
Design Specification
AB Mail Robot

Version 1.0

Author: Daniel Bagarn Barac
Date: December 24, 2010

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot II

Status

Reviewed Karl Granström 2010-10-08
Approved Karl Granström 2010-10-11

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

Project Identity

Group E-mail: danba185@student.liu.se
Homepage: http://www.isy.liu.se/edu/projekt/tsrt10/2010/postrobot-2010/
Orderer: Karl Granström, Linköping University

Phone: +46 13 281333, E-mail: karl@isy.liu.se
Customer: Marcus Pettersson, ABB Väster̊as

Phone: +46 21 345194, E-mail: marcus.pettersson@se.abb.com
Course Responsible: David Törnqvist, Linköping University

Phone: +46 13 281882, E-mail: tornqvist@isy.liu.se
Project Manager: Daniel Barac
Advisors: André Carvalho Bittencourt, Linköping University

Phone: +46 13 282622 , E-mail: andrecb@isy.liu.se

Group Members

Name Responsibility Phone E-mail
(@student.liu.se)

Daniel Barac (DB) Project Leader +46 702641857 danba185@student.liu.se
Martin Melin (MM) Document responsible +46 702887793 marme287@student.liu.se
Erik Erkstam (EE) Software responsible +46 737266812 erier982@student.liu.se
Hugo Kinner (HK) Test responsible +46 733688378 hugki634@student.liu.se
Manfred Hallström (MH) +46 703679569 manha932@student.liu.se
Simon Hugosson (SH) Control responsible +46 708778471 simhu610@student.liu.se
Niklas Carlsson (NC) Information responsible +46 709601672 nikca291@student.liu.se
Nicklas Forslöw (NF) SLAM responsible +46 739516430 nicfo307@student.liu.se

Document History

Version Date Changes made Sign Reviewer

0.1 2010-10-04 First draft MH SH HK NC NF MM EE MM, DB
0.2 2010-10-07 Second draft SH MM EE MH NC NF DB HK EE MM MH NF
0.3 2010-10-08 Third draft SH MM EE MH NC NF DB HK DB
0.4 2010-10-10 Fourth draft SH MM EE DB DB
1.0 2010-10-11 First Version DB DB

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

Contents

1 Introduction 1

1.1 Parties . 1

1.2 Purpose and goal . 1

1.3 Usage . 2

1.4 Background information . 2

1.5 Environmental limitations . 2

2 Overview of the System 3

2.1 Subsytems . 3

2.1.1 Robot . 3

2.1.2 Laptop . 3

3 The Robot 5

3.1 Odometers . 5

3.2 Laser Sensor . 5

3.3 Sonar Sensors . 5

4 Motion Model 6

5 SLAM 8

5.1 Sensor Models . 8

5.1.1 Laser Scans . 8

5.1.2 Sonar Measurement . 9

5.2 Building the Map . 10

5.2.1 Data Collection . 10

5.2.2 Offline-SLAM . 10

5.2.3 Detection of Strong Links . 12

5.2.4 Scan Matching . 14

5.2.5 Mapping and Map Conversion . 14

5.2.6 Line Based Map . 14

5.2.7 Grid Map . 15

5.3 Online-SLAM . 17

5.3.1 Monte Carlo Localization . 17

5.3.2 Online Mapping . 18

6 Trajectory planning 21

6.1 Pathfinding . 21

6.2 The D* Lite algorithm . 21

6.2.1 Definitions . 21

6.2.2 Initialization . 22

6.2.3 First time computation of the shortest path . 22

6.2.4 Dynamic re-calculation of the path . 23

6.2.5 Practical implementation . 24

7 Control 25

7.1 Robot Interface . 25

8 Documentation and coding conventions 28

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 1

1 Introduction

Fido-Dido (Figure 1) is a wheeled mobile robot manufactured by MobileRobots Inc. Its
most important features are a SICK laser range finder, 8 forward-facing ultrasonic array
sonars, odometers and a Micro-Controller. The robot shall be able to autonomously nav-
igate in an office-landscape using a pre-defined map which it also shall be able to update
when changes are detected. It shall also be able to find its way from point A to point B.

Figure 1: Fido-Dido

This document provides a detailed description of how the software and hardware will
interact in order to achieve our goals, specified in section 1.2.

1.1 Parties

Client of the project is Karl Granström, PhD-student in Automatic Control, Department
of Electrical Engineering at Linköping University. Supervisor of the project is André
Carvalho Bittencourt, PhD-student in Automatic Control, Department of Electrical En-
gineering at Linköping University. Customer of the project is Marcus Pettersson at ABB
Cooperate Research Center (ABB CRC). The development is performed by the project
group ABB MailMen.

1.2 Purpose and goal

The purpose of the project is to develop software and then implement it on a robot so
that the robot can navigate in an office environment. The project group will evaluate
future possibilities to make this robot able to deliver objects, e.g. mail. The goal of the
project is to develop a system for an autonomous robot which shall be able to navigate
from point A to point B in an office space, specifically at ABB CRC. The long term goal
of the product is to extend the robot with a robotic arm to enable the delivery of objects,
e.g. mail.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 2

1.3 Usage

The product can be used as a platform for further research at ABB CRC or at Linköping
University.

1.4 Background information

This project is a part of the CDIO-course TSRT10 at Linköping University and is per-
formed in collaboration with ABB CRC. The group consists of eight students with exper-
tise within automatic control and sensor fusion.

1.5 Environmental limitations

The robot is limited to operate in an office environment. The robot cannot be expected
to be able to open doors or move objects. The floor on which the robot will operate must
be free from obstacles which the robot cannot detect.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 3

2 Overview of the System

The system consists of a MobileRobots P2-DX robot with a HP ProBook 6450b laptop
mounted on it. The laptop runs the application that controls the robot and could also
be used as an interface if a user wants to manually control the robot or view the robot’s
map. The robot and the laptop communicate via a RS232 serial port. The different parts
of the system and how they communicate can be viewed in figure 2. The laser and sonars
send range measurements and the odometers send wheel position and speed estimates.
The micro controller (MC) decodes the data from the sonars and odometers and passes
it on the program. The MC also translates the motion commands from the program to
control signals for the motors. When collecting data for Offline-SLAM, see section 5.2.2,
the user drives the robot with the laptop’s arrow keys. When mapping is done the user
can tell the program where the robot should go. The output from the program to the user
is a map and the robot’s current position in the map.

