|z1:t, x1:t) (35)

for all grid cells. Each of these estimation problems is then a binary problem. This break-
down is appropriate but is not capable to represent dependencies between neighboring
cells. Instead, the posterior of a map is approximated as the product of each grid cell

p(m|z1:t, x1:t) =
∏

p(mi|z1:t, x1:t). (36)

This factorization makes it possible to use a binary Bayes filter to estimate the occupancy
probability for each grid cell.

A very useful algorithm in grid mapping is the occupancy grid algorithm which apply the
log odds representation of occupancy. The odds of a state is defined as the ratio of the
probability for an event divided by the probability of its negate:

p(x)

p(−x)
=

p(x)

1− p(x)
(37)

As a consequence, the log odds ratio is the logarithm of the odds:

l(x) = log
p(x)

1− p(x)
(38)

A belief reflects the robot’s internal knowledge about the state of the environment and
will be denoted bel(xt), where:

bel(xt) = p(xt|z1:t, u1:t) = p(xt|z1:t) (39)

The controls and odometry u1:t play no role here either because the belief only depend
on the measurements when the state is static. The belief is commonly implemented as a
log odds ratio and denoted lt(xt), the log odds belief at time t is given by [9]:

lt(xt, zt) = lt−1(xt, zt−1) + log
p(xt|zt)

1− p(xt|zt)
− lo(x) (40)

where

lt−1(xt, zt−1) = log
p(xt|z1:t−1)

1− p(xt|z1:t−1)
(41)

and the prior

lo = log
p(xt)

1− p(xt)
(42)
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The algorithm for occupancy gridmapping can be determined by applying the log odds
ratio for every grid which is a combination of equation 35 and 40:

l(t,i)(mi, xt, zt) = lt−1(mi, xt−1, zt−1) + log
p(mi|xt, zt)

1− p(mi|xt, zt)
− lo (43)

where

lt−1(mi, xt−1, zt−1) = log
p(mi|x1:t−1, z1:t−1)

1− p(mi|x1:t−1, z1:t−1)
(44)

and the prior

lo = log
p(mi)

1− p(mi)
(45)

Algorithm 1 Occupancy grid mapping

The general idea of the algorithm is:

1: Input: l(t−1,i), xt, zt
2: for all grid cells mi do
3: if the cell mi is in the measurement zt, i.e. the grid cell mi is covered by the sensor

then
4: update the log odds of the grid cell with

l(t,i) = l(t−1,i) + InverseSensorModel(mi, xt, zt)− l0 (46)

5: else {mi is outside zt}
6: then the log odds of the grid is exactly the same as it was before

l(t,i) = l(t−1,i) (47)

7: end if
8: end for when all grid cells have been examined
9: Output: l(t,i)

The function InverseSensorModel(mi, xt, zt) implements the inverse measurement model
p(mi|x1:t, z1:t) in its log odds form:

InverseSensorModel(mi, xt, zt) = log
p(mi|xt, zt)

1− p(mi|xt, zt)
(48)

Algorithm 1 defines the basic principles of the occupancy gridmapping algorithm.

Inverse models are often used in situations where the measurement distribution is more
difficult to produce than a binary state. An example of such a situation is the problem of
estimating a door being open or closed using camera images. The state, open or closed,
is extremely simple while the measurement model p(zt|x) is much more complex, i.e. it
is easier to determine the probability of a door being open from a camera image than
calculating the distribution of all camera images showing an open door.

A very neat property of the log odds representation is that the occupancy probabilities
are easily recovered:

p(mi|zt, xt) = 1− 1

1 + exp(lt,i)
(49)
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Although the sonars are not used for occupancy grid mapping in this project, there will be
a thorough explanation of the inverse sensor model for sonars since the concept is useful
to understand when the laser is implemented. The laser can actually be seen as a special
case of the sonar where the opening angle is equal to zero.