Figure 2: Overview of the system.

2.1 Subsytems

This section includes a short description of the subsystems.

2.1.1 Robot

The robot is a wheeled MobileRobots P2-DX robot equipped with odometers, a laser,
sonars and a micro controller (MC). The micro controller receives data from the sonars
and odometers. It also sends control signals, calculated by the software on the laptop, to
the servos.

2.1.2 Laptop

The laptop receives sensor data from the laser and the robot’s micro controller. It is also
responsible for the software which handles SLAM, trajectory planning and calculation of

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 4

the control signals.

The application is written in C++ and uses the ActivMedia Robotics Interface for Appli-
cation (ARIA) library for all communication with the robot. ARIA has utilities for both
receiving data from the sensors and controlling the motors. The program can be divided
into three subsystems with specific tasks according to figure 3. These subsystems will be
thoroughly explained in sections 5 to 7. The SLAM system receives range measurements
from the laser and sonars. The control system receives a pose estimate from the odome-
ters and pass it on to the SLAM system together with a calculated covariance matrix.
The SLAM system sends a grid map and an improved pose estimation to the trajectory
planner which plans a trajectory to the goal and sends the next position to go to, to the
control system. It, in turn, sends the desired wheel velocities to the motors.

Figure 3: Program structure.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 5

3 The Robot

The robot has two drive wheels with encoders for measuring their angular position and
angular velocity. It also has two range sensors, a sonar array and a Sick LMS200 laser
range finder, both facing forward and with a field of view of 180◦. The laptop is connected
to a micro controller in the robot that is responsible for reading sonar and odometry data
as well as controlling the motors. The range data from the laser is sent to the laptop
through a RS232 connection.

3.1 Odometers

The robot wheels have 800 tick quadrature shaft encoders that are used to provide wheel
position and speed estimates.

3.2 Laser Sensor

The SICK LMS200 has a field of view of 180◦ and an angular resolution that can be set to
0.25◦, 0.5◦ or 1◦. The resolution in the range measurements is 10 mm and the accuracy
typically ±15 mm. The range is 10 m for 10 reflectivity, which corresponds to cardboard,
and can be up to 32 m for more reflective materials. The sampling rate is around 4 Hz.

3.3 Sonar Sensors

The robot has an array of eight sonars in directions ±10◦, ±30◦, ±50◦ and ±90◦ (where
0◦ is straight forward). Both the acquisition rate and the sonar gain are adjustable.
The acquisition rate is 25 Hz by default and the sensitivity ranges from 10 cm to over
4 m, depending on the gain. One important feature of the sonar is that it can detect
transparent objects, which the laser cannot.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 6

4 Motion Model

The robot pose is given by the following vector, where x and y are the position coordinates
and θ is the heading direction, Xi = (xi, yi, θi)

T . To aid the estimation of the robot’s pose,
a motion model is used. The motion model gives the probability of the pose Xi given the
previous pose Xi−1 and the motion command ut = (∆odo

x ,∆odo
y ,∆odo

θ), (p(Xi|ut, Xi−1)).
ut is defined as the difference between the current pose and the next pose, view figure 4.

Figure 4: Model of ut

According to propositions in [9] the new position can be calculated in the following way,

xiyi
θi

 =

xi−1

yi−1

θi−1

+

cos(θ +
∆odo
θ

2) −sin(θ +
∆odo
θ

2) 0

sin(θ +
∆odo
θ

2) cos(θ +
∆odo
θ

2) 0
0 0 1

∆odo

x

∆odo
y

∆odo
θ

 =

=

xi−1

yi−1

θi−1

+H

∆odo
x

∆odo
y

∆odo
θ

 . (1)

The distribution of the new pose is considered to be Gaussian with mean equal to the
odometer movement added to the previous pose. To obtain the covariance of the pose,
the variance of each odometry variable must be estimated. The matrix Σ is defined as a
diagonal matrix,

Σ =

σ∆odo
x

0 0

0 σ∆odo
y 0

0 0 σ∆odo
θ

 . (2)

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 7

The variances of the odometers are defined as

σ∆odo
x

= σ∆odo
y

= σminxy + α1

√
(∆odo

x)2 + (∆odo
y)2 + α2|∆odo

θ |, (3)

σ∆odo
θ

= σminθ + α3

√
(∆odo

x)2 + (∆odo
y)2 + α4|∆odo

θ |. (4)

The following parameters will be set after analyzing robot data
α1 [meters/meter]
α2 [meters/degree]
α3 [degree/meter]
α4 [degrees/degree]
σminxy [meters]
σminθ [degrees]

 . (5)

Finally the covariance matrix can be calculated using the Jacobian J of H and the matrix
Σ. The Jacobian matrix can be computed by following the propositions in [1]

J =

0 0
−sin(θ+

∆odoθ
2)

2 − cos(θ+
∆odoθ

2)

2

0 0
cos(θ+

∆odoθ
2)

2 − sin(θ+
∆odoθ

2)

2
0 0 0

 . (6)

Finally the covariance matrix is calculated as follows,

Cov = JΣJT . (7)

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 8

5 SLAM

This subsystem is responsible for the simultaneous localization and mapping (SLAM).
Sensor fusion is used to estimate the robot position and heading in a map and to update
the map as changes are observed. Here, sensor models and a motion model of the robot
together with data from all the sensors are used.

The system will contain two different SLAM-algorithms which are called Offline-SLAM
and Online-SLAM. The purpose of Offline-SLAM is to create an accurate map of the
environment in which the robot will operate. This algorithm is too computationally
demanding to be used in real time and therefore Online-SLAM is needed for real time
applications. Online-SLAM runs in real time and it uses a map built with the help of
Offline-SLAM in which it localizes the robot.

For simplicity, the sensors used by Offline-SLAM do not include the sonars, only the
odometers and the laser are used. Therefore, the resulting map only contains ”what the
laser sees”. When the map is built it needs to be converted for computational reasons.
The converted map is a line based map which Online-SLAM uses for localization. The
idea is that the line based map is a sort of filtered version of the map arising from Offline-
SLAM in the way that it manly contains larger objects such as walls. Because these kind
of objects are not likely to be moved, removed or added, Online-SLAM can use the line
based map to achieve good localization without manipulating it.