The inverse sensor model can be designed in many different ways, here a very basic version
will be used. The inverse measurement model p(mi|zt, xt) describes the probability of a
grid being occupied given the difference between the measured distance zt and the distance
of the grid mi relative the robot pose xt. The signals from sonars are typically emitted
in a cone, the angle between the grid and the horizontal axis will therefore be considered
in p(mi|zt, xt), see Figure 17.

Figure 17: The occupancy probability of a grid mi depends on the distance d to xt and
the angle θ from the horizontal axis of the sonar.

The inverse measurement model can be determined by using a nonlinear function, [10],
s(zt,θ) which is a combination of a Gaussian N (0, σθ) and a linear function f(zt), see
Figure 18, where the Gaussian part describes the angular range of the sonar and the
linear part is determined by the measured distance, see Figure 19.

s(zt, θ) = f(zt) · N (0, σθ) (50)
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Figure 18: Functions used to compute s(zt,θ), left - Gaussian function, right - linear
function.

The shape of the linear function and the standard deviation of the Gaussian distribution
depend on the characteristic of the sonars. To determine these functions one has to
calculate a fitness function with sensor measurements where the map and the position
are known. A common way to solve this kind of problem is the iterative optimization
algorithm such as gradient descent1. The sonars are not used for gridmapping in this

1Thank you Jörg Müller, Albert-Ludwigs-University of Freiburg, for your support.
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project and therefore we have not made any effort to determine these functions. The
functions shown in Figure 18 will be used only for illustration, new functions must be
determined to obtain suitable results. However, the variance of the Gaussian distribution
is 0.05 which corresponds to the opening angle of 15 degrees for the used sonar in the
illustrations. Since the output from s(zt,θ) is probability, there will not be any specific
unit on the Gaussian and the linear function. More information about these functions can
be found in [10].

The function s(zt,θ) is used to determine how the probability of a grid will be changed
relative to the prior probability of the grid. To clarify the functionality, an example will
be shown. Suppose the sonar gives a measured distance of 1.5 m and the grid to be
updated is located along the horizontal axis, i.e. θ equals zero. According to Figure 19
this measurement corresponds to a value of approximately 0.15, assuming that the prior
probabilities for all grids are 0.5. Figure 20 shows the occupancy probability where d1, d2

and d3 are design parameters and the top and bottom levels respectively, are determined
by the prior ± s(zt,θ), i.e. 0.5 + 0.15 = 0.64 and 0.5 − 0.15 = 0.35. The constant d1

specifies how fast the probability of grids close to the measured distance will increase or
decrease. The average depth of obstacles in the gridmap is specified by the d2 − d1 while
the constant d3 have the functionality of linearly decreasing the probability behind the
obstacle to the prior occupancy probability.
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Figure 19: Function s(zt,θ) is used to determine how the probability of a grid will be
changed relative to the prior probability of the grid

When p(mi|zt, xt) is determined, the inverse sensor model can be calculated and the
occupancy probability of a grid is updated. If the probability from p(mi|zt, xt) is greater
than 0.5 it will generate a positive value of the inverse sensor model, i.e. the occupancy
probability for a grid will increase according to the occupancy grid mapping algorithm,
which can easily be verified by the summation of the log odds ratio. Analogically, values
less than 0.5 will decrease the occupancy probability. A special case occurs when the
distance to the grid is equal to the measured distance. The inverse measurement model
will then be 0.5 which corresponds to zero for the inverse sensor model, i.e. the probability
of a grid will not be changed and the previously value is kept, [10]. This feature is very
useful for small grids because the measurement uncertainty will be taken into account.
With small grids it is difficult to know in which grid cell the measurement actually ended
up in, i.e. ”the probability that the measurement was too long and the cell is free is equal
to the probability that the measurement was too short and the cell is occupied” 2 .

2Once again, thank you Jörg for the discussions and the expertise.
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Figure 20: The probability p(mi|zt, xt) that a grid is occupied as a function of the distance
to the grid.

Unfortunately there was not any time left to implement the inverse measurement model
for the sonar. Since the laser can be seen as a special case of the sonar, the procedure will
almost be the same for the laser. The major difference between the laser and the sonar
is the lack of angular dependence, which corresponds to a two dimensional version of the
function shown in Figure 19.

To simplify the inverse measurement model even more, the linear function s(zt) was not
used at all, instead the inverse measurement model was represented by the function in
Figure 20. The simplification refers to a function with fixed values of the top and bottom
levels regardless of the measured distance, [10]. These simplifications can be done because
the laser does not have the same range and angular uncertainty as the sonar.

Algorithm 2 defines the basic principles of the occupancy gridmapping algorithm for the
laser and the result can be seen in Figure 21.

Algorithm 2 Occupancy grid mapping with a laser range finder

The algorithm for the laser range finder is:

1: Input: l(t−1,i), xt, zt
2: for each single laser beam do
3: Calculate all cells of the grid map covered by the laser beam extended by d3 using

Bresenham’s algorithm (we assume the measurement to be a perfect line)
4: for each covered cell do
5: Calculate the distance of the center of the cell to the origin of the laser beam
6: Calculate the occupancy probability p(mi|zt, xt) given by the inverse sensor model

specified in Figure 20
7: Update the log odds, l(t,i), of the cell
8: end for when all covered cell in the laser beam have been updated
9: end for when all laser beams have been examined

10: Output: l(t,i)

The constants d1, d2, and d3 specify the interval in which the different linear approx-
imations are valid, see Figure 20, were d1 and d2 correspond too the average depth of
obstacles, [10]. Using a standard laser range finder from Sick the parameters are set: d1

= 0.05m, d2 = d1 + 0.1 m and d3 = d2 + 0.05m.

Since the pathfinding algorithm only has binary decisions, i.e. the grid is empty and
possible to cross or the cell is occupied and not suitable for entering, two different gridmaps
will be used. The first gridmap employs the log odds ratio, defined in equation 40, and
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consists of values from minus infinity to infinity. As earlier mention, zero in the log
odds ratio corresponds to an occupancy probability of 0.5 while a large positive value
corresponds to high probability and vice-versa. The other gridmap is binary (used by
the pathfinding algorithm) and consists of zeros and ones extracted from the logarithmic
gridmap. Therefore a threshold level, typically chosen to 0.5, must define a probability
where the grid is considered occupied or not, see Figure 22.

Algorithm 3 Basic gridsearching algorithm

The basic gridsearching is defined as:

1: Input: distance to target in polar coordinates
2: distance to the grid = distance to target + d3

3: while distance to grid ≥ 0 do
4: Convert the distance to cartesian coordinates and round to nearest grid
5: Update the probability according to Algorithm 1
6: distance to grid = distance to grid - grid size
7: end while

Another important thing to consider in the binary gridmap is the size of the robot. Usually
the grid size is much smaller than the robot which creates problems because the robot
position in pathfinding algorithm will always be illustrated by one grid (the center of
the robot), regardless of the actual robot size. The problem with this algorithm is quite
obvious and can be solved by padding the surrounding environment. The pathfinding
algorithm will then interpret the map as being smaller and therefore always choose a path
far enough for the robot to avoid a collision with the surrounding obstacles.

Figure 21: A logarithmic gridmap created in Matlab to simulate the occupancy grid
mapping algorithm. The blue lines defines the obstacles in the environment and the
color of each grid corresponds to the probability for a grid being occupied (white = low
probability, dark = high probability, grey = prior probability, i.e. unexplored areas).

To determine if a laser beam cross a grid cell mi we have implemented Bresenham’s line
algorithm [6]. The algorithm is used to determine which grid cells is covered by the
laser beam. Since time was running out, we did not have time to test and evaluate the
performance of Bresenham’s line algorithm. Instead, a very simple algorithm is used to
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identify which grids are passed by the laser beam, see Algorithm 3. But the Bresenham’s
line algorithm is much more sophisticated and will therefore be discussed here. It is an
algorithm which determines which pixels that should be plotted in order to form a close
approximation to a straight line between two given points [1]. The general equation of
the line through the endpoints is given by,

y − y0

y1 − y0
=

x− x0

x1 − x0
, (51)

were the the endpoints of the line are the pixels at (x0, y0) and (x1, y1). Hence the
algorithm find out if we have to move one step right or one step up and one to the right,
for the example were the start pixel (x0, y0) coordinates are smaller then the end pixels
(x1, y1), i.e. x0 ≤ x1, y0 ≤ y1, we know the cell column,x and the row, y, is given by:

y =
y1 − y0

x1 − x0
(x− x0) + y0 = k(x− x0) + y0. (52)