However, the line based map cannot be used for navigation. The reason for this is that
the robot has to know about any obstacles that it could collide with and it is not likely
that the line based map contains this information. Therefore, Online-SLAM has to build
and update a map for navigation. This map is a occupancy grid map which is built in
real time by measurements from both the laser and the sonars.

How these tasks are solved and what sensor models are used is described below.

5.1 Sensor Models

This section describes what data is delivered by each type of sensor and how this data
can be related to a global coordinate system. To derive the sensors locations in the global
coordinate system there is a need to define the robot’s local coordinate system. If a
position is given in the robot’s local coordinate system as (prx, p

r
y)T the corresponding

global position (px, py)T is given by(
px
py

)
=

(
x
y

)
+

(
cos θ − sin θ
sin θ cos θ

)(
prx
pry

)
(8)

where X = (x, y, θ)T is the pose of the robot. This is operation is denoted by

(px, py)T = X ⊕ (prx, p
r
y)T . (9)

5.1.1 Laser Scans

The laser sensor delivers scans of the enviroment at a rate of about 4 Hz. One laser
scan is a sequence E = (e0, e1, ..., e360), where ei is a distance measurement taken from
the robot’s position with an angle ψk relative to the robot’s heading. The angle ψk is
given by ψk = −90 + 0.5k. If the robot’s pose is X = (x, y, θ)T and the position of the
laser sensor is (0, 0) in the robot’s local coordinate system, then each measurement ei

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 9

corresponds to a physical position (ux, uy)i by

(ux, uy)i = (x, y) + ei(cos(ψi + θ), sin(ψi + θ)) (10)

and a scan E corresponds to a set of positions U =
⋃360
k=0(ux, uy)ki .

5.1.2 Sonar Measurement

The sonars have the same function as the laser in the way that they give distance mea-
surements. However, there is a big difference between the information one can derive from
a sonar measurement. While a laser measurement can be described as a line segment, a
sonar measurement is more of a cone and it is more difficult to derive the position of the
object which the sonar measurement gives the distance to. This is illustrated in figure
5. On the other hand one can derive a circle segment on which there is a physical object
and the amount of negative information is larger than what is given by a laser measure-
ment: the laser gives only a line on which there is no objects while the sonar gives a cone.
Negative information means information about where there are no objects. The opening
angles of the sonars are about 30◦.

Opening angle

Sonar

Physical objectCircle segment

Figure 5: The problem with the sonar

If we let (srx, s
r
y)T denote the position of a sonar in the robot’s local coordinate system and

let v be the direction of the sonar relative to the robot’s heading, then the circle segment
B is given by

B = {X ⊕ ((srx, s
r
y)T + ρ(cos(v + α), sin(v + α))T) : |α| ≤ 15} (11)

where ρ is the distance measured by the sonar.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 10

5.2 Building the Map

This section describes how the map of the environment, in which the robot will operate,
is built. It is divided into three subsections: Data Collection, Offline-SLAM and Map
Conversion.

5.2.1 Data Collection

The robot is manually maneuvered in some area and at certain moments data are saved.
The saved data contains an estimate of the relative motion since the previous save point
as well as laser measurements. Instead of saving data at certain points in time, data will
only be saved when the robot’s pose has changed significantly. New data will be saved if
new laser measurements are collected and if the odometers estimate that the robot has
traveled a distance greater than some distance d, or that the robot has changed its heading
with an angle greater than some angle β. The values of d and β will be set experimentally.
The reason why data is saved in this manner is because there is no use of saving a lot of
data if the robot does not change its pose.

5.2.2 Offline-SLAM

Since the laser scans are very accurate, the problem of building an accurate map from
laser scans is the problem of estimating the poses from which the scans where taken as
accurately as possible. Therefore, one can consider the following estimation problem.

Assume that the robot has taken n + 1 laser scans. Let Xi = (xi, yi, θi)
T describe the

robot position and heading when scan i was aquired and simply let X0 = (0, 0, 0)T . Let

Dij = Xi −Xj (12)

be the measurement equation. An observation Dij of Dij is defined as

Dij = Dij + ∆Dij (13)

where ∆Dij is a random Gaussian noise with zero mean and known covariance matrix
Cij . Assume that there is a set S consisting of pairs (i, j), where 0 ≤ i < j ≤ n such that
there is an observation of Dij with a corresponding covarince matrix Cij for each pair
(i, j) ∈ S.

Then a criterion of optimal estimation can be formed based on the maximum likelihood
concept. By assuming that the observation errors are mutually independent, the criterion
is to minimize the following Mahalanobis distance

W =
∑

(i,j)∈S

(Dij −Dij)
TC−1

ij (Dij −Dij) (14)

The solution, which can be found in [8], of this problem yields an approximation

X̂ = (X̂0, X̂1, .., X̂n)T (15)

of
X = (X0, X1, .., Xn)T (16)

as well as a covariance matrix
CX̂ = Cov(X̂) (17)

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 11

The quality of the solution depends on the amount of observations as well as the quality
of them. In practice, an observation is an estimation of a pose change that is obtained
from measurements together with mathematical models.

The algorithm contains two different kinds of observations, called weak and strong links.
A weak link is simply an observation taken from the odometry of the pose difference
between two adjacent poses. Thus a weak link, Dij , and the corresponding covariance
matrix, Cij , is obtained from the motion model. While weak links are simply taken from
the motion model, strong links are more sophisticated. The idea is to find pairs of poses
with scans that are strongly correlated. In other words this means that pairs of poses
from which the laser detects the same physical objects has to be found. By matching
the scans with a tching algorithm, a new observation Dij and a corresponding covariance
matrix Cij can then be obtained. Scan matching can be described as a process of fitting
two scans by performing a rotation followed by a translation of one of the scans.

The amount of strong links depends on the initial estimates of the covariance matrix
between two poses. This will be further described in the next section. Since the solution
yields new estimates as well as a covariance matrix, this algorithm can be run again to
get an even better estimate of the poses. This time the weak links will be taken from
the new estimates. This procedure can be repeated until the estimations converge. An
illustration of the algorithm can be seen in figure 6.

Collected Data

Calculate D & C

for all Weak Links

Strong Link

detected?