So from the start pixel the rows are counted up until the rows are equal to x1 and the
corresponding column, y, are calculated for each x. By analogy to other circuits. Since
the algorithm is very simple and fast, uses only integers, it is commonly used to draw
lines on a computer screen.

Figure 22: A binary version of the occupancy gridmap is used in the pathfinding algorithm.

5.4.2 Future development

There is a lot of thing that can be improved in the occupancy grid mapping algorithm.
For instance, the sonar is highly recommended to evaluate and implement in the grid
map. The easiest and most intuitive way is probably the previously mentioned method
where the non linear function s(zt,θ) is used. Since the laser and the sonars can detect
different obstacles one has to merge the result from these sensors. One approach is to
build separate maps for each sensor and employ the most pessimistic map, i.e. if one of
the sensors detects an occupied grid, so will the combined map. More about this can be
found in [9].

Another useful improvement is the implementation of an algorithm which automatically
calculates the desired gridmap size and the corresponding offset. The robot always defines
origo as the position where the robot begins when the data gathering for the offline-slam
algorithm starts. Negative robot positions will then occur if the robot returns to its start
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position and goes in opposite direction relative the heading originating from the start
pose. This will cause problems in the occupancy gridmapping algorithm since the map is
created by multidimensional vectors where negative elements does not exist, therefore an
offset but also a large enough map is needed.

Bresenham’s line algorithm is already implemented in c-code but is not used at the mo-
ment. The time was running out and there were a lot of other things we had to accomplish
before the algorithm could be tested. Bresenham’s has been evaluated in c-code with sim-
ulated measurements from matlab and is much faster than the basic algorithm which is
implemented right now.
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6 Pathfinding

The robot employs an implementation of the Dynamic A* Lite (D* Lite) pathfinding
algorithm. It is used on a supplied grid map, where each cell corresponds to a node. If a
cell is blocked by an obstacle, the cost of traveling to the node it represents will be set to
infinity. The same applies for a node to which a path is not yet known. The cost of moving
between two adjacent nodes is set to the Euclidean distance, given by the Pythagorean
Theorem. Also, the cost of traversing a cell next to a wall has been increased by a given
value, in order to make the robot prefer paths away from obstacles.

Both these changes differ from the original algorithm, where the cost of moving between
two adjacent nodes is always set to one, and have been done purely from observational
results.

The computation results in a cost matrix, where each expanded node is associated with the
accumulated cost of moving there from the goal node; the path is subsequently calculated
by minimizing the cost from the robots current node to the goal node. In the same way,
re-calculation of the shortest path implies updating the cost matrix.

6.1 Definitions

The following notations are used throughout the description.

1. s refers to an arbitrary node.

2. sstart refers to the current node for the robot.

3. sgoal refers to the goal node for the robot.

4. c(s′, s) is the cost of moving from node s′ to node s. It is set to 1 if s′ and s are
next to each other horizontally or vertically and

√
2 if they are next to each other

diagonally.

5. map refers to a given predefined grid map.

6. g(s) is the recursively calculated accumulated cost of reaching node s from sgoal and
can be defined as the lowest g(s) = g(s′) + c(s′, s) where s′ is one of the eight nodes
next to s. If the node s is adjacent to an obstacle, a predefined cost is added to
g(s). Nodes that have not yet been expanded or represent obstacles have a g(s) of
infinity.