Scan Matching

Calculate D & C

for Strong Link

Iterate

again?

Update all poses

and corresponding

covariances

Any

possible

Strong Links

left?

Estimated poses

with corresponding

 covariances

Y

Y

Y N

N

N

Figure 6: Offline-SLAM algorithm

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 12

5.2.3 Detection of Strong Links

The detection of the strong links is much of a key to estimate the poses well. The question
is how to detect that there is a a strong link between two poses. Hence, one must find
conditions such that if they are fulfilled, it is likely that the laser scans overlap. The fact
that the laser scans only cover a field of view of 180 degrees limits the ways of detecting
strong links. However, the following idea will handle the problem of the limited field of
view.

Let Ui =
⋃N
k=0(ux, uy)ki denote the set of points in the scan taken from Xi = (xi, yi, θi)

T .
To decide if there is a strong link i↔ j the following will be done. Define a set Wi as

Wi = {(x, y) = (xi, yi) + r(cosα, sinα) : rmin ≤ r ≤ rmax, |θi − α| ≤ ϕ} (18)

where

rmin = (1− r0) · min
0≤k≤N

||(xi, yi)− (ux, uy)ki ||2 (19)

rmax = (1 + r1) · max
0≤k≤N

||(xi, yi)− (ux, uy)ki ||2 (20)

ϕ = π/2 + ϕ0 (21)

The values of r0, r1 and ϕ0 will be set experimentally, but it must hold that r0 ∈ [0, 1],
r1 ≥ 0 and ϕ0 ∈ [0, π/2].

Let Mij = #(ux, uy) ∈ Uj
⋂
Wi. Define Mji in the same way and regard the link between

i and j as a strong link if and only if min(Mij ,Mji) > M . If the link is strong, Uj
⋂
Wi

and Ui
⋂
Wj is used for scan matching.

Xi Xi

Xj Xj

Wi

Wj

Uj∩Wi Ui∩Wj

phi

phi

rm
ax

rmin

rm
ax

rm
in

Figure 7: Detection of strong link

Illustrations of the idea behind the algorithm can be seen in figure 7 and figure 8. In
these illustrations the values of r0, r1 and ϕ0 are all zero. The purpose of these design
parameters is because the pose Xi can only be estimated. With help of the illustrations

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 13

one might realize that if the estimations are bad a strong link might be missed if the
parameters are set to zero. By increasing the values of these parameters, the sets Wi and
Wj will grow and the risk of missing a strong link decreases. However, increasing them
too much could result in a false detection.

Figure 8: Illustration of U and U
⋂
W . The circles represent the measured points U . The

filled circles represent the points that are counted and eventually used for scan matching
U
⋂
W . To the left is Uj and Uj

⋂
Wi and to the right is Ui and Ui

⋂
Wj .

Another way of avoiding false detection is to require that the estimated covariance from
the motion model, Cij , between two poses is small enough. This means that the above
described procedure does not have to run for all possible pairs of poses since Cij is growing
with the difference between i and j. The weak links will also be kept and therefore a
requirement is that |i − j| > 1. An example of how the network could look like can be
seen in Figure 9.

X1

X2

X3

X4

X5

X6

X7

X8

X0

Figure 9: Network of weak and strong links. The black lines represent weak links and the
gray lines represent strong links.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 14

5.2.4 Scan Matching

Scan matching is the process of aligning an observed set of measurement positions Uo
with a reference set of measurement positions Ur. Here Uo and Ur refers to the sets of
measurement positions generated by a laser range scans at two different robot poses Xo

and Xr. A set of measurement positions can be described as U =
⋃360
k=0(ux, uy)k in the

local cartesian coordinate system of the specific pose according to Eq. (10).

For scan matching an ICP (Iterative Closest Point) algorithm will be used. The ICP
algorithm is iterative and consists of two steps. First, corresponding measurement po-
sitions from the observed and reference measurement positions sets are paired to form
(ol, rm) using an initial guess of the relative pose and a nearest neighbor approach where
ol = (ux, uy)lo ∈ Uo and rm = (ux, uy)mr ∈ Ur. Second, a new relative pose is estimated
by calculating the relative pose that minimizes the least-mean-squared error between the
associated measurement positions. This is iterated until the pose estimate satisfies some
convergence criterion. Denote the set of all associated measurement position pairs as
A and ∆ = (∆x,∆y,∆θ)T as the relative pose displacement. By using ∆, ol can be
projected onto the reference frame in which rm is described by

orl =

(
cos(∆θ) sin(∆θ)
−sin(∆θ) cos(∆θ)

)
ol +

(
∆x
∆y

)
= Rol + T (22)

where R is a clockwize rotation by the angle ∆θ about the origin and T = (∆x,∆y)T a
translation. The aim of ICP is to obtain the rotation and translation between two scans
that minimizes the MSE (mean square error) which is defined by

ε2 = min
∆

∑
∀(ol,rm)∈A

‖rm −Rol − T‖2 (23)

Each iteration will yield a new estimation of relative pose displacement

∆new = (∆xnew,∆ynew,∆θnew)T

and our initial guess is the odometry estimation of Dor = ∆ini For a thorough explanation
of ICP and the analytical solution of the optimization problem, refer to [4].The ICP
algorithm will give a new estimate of Dij i.e. Dij for the strong links. Since it is difficult
to get a good estimate of the uncertainty of Dij the corresponding Cij will initially be a
constant diagonal matrix.

5.2.5 Mapping and Map Conversion

The Offline-SLAM algorithm generates a set of estimated robot poses that together with
their corresponding laser and sonar measurements form a data set from which maps can
be constructed. Using the extracted data set one can plot every measurement in a global
coordinate system forming a map consisting of points. This map is not particularly useful
and needs to be converted. Two maps will be extracted, one line based map to be used
in Online-SLAM and one grid map used for trajectory planning.

5.2.6 Line Based Map

To minimize the computation in the Online-SLAM algorithm a set of lines will be extracted
from the map consisting of points as described in the previous section. These will form a
line based map. Since the Online-SLAM will only use laser measurements for localization

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 15

only laser measurements from the data set will be used when constructing this map. The
lines will be computed by an iterative procedure which is based on the Hough transform
[7]. The algorithm is similar to the one used in [2]. The algorithm consists of the following
steps.

I The Accumulator of the Hough transform will be computed for all the points now
described in a global coordinate system. The Accumulator describes how many
times a line on the form

ρ = xcos(θ) + ysin(θ) (24)

has been generated by the points when inserted into the same equation together
with discrete values of θ where 0 ≤ θ ≤ π. Extracting the values ρ and θ that
corresponds to the maximum value of the Accumulator gives the line that intersects
the largest amount of points.

II The points that are within a distance a1 from the line will be extracted.

III The extracted points will be split into a number of segments. This will be done
by iteratively adding points to a segment if the distance between any of the points
in the segment and the current point is less than a certain value a2. If a segment
consists of less than a3 points the segment will be disregarded.

IV The remaining segments will be evaluated to see if and which lines should be ex-
tracted. This will be done by calculating the maximum distance between all points
in a segment and extracting the two points corresponding to this value if the maxi-
mum distance is larger than a4. If the distance is less than a4 the segment will be
disregarded. By calculating the intersection of the segment line and the lines that
are orthogonal to the segment line and goes through the two extracted points, the
end points of the segment line are extracted.

V The points corresponding to the remaining segments will be removed from the total
set of points, i.e from the map consisting of points, and the extracted end points will
be saved. The process is then iterated for the remaining points until the maximum
value of the Accumulator falls below the threshold a5.

Since the lines that have been extracted has to be of at least length a4 and be generated
by at least a3 points, small objects will be filtered out.

The map that can be constructed from the extracted end points will most likely have
undesired line gaps that needs to be connected. This will be done by calculating the
distance between all the extracted end points and adding a new line consisting of two end
points if this distance is less than a6. The value a6 will be low meaning that only very
short lines can be generated in this step.

The value of the distances a1, a2, a4, a6 , the number of points a3 and the value a5 will be
set experimentally.

5.2.7 Grid Map

The grid map will be constructed from both laser and sonar measurements since not all
objects, e.g glass, are detected by the laser. Since this map is used for trajectory planning
it will be much more detailed than its line based counterpart. This map will also be
updated by the Online-SLAM algorithm.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 16

Occupancy grid mapping is computer algorithms of generating maps from noisy and un-
certain sensor measurement data, with the assumption that the robot pose is known. The
basic idea of the occupancy grid is to represent a map of the environment as binary random
variables. Each random variable is binary and representing the presence of an obstacle
at that location in the environment. Occupancy grid algorithms compute approximate
posterior estimates for these random variables. The occupancy grid is used after solving
the SLAM problem and therefore take the path estimates for granted. Hence the controls
and odometry data have no part in the occupancy grid since the path is assumed known.

The occupancy grid is used to estimate the posterior probability over maps given the data:

p(m|z1:t, x1:t) (25)

where m is the map, z1:t is the set of measurements from time 1 to t, and x1:t is the set
of robot poses from time 1 to t. Occupancy grid represent the map as a fine-grained grid
over the area in the environment that represent the map m. Consequently this posterior
is almost impossible to calculate because an occupancy map divides the environment into
finitely many grid cells.

Denote mi as the grid cell with index i, then p(mi) represents the probability that grid
cell i is occupied. The thought is then to break down the problem into smaller problems
of estimating:

p(mi|z1:t, x1:t) (26)

for all grid cells. Each of these estimation problems is then a binary problem. This break-
down is appropriate but does not enable to represent dependencies between neighboring
cells. Instead, the posterior of a map is approximated as the product of each grid cell:

p(m|z1:t, x1:t) =
∏

p(mi|z1:t, x1:t) (27)

This factorization makes it possible to use a binary Bayes filter to estimate the occupancy
probability for each grid cell.

A very useful algorithm in grid mapping is the occupancy grid algorithm which apply the
log odds representation of occupancy. The odds of a state is defined as the ratio of the
probability for an event divided by the probability of its negate:

p(x)

p(−x)
=

p(x)

1− p(x)
(28)

As a consequence, the log odds ratio is the logarithm of the odds:

l(x) = log
p(x)

1− p(x)
(29)

A belief reflects the robot’s internal knowledge about the state of the environment and
will be denoted bel(xt), where:

bel(xt) = p(xt|z1:t, u1:t) = p(xt|z1:t) (30)

The controls and odometry u1:t play no role here either because the belief only depend
on the measurements when the state is static. The belief is commonly implemented as a
log odds ratio and denoted lt(xt), the log odds belief at time t is given by:

lt(xt) = log
p(xt|zt)

1− p(xt|zt)
− log p(xt)

1− p(xt)
+ lt−1(xt) (31)

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 17

where

lt−1(xt) = log
p(xt|z1:t−1)

1− p(xt|z1:t−1)
(32)

A slightly modified version of equation 31 will be used as the algorithm for occupancy
grid mapping. The general idea of the algorithm is:

In argument: lt−1,i, xt, zt

for all grid cells mi do
if the cell mi is in the measurement zt then

lt,i = lt−1,i + InverseSensorModel(mi, zt, xt)− l0
else mi is outside zt then

lt,i = lt−1,i

end iteration when all grid cells have been examined.
return lt,i

The function InverseSensorModel(mi, zt, xt) implements the inverse measurement model
p(mi|z1:t, x1:t) in its log odds form:

InverseSensorModel(mi, zt, xt) = log
p(xt|zt, xt)

1− p(xt|zt, xt)
(33)

Inverse models are often used in situations where measurements distribution are more
difficult to produce than a binary state. An example of such a situation is the problem of
estimating a door being open or closed using camera images. The state, open or closed,
is extremely simple while the measurement model p(zt|x) is much more complex, i.e. it
is easier to determine the probability of a door being open from a camera image than
calculating the distribution of all camera images showing an open door.

5.3 Online-SLAM

This section describes how the localization and mapping is performed when the robot is
operating.

5.3.1 Monte Carlo Localization

The robot will localize itself using a Monte Carlo Localization (MCL) algorithm. The
MCL uses a collection of samples (also known as particles) to estimate the robot’s pose.
These particles are spread out on the predefined map which is built as described above.
All particles describe a possible pose for the robot and the possibility (importance weight)
that the robot actually have that pose.