7. rhs(s) is the one step look ahead accumulated cost of reaching a node s from sgoal.
It is defined in the same way as g(s) but is computated one step earlier in the
algorithm. If g(s) 6= rhs(s) the node is said to be inconsistent; after the first time
computation of the path, inconsistency of a node implies that the cost of reaching it
has changed (i.e. a new obstacle has been detected or an old one has disappeared)
and the path needs to be recalculated.

8. h(s′, s) is the heuristic cost of reaching node s from node s′. Here, this corresponds
to the shortest path Euclidean wise with no consideration of walls or obstacles.

9. km is the key modifier value, used when recalculating the path. It is initially set to
0.

10. k1 and k2 are the two key values each node is given. They determine in which order
the nodes will be searched and are combined into a two component vector, where
k2 is used as a tie breaker when the k1 for two compared nodes are equal.
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11. U is the priority queue for nodes where each node is stored with an associated key,
from lowest (top) to highest key. The nodes will be added or removed during the
computation under given conditions.

6.2 Initialization

The initialization is done by the function newRoute(sstart, sgoal,map) when executed with
a given curren node sstart of the robot, a goal node sgoal and a predefined grid map from
the control system. The algorithm performs a backward search; thus g(s) and rhs(s) is
set to infinity for each node s representing a cell, except rhs(sgoal) which is set to zero.
The key for a node s is a two component vector(

k1

k2

)
=

(
min(g(s), rhs(s)) + h(sstart, s) + km

min(g(s), rhs(s))

)
(53)

calculated with the function calculateKey(s) on a given node s. The key modifier variable
km is used later on when determining keys for subsequent nodes after changes in edge costs
and is initially 0. As a last step of the initialization process, the goal node is associated
with a key and pushed to the priority queue U .

6.3 First time computation of the path

The path is calculated by the function computeShortestPath() which is subsequently
called by newRoute() after the initialization process has been carried out. The function
will run as long as the lowest priority key in the queue is lower than the key of the start
node (i.e. the current node), or as long as the start node is locally inconsistent (i.e.
g(sstart) 6= rhs(sstart)).

The function picks and removes the node s with the lowest associated key from the priority
queue U and investigates it under three given conditions:

1. If the node has a key in the priority queue U which is lower than its current key, the
node will be inserted once again in the priority queue U together with its updated
key value.

2. If the node is found out to be over consistent (g(s) > rhs(s)) then g(s) is set to
rhs(s) and the function updateNode(s) is executed on all its neighboring nodes.

3. If none of these scenarios apply then g(s) is set to infinity for the node and the
function updateNode(s) is executed on all its neighboring nodes.

The function updateNode(s) updates a node s under three different conditions:

1. If the node is not the goal-node, rhs(s) is calculated as the lowest cost of reaching
the node by the function lowestCost(s).

2. If the node s is in the queue U , it is removed.

3. If the node is inconsistent (i.e. g(sstart) 6= rhs(sstart)) it is added to the queue U
along with a calculated key.

The function lowestCost(s) returns the lowest accumulated cost of reaching a node s.
This is done by investigating all eight neighboring nodes s′ and returning the lowest
g(s′) + c(s′, s). If the node s represents a cell occupied with an obstacle, a cost of infinity
is returned.
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6.4 Dynamic re-calculation of the path

The function nextNode(sstart) is called by the control system and yields the next node
to which the robot should travel in order to reach its destination, where the given node
sstart is the actual confirmed location of the robot.

When called, sstart is compared to the expected node from when the function was called
last time. If they are equal, and no updates in the map have been detected, simply the
next node s that minimizes the cost of reaching sgoal is returned.

If they are not equal, the robot is not in the cell where it is expected to be, and sstart
is added to the list of nodes that needs to be updated. This is also an enhancement of
the original algorithm, which does not cope with faulty movement of the robot. The map
is also checked for changed cells (new obstacle or old ones that have disappeared). Each
node that corresponds to such a cell is added to the same list of nodes.