The general idea of the MCL algorithm. Also illustrated by figure 10:

I The first step is to uniformly distribute all particles on the map with equal impor-
tance weights. However at first a simpler version will be implemented since the robot
knows its initial pose. Therefore the particles are distributed in the neighborhood of
the robots initial position. The knowledge of the robots heading will also be used.

II The robot will continuously scans the surroundings using the laser range sensor.
When the robot receives new measurement data it checks if the robot has moved a
distance greater than some distance d or changed its heading with an angle greater
than some angle β. If the condition is reached the robot will proceed to the next
step or else wait for new data and redo the procedure.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 18

III All particles poses are updated by sampling new positions from the motion model.

IV Each robot laser scan consists of 361 measurements. The 180 degree field of view is
divided into N segments. Each segment is filtered to remove M measurements which
has detected the shortest distances. This is to prevent that smaller objects close
to the robot affect the next step where one measurement is extracted from each
segment. The chosen measurements will originate from the part of each segment
where the variance between the adjacent samples are the smallest. This is done to
prevent samples which measures smaller objects from being chosen. The N samples’
measured distances and their corresponding angles are stored. Then each particle
simulates N sensor measurements in the same angles as the previously extracted
samples. The simulated laser rays are vectors originating from the particles location.
When they intersect with a line segment in the map the measured distance from the
particle to the intersection are stored.

V The N measured distances for each particle are subtracted with the M actual mea-
sured distances. The error between the measurements is accumulated and are used
to determine the importance weight for the particles. The weight for each particle
will be the inverse of the error divided by the total error of all particles so that the
importance weights sum up to one. If the particles measurement data is similar
to the actual data the environment for both the particle and the robot are similar
therefore the importance weight increases. In the case when the measurement data
are very different the importance weight decreases.

VI A new set of particles is created. By sampling(with replacement) from the current
set the new particles will be distributed according to the importance weights of
the current particles. More particles will be sampled from the particles with high
importance weight since they have a higher probability.

VII This new set will replace the old set of particles and all particles will have an equal
importance weight. After this the whole procedure will be repeated from step II.

By using this iterative process the particles will eventually gather where the most probable
location of the robot is. Still they will not converge into a single point so in order to make
a point estimation the first approach will be to determine which K particles that have
the highest importance weights. Around each particle a circle with a radius R originating
from the particle is created. Then the weights from all particles within the circle will
be accumulated. The circle that have the highest sum will be used and a mean of the
particles poses is calculated to determine the estimated pose of the robot.

As already mentioned, the map used for localization will consist of a set of lines. The
reason for this choice is to make the MCL as efficient as possible. By using a line based
map, the environment can be described by a relative small set of objects without loss of
resolution. Also, since the only measurements used for localization arise from the laser
sensor and since a laser ray can be described as a line, the simulation of the measurements
will be simple. However, as mentioned earlier, the map used for localization will most
likely not contain small objects and therefore it is important that measurements arising
from small objects are detected and filtered out as described in IV.

5.3.2 Online Mapping

The online mapping will differ from the offline mapping previously described. The map
needs to be updated when new objects are located and objects that are no longer present
should be removed from the map. Another difference is that not only the laser will be

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 19

Initialize particles

New

measurement

data?

Pose change

big enough?

Update the

particles poses

Simulate measurements

for the particles

Compare the robot’s

measurements with

the particles and update

the particles importance

weights

Resample new particles

from the current set

of particles

Y

Y

N

N

Figure 10: The MCL algorithm

used for online mapping, but also the sonars. The reason for this is that the robot needs
to detect as many obstacles as possible in order to avoid collisions. The ambition is that
the robot should be able to update the map dynamically as it moves in the office so that
it always have access to an updated map.

However the first approach will be a little more restrictive. The idea is that the robot
will have two different sets of maps. One described by line segments which the MCL will
use and another grid based map that will be used by the control unit to navigate and
calculate the shortest path.

The grid map needs to be continuously updated if changes in the map are detected so that
the control unit knows about the environment. The line based map used by the MCL will
not be updated. The reason for this is that the main objects in the line based map, e.g.
walls, will not likely be moved or removed. Therefore, the big difference between the line
based map and the reality will be dynamic objects such as people, smaller objects such
as tables and chairs and objects that the laser can not detect, e.g. glass.

This is why the algorithm that chooses the angles, which the particles simulate in MCL,
has to be used to filter out the possible outliers caused by objects not included in the
map. However the algorithm will not be able to detect all dynamic objects which will
cause the robot to be more uncertain of its pose at those locations. Since the MCL is used,

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 20

the particles will spread out over a larger area when the robot moves in an environment
where the map differs from the reality. But when it exits that area the particles will
gather around the robot again making the uncertainty of the pose smaller.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 21

6 Trajectory planning

The purpose of this subsystem is to find a route from the current position to a given point
in the map. If a user has defined forbidden zones in the map the program should consider
this when planning the route. The trajectory planner gets a map and robot pose (position
and heading) from the SLAM system and sends a route to the control system.

6.1 Pathfinding

The robot will employ the Dynamic A* Lite (D* Lite) pathfinding algorithm, an incremen-
tal heuristic search algorithm [5]. The A* algorithm is a commonly used search algorithm
based on Dijkstra’s algorithm but with a heuristic approach to achieve a faster computa-
tion time [10]. However, it does not cope well with a large dynamic environment, through
which the robot will be needed to navigate, since a changed path always needs to be recal-
culated from scratch. This could be solved by using the Dynamic A* algorithm (i.e. D*)
which adds an incremental enhancement to the A* algorithm to reduce the computation
time. By reusing old information when detecting new obstacles, only the affected part
of the path needs to be recalculated [12]. The D* Lite algorithm, though technically not
based on the D* algorithm, shares its functionality and performance but is far easier to
implement than the original D* algorithm [5].

6.2 The D* Lite algorithm

The algorithm will be used on a supplied grid map, where each cell corresponds to a node.
The cost of moving between two adjacent nodes is always one, as long as the movement is
possible. If a cell is blocked by an obstacle, the cost of traveling to the node it represents
will be set to infinity. The same applies for a node to which the robot does not yet know
a path.

6.2.1 Definitions

The following notations are used throughout the description.

1. s refers to an arbitrary node.

2. si,j refers to a node s at position i, j in the grid.

3. c(s′, s) is the cost of moving from node s′ to node s.

4. g(s) is the cost of reaching node s through node s′ and can be defined as g(s) =
g(s′) + c(s′, s).

5. rhs(s) is the one step look ahead cost of reaching a node s and is equal to g(s) as
long as the node is consistent. If g(s) 6= rhs(s) the cost of reaching the node has
changed (i.e. a new obstacle has been detected or an old one has disappeared) and
the path needs to be recalculated [11].

6. h(s′, s) is the heuristic cost of reaching node s from node s′. Here, this corresponds
to the shortest path with no consideration of walls or obstacles.

7. km is the key modifier value, used when recalculating the path.

8. k1 and k2 are the two key values each node is given. They determine in which order
the nodes will be searched and are combined into a two component vector.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 22

9. U is the priority queue for node keys and is implemented as a stack, where the keys
are stored in order. The keys will be added or removed during the computation
under given conditions.

6.2.2 Initialization

The initial layout of a map is exemplified in figure 11. Each cell is associated to a heuristic
value which corresponds to the shortest path from the start node s0,1 with no consideration
of walls or obstacles [3].

Figure 11: An example map with heuristic values

The initialization will be done by the function Initialize(), called by the function Main()
[5]. The algorithm performs a backward search; thus the g-value and the rhs-value for
each cell is set to infinity, except the rhs-value of the goal node s4,2 which is set to zero.
The goal node is also mapped with its key. The key for a node s is a two component
vector and is used to determine the order in which the nodes will be searched. It will be
calculated with the function CalculateKey(s) for a node s [5](

k1

k2

)
=

(
min(g(s), rhs(s)) + h(sstart, s) + km

min(g(s), rhs(s))

)
. (34)

The g(s) function calculates the cost of reaching node s, the rhs(s) function calculates
the one step look ahead of reaching node s, the h(sstart, s) function gives the heuristic
cost from the start node to node s (According to figure 11, this value is initially 3 for
the goal node). The key modifier variable km is used later on when determining keys for
subsequent nodes after changes in edge costs and is initially 0 [5]. After calculation, as a
part of the initialization process, the key for the goal node s4,2 will be saved in the queue
U . This is represented in the figure by showing the key-value in the cell. Figure 12 shows
the example map after initialization [3].

6.2.3 First time computation of the shortest path

The path will be calculated by the function ComputeShortestPath() which will be called
by the function Main(). The function will run as long as the lowest priority key in the
queue is lower than the key of the start node, or as long as the start node is locally
inconsistent.

It will then pick out the lowest priority key of the queue and the lowest priority node (at
the same time removing it). Then one out of three scenarios will unfold:

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 23

Figure 12: The example map after initialization

1. If the picked key is lower than a new calculated key of the acquired node, the node
will be inserted once again in the queue U together with this key.

2. If the acquired node is found out to be over consistent (its g-value larger than its
rhs-value) the rhs-value will be set as its g-value and the function UpdateV ertex(s)
will be run on all nodes s preceding the node.

3. If none of these scenarios apply, the g-value will be set to infinity for the node and
the function UpdateV ertex(s) will be run on all nodes preceding the node.

The function UpdateV ertex(s) updates a node s under three different conditions:

1. If the node is not the goal-node, the rhs-value for the node will be calculated.

2. If the node s is in the queue U , it will be removed.

3. If the node’s g-value differs from its rhs-value (i.e. it is inconsistent) it will be added
to the queue U along with its associated key.

Seen in figure 13 are the five steps of the first time path computation. In step 1, the three
nodes neighboring the goal node have all had their rhs-values and keys calculated and have
subsequently been added to the queue U . Since both node s3,2 and s3,1 have the same key
value the order in which they will be examined is irrelevant. In this example, the node
s3,1 is chosen and will have its g-value calculated and be removed from the priority queue
U . This is shown to have happened it step 2, together with the calculation of the key and
rhs-value of all nodes neighboring node s3,1. The same procedure continues through step
3 and 4. In step 5 the algorithm terminates because the start node (i.e. the ”goal” node)
has been found.

6.2.4 Dynamic re-calculation of the path

As the robot moves from node s1,0 to s2,0 the function Main() will reset the new node
as the start node and update the heuristics, as according to figure 14. The goal node is
still node s4,2. For the sake of the example, a new wall segment seems to have appeared
in the robot’s path [3].

In figure 15 the robot has moved to its new node and the scan for changed edge costs yields
a positive response. The key modifier value km is calculated as km = km + h(slast, sstart)

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 24

Figure 13: Step 1 to 5 of first time path calculation

where h(slast, sstart) is the heuristic value between the last node visited and the new node,
which is set as the new start node.

In figure 16 values for the nodes with changed edge costs are updated and a new traversable
path is calculated accordingly [3].

6.2.5 Practical implementation

When implemented, each cell in the grid map will correspond to a 10 by 10 cm square, in
order to achieve a high resolution. In a two meter wide and 200 meter long corridor, this
will result in approximately 20 000 cells. It is still an open question weather or not this
is too computational heavy (both for the algorithm and the system as a whole). Should
this be the case, it is simple to just acquire a map update every fifth cell or so and only
do a recalculation with a new map update if the safety sensors detects an obstacle.

The actual movement between the cells will be actuated by the control system.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 25

Figure 14: New heuristics after robotic movement

Figure 15: New edge costs after robotic movement

7 Control

The path finding algorithm will decide which grid in the grid map to go to. This will
then be translated to a position in the robot’s coordinate system and the control system
will make the robot go there. When the robot has reached this position it will ask the
path finder where to go next. While moving, the robot will also send data from the range
finders to the SLAM system.

The ActivMedia Robotics Interface for Application (ARIA) library [13] is used for all
communication with the robot.

7.1 Robot Interface

The following ARIA classes and methods will be used.