The function updateShortestPath() sets the key modifier value km as km = km+h(slast, sstart)
where h(slast, sstart) is the heuristic value between either the original sstart or the latest
node s in which the path was updated and the current node sstart. The function then steps
through the list of nodes and perform updateNode(s) on each node s and its neighbors.
Afterwards, the function computeShortestPath() runs once again and the next node s
that minimizes the cost of reaching sgoal is returned.

As a special case, if rhs(sstart) is still infinity after the execution updateShortestPath()
then no known path has been found. This should normally not happen and is quite
computational heavy for the algorithm since all available nodes are expanded before it
can be concluded. Should it occur, a flag is returned, but no other actions are taken.

6.5 Future development

Actuation of the implemented pathfinding algorithm shows an initial computation time
of approximately 3 to 4 seconds to find a path through a normal sized mapped area (400
by 500 grids). However, the dynamic re-calculation of the path results in computation
times of larger magnitude, even for relatively small changes, up to ten seconds.

This is unacceptable and the pathfinding can obviously be optimized, but the direct cause
of the problem is yet to be found. Since it did not show up during simulation it is
thought to be related to the chosen programming solutions, not the implementation of
the algorithm itself.

As a comparison, the priority queue for nodes and keys was initially implemented as
a sorted vector which resulted computation times of well over three minutes. When
switched to the current solution of a permanently sorted C++ multimap, computation
times dropped to the current time of a couple of seconds. This problem is thought to be
related to a similar cause, but no further guidance can be given.

Further on, the algorithm and thus the pathfinder always chooses the shortest path
whether or not it is the most feasible route out of practical reasons. For example, one
might prefer the robot not to enter the goal diagonally, taking a route with as few bends
and corners as possible (i.e. favoring nodes in straight distance from the current one)
or perhaps avoiding open spaces. Such solutions can be done with more creative and
dynamic costs between nodes used by the lowestcost(s) function, or different constraints
when choosing the next node with the nextNode(sstart) function.
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7 Control

On program start up the following is done:

• Connections with the robot and the laser are set up

• The graphics objects are initialized

• The maps are read from file and drawn

• An object for path finding is created

• A RobotThread and a SLAMThread are started

After initialization the program waits until the program window is closed before all con-
nections are closed and the program exits.

The RobotThread contains the loop that controls the robot. The SLAMThread does the
localization which takes some time and therefore needs to be done in parallel with robot
control. Localization is done as often as possible. The main loop runs once every 100 ms,
because that is how often new odometry information is available and new control signals
can be sent. Every iteration of the loop does the following:

• If there is new localization information, the robot’s pose estimate is updated

• If the user has set a new destination a path to it is calculated

• If there is new laser data the grid map is updated

• If new obstacles in the path have been detected the path is updated

• The point where the robot should go to follow its path is calculated

• Control signals are sent to the robot

When the localization task is finished it returns an estimate of the pose that the robot
had at the time that localization started. The new pose is then set to the one determined
by localization plus the relative movement performed during localization, according to
odometry. While localization is running the pose estimate is continuously updated by
odometry.

The robot’s path is often updated quickly, but since one can never be sure of how long it
takes, the robot is stopped before updating the path.

The path finding algorithm always returns the next grid to go to. Since the grids are very
small and the robot is unable to drive with high precision, always aiming for the next grid
would not make the robot drive very smoothly. A solution to this problem is aiming a
few grids ahead as long as there is no obstacle along the straight line between this grid
cell and the robot’s current position.

If the angle, αgoal, between the robot’s heading and its goal is larger than 15 degrees the
robot rotates on the spot towards the goal. Otherwise it drives forward and the rotational
velocity, vrot, is set to

vrot(t) = 1.8αgoal(t) + 3.6(αgoal(t)− αgoal(t− 1)), (54)

where αgoal(t−1) is the angle between the robot’s heading and its goal from the last loop
iteration. The proportional and derivative gains of this PD controller are set using the
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Ziegler-Nichols method. If the laser or sonar detects something in front of the robot the
forward velocity is set to zero.

The ActivMedia Robotics Interface for Application (ARIA) library [11] is used for all
communication with the robot. The graphical user interface is built with the Qt framework
[2].

7.1 Robot Interface

The following ARIA classes and methods are used.

• ArRobot is used for communication with odometers, sonars and motors

– getX(), getY(), getTh() returns an estimation of the robot’s pose determined
by odometry

– moveTo() updates the robot’s pose estimate with the values from Online-SLAM

– setVel() sets the translational velocity

– setRotVel() sets the rotational velocity

• ArSick is used for communication with the laser range finder

– getRawReadings() returns a list with 361 laser readings from the latest scan

• ArPose contains an x and y position as well as a heading

The central class of the interface is ArRobot. It has methods for receiving odometry and
sonar data as well as sending commands to the motors. The method getPose() returns
an ArPose object which contains the robot’s position and heading determined by odome-
try. ArPose also has helper functions for calculating distance and angle to another pose.
Both ArRobot and ArPose have methods getX(), getY() and getTh() for extracting the
individual values. These values will be sent to the Online-SLAM. When localization have
been performed in Online-SLAM and a more accurate pose is available, moveTo() is used
to update the robot’s idea of its pose so that the next pose estimate from the odometers
will depend on the pose from localization and the movement since localization.

To get the robot to move, setVel() and setRotVel() are used to set the translational and
rotational velocities.

ArSick is the class that handles laser data. It has methods that return the closest cur-
rent reading in a region, currentReadingBox(). To get a list of all current readings ge-
tRawReadings() is used, which returns a list of ArSensorReading’s. The range of these
readings will be sent to the SLAM algorithms.

The robot’s physical dimensions and some other parameters that are used in the program
are stored in a file (p2d8.p) which is loaded on initialization.

All numbers are of type double. The units are millimeters for lengths, millimeters per
second for velocities and degrees for angles.

7.2 Graphical User Interface

The following Qt classes and methods are used.
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• QGraphicsScene contains the lines from the line map together with the icons repre-
senting the robot and its goal

– mousePressEvent() and mouseReleaseEvent() are called when the user clicks
the window and sets the position of the robot and the goal

• QGraphicsView is the window that displays the scene and that can be painted on

– paintEvent() draws the grid map and the localization particles’ positions

The lines in the map and the icons representing the robot and its goal are QGraphicsItems
and belong to the graphics scene. The line map is read from a text file and each line is
added to the graphics scene. The scene is then automatically scaled to fit into the window.
The coordinates in the graphics scene are the same as the robot’s coordinates except that
the Y-axis is flipped. When the robot has moved or the user has clicked, update() is
called to make sure the window is repainted. The grid map and the particles are painted
directly onto the graphics view. Unlike the line map, the grid map is updated while the
program is running. When this happens, the graphics view needs to be repainted.

7.3 Future development

The plotting of the grid map could be done more efficiently. To plot a map of 300 000
grids the way it is done now takes more than 100 ms and affects the performance of the
robot. The user now has to click in the line map to set the robot’s destination. It would
be nice to be able to click in the grid map as well. The size and layout of the window is
somewhat adopted to a certain map size and could be more dynamic. Also, the size of
the line map and the grid map are not exactly the same, which can be annoying. When
a new map is used, the programmer has to set some parameters defining the size of the
grid. These could, and should, of course be calculated when the map has been loaded.

Possibly the updating of the robot’s path should be done continuously and in its own
thread. As of now it is done in the robot thread causing the robot to have to stop. Path
updating is therefore kept at a minimum.
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8 Position Accuracy

In order to test the position accuracy of the robot’s movement, the following test was
executed. A distance of approximately 10m was driven from different starting positions
to different goals. The result can be viewed in Table 1.

Position Accuracy
Test number Distance to goal

1 0.57 m
2 0.80 m
3 0.53 m
4 0.35 m
5 0.32 m
6 0.20 m
7 0.09 m
8 0.19 m
9 0.60 m
10 0.25 m

Mean 0.37 m

Table 1: Position Accuracy

9 Robotic arm

The possibility of using a robot arm requires higher accuracy of the robot pose than have
been achieved to deliver objects. A possible way to achieve better accuracy in the pose
estimate at certain locations can be to mark known locations with some kind of landmark,
e.g. reflective tape. The robot arm can then be hard-coded to perform specific movements
and tasks. If you place a camera on the robot arm the demand of high accuracy in robot
pose decreases. Hence using landmarks, i.e. reflective tape, the camera can detect and
estimate the position of a landmark relative to the robot and use this information to
perform different tasks. Another issue is where the robot arm should be placed. It should
be mounted in the rear to prevent that the laser and sonar sensors are obscured. This
requires that the weight of the arm is sufficiently low if the robot shall be able to move.
The robot under consideration (IRB 120) is too heavy. There is also the issue of supplying
the robot arm with power. Currently the robot arm needs a power cable which obviously
becomes a problem on a mobile autonomous platform. Therefore integrating IRB 120 on
the robot is not possible.
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10 Future development

There have already been things mentioned regarding the future development for each
subsystem. But something that has not been described so far is the problems which
occurs when all the system s are merged together.

For instance, the path finding algorithm, particle filter and the gridmap works quite well
separately, but when they are implemented together a lot of problems will arise. The
quality of the gridmap can sometimes be very poor because of the uncertainty in the
pose from the particle filter when new obstacles are detected. New obstacles are defined
as objects that are not included in the line map which have been extracted from the
offline-slam algorithm. Uncertainty in the pose will ruin the gridmap and the pathfinding
algorithm must then find a new path which can take a lot of time. This will go on until
the obstacle is gone or the robot has passed it.

At the moment, this problem has been solved by solid walls in the initial grid map, i.e. the
obstacles detected from the offline-slam can never be removed in the grid map. Probably
this is not the best solution since dynamic objects will always be fixed in the grid map
even though they have been moved.

Another way of reducing the ”map destruction” when the pose has some uncertainty, is
the max range limitation. A small uncertainty in theta will correspond to a quite large
misestimation of the detected obstacle when the laser range is increasing. Therefore, it is
possible to decrease this misestimation by reducing the field of view to 10 meters.

The big bottleneck of the MCL algorithm is the simulation of laser measurements for each
particle. When simulating a single measurement the intersection between the simulated
laser ray and every line in the line map is calculated with the current solution. This means
that the robot cannot handle maps built from many lines without loss of performance. A
solution to this problem could be to divide the line map into cells. Here each cell would
have information about which lines that could be intersected if the robot is positioned in
that cell. Reducing the number of line intersection calculations per measurement in this
way would not only make the robot handle large environments but also allow it to have a
more detailed line map yielding better localization.

Further on, the dynamic re-calculation of the path is very time consuming at the moment,
yielding response times up to 10 seconds at best even for relatively small changes in the
map. The cause of this problem is yet to be found but is thought to be related to chosen
programming solutions, as described in the pathfinding chapter.

The current path finding algorithm always finds the shortest path to the goal, if there
is one. This may not be the most suitable path for the robot though. Since there is no
millimeter precision in driving and localization it is probably a good idea to drive in the
middle of corridors and door posts and not go as close to corners and objects as possible
when passing them. Localization can be hard when the robot turns a lot, because errors
in odometry tend to get larger then. Therefore, something that turns the planned path
into a smooth trajectory could be an improvement. If the goal is unreachable the path
planner will not detect this before it has tried every possible way, which takes a lot of
time. Maybe something can be done about this. Otherwise the user should at least be
able to select a new goal and make the path planner start over.

The sonar is only used to make the robot stop when there is something directly in front
of it. More uses of it can probably be found.

To prevent the robot from going to undesired places there should be a way to add restricted
areas, e.g. by clicking in the grid map.
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It would be nice if the robot was able to autonomously explore and map an unseen
environment.

Driving the robot around with a laptop connected by a serial cable is all but satisfying.
Some form of wireless communication is recommended. This could also allow multiple
users to request the robot’s services. Then it would be interesting to have the robot make
more high level plans, like in which order to deliver a couple of letters to do it in the
shortest amount of time.
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