• ArRobot is used for communication with odometers, sonars and motors

– getX(), getY(), getTh() returns an estimation of the robot’s pose determined
by odometry

– moveTo() updates the robot’s idea of its pose with the values from Online-
SLAM

– setVel() sets the translational velocity

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 26

Figure 16: Step 1 to 4 of dynamic path re-calculation

– setRotVel() sets the rotational velocity

– addAction() adds an action with a priority

– getSonarReading() returns the reading from a given sonar

• ArSick is used for communication with the laser range finder

– getRawReadings() returns a list with 361 laser readings from the latest scan

• ArPose contains an x and y postition as well as a heading

• ArSensorReading contains the range of a laser or sonar reading together with the
pose from where the reading was taken

• ArActionGoto takes a position and sets the wheel velocities to make the robot go
to the given position

• ArActionAvoidFront makes the robot slow down, turn or stop if any of the range
finders detects something in front of the robot

The central class of the interface is ArRobot. It has methods for receiving odometry and
sonar data as well as sending commands to the motors. The method getPose() returns
an ArPose object which contains the robot’s position and heading determined by odome-
try. ArPose also has helper functions for calculating distance and angle to another pose.
Both ArRobot and ArPose have methods getX(), getY() and getTh() for extracting the
individual values. These values, together with the covariance matrix calculated according
to section 4, will be sent to the Online-SLAM. When localization have been performed
in Online-SLAM and a more accurate pose is available, moveTo() is used to update the
robot’s idea of its pose so that the next pose estimation from the odometers will depend
on the pose from localization and the movement since localization.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 27

To get the robot to move, setVel() and setRotVel() are used to set the translational and
rotational velocities. Alternatively setVel2() can set the velocities of the left and right
wheel, individually. To make the robot go to a given position an ArActionGoto object is
created and added to the robot with addAction(). This action takes the desired x and y
coordinates as parameters and moves the robot there. Another action, ArActionAvoid-
Front, is added to avoid obstacles in front of the robot. This action uses readings from
both the laser and the sonars to determine if there is an object in front of the robot. If it
detects something within 20 cm the robot will stop. In case the object disappears within
3 seconds, the robot will continue moving. Otherwise the grid map will be updated and
the path replanned. Each action added to the robot is given a priority. The avoid action
will have a higher priority than the goto action.

ArRobot also provides the sonar range data through getSonarReading(). ArSick is the
class that handles laser data. It has methods that return the closest current reading in
a region, currentReadingBox() and currentReadingPolar(). To get a list of all current
readings getRawReadings() is used, which returns a list of ArSensorReading’s. The range
of these readings will be sent to the SLAM algorithms.

The robot’s physical dimensions and some other parameters that are used in the program
are stored in a file (p2d8.p) which is loaded on initialization.

All numbers are of type double. The units are millimeters for lengths, millimeters per
second for velocities and degrees for angles.

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 28

8 Documentation and coding conventions

Stylistic rules for documents and code to ensure a cohesive appearance.

• Documents
These rules only apply for documents that make up the project documentation.
Other documents, e.g. presentations and posters, are not covered by these rules.

1. All documentation must be written in Latex and published using the lips eng.sty
Latex style sheet file [6].

2. All headlines must be followed by a short descriptive text of the section in
question.

• Coding
The standard C++ coding convention is used, as described by the Robotics Interface
for Application (ARIA) documentation [13].

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

AB Mail Robot 29

References

[1] Kai Oliver Arras. An introduction to error propagation. http://www.nada.kth.

se/~kai-a/papers/arrasTR-9801-R3.pdf(2010-10-04). [Online; accessed 02-oct-
2010].

[2] W. Burgard D. Sack. A comparison of methods for line extraction from
range data. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

118.629&rep=rep1&type=pdf. [Online; accessed 06-Oct-2010].

[3] C. Erogul. D*-lite path finding algorithm and its variations. http:

//www2.ceng.metu.edu.tr/~erogul/ceng585/13_DEC_2007_Presentation/

d-star-hidden-slides-deleted.pdf. [Online; accessed 6-oct-2010].

[4] J. Morales A. Mandow J. L. Mart́ınez, J. González and A. J. Garćıa-
Cerezo. Genetic and icp laser point matching for 2d mobile robot motion es-
timation. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.

9279&rep=rep1&type=pdf. [Online; accessed 06-Oct-2010].

[5] S. Koenig and M. Likhachev. D* lite. http://idm-lab.org/bib/abstracts/

papers/aaai02b.pdf. [Online; accessed 26-Sep-2010].

[6] T. Svensson;C. Krysander. Projektmodellen LIPS (2007). Linköping University, 2007.

[7] K. Lee. Application of the hough transform. http://www.cs.uml.edu/~lkyewook/

hough/APPLICATION%20OF%20THE%20HOUGH%20TRANSFORM%20V1.9.pdf. [Online; ac-
cessed 06-Oct-2010].

[8] F. Lu*; E. Milios. Globally consistent range scan alignment for environment map-
ping. http://cogvis.nada.kth.se/hic/~SLAM/Papers/lu_milios.pdf. [Online;
accessed 01-oct-2010].

[9] Austin I. Eliazar;Ronald Parr. Learning probabilistic motion mod-
els for mobile robots. http://delivery.acm.org/10.1145/1020000/

1015413/p284-eliazar.pdf?key1=1015413&key2=9668716821&coll=GUIDE&dl=

GUIDE&CFID=107205476&CFTOKEN=75751825. [Online; accessed 28-Sep-2010].

[10] A. Patel. Amit’s a* pages. http://theory.stanford.edu/~amitp/

GameProgramming/. [Online; accessed 5-oct-2010].

[11] A. Sotelo. D* lite and dynamic pathfinding. http://www.adriansotelo.com/

Research/Dstar%20Lite.pptx. [Online; accessed 6-oct-2010].

[12] T. Stentz. Real-time replanning in dynamic and unknown environments. http:

//www.frc.ri.cmu.edu/~axs/dynamic_plan.html. [Online; accessed 5-oct-2010].

[13] Dimitri van Heesch. Aria reference manual. http://www.control.isy.liu.se/

~andrecb/fidodido/doc/AriaReference.pdf. [Online; accessed 29-sep-2010].

Course name: Control Project E-mail: danba185@student.liu.se
Project group: AB Mail Men Document responsible: Daniel Bagarn Barac
Course code: TSRT10 Author’s E-mail: marme287@student.liu.se
Project: AB Mail Robot Document name: DesignSpecification v10.pdf

http://www.nada.kth.se/~kai-a/papers/arrasTR-9801-R3.pdf (2010-10-04)
http://www.nada.kth.se/~kai-a/papers/arrasTR-9801-R3.pdf (2010-10-04)
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.629&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.629&rep=rep1&type=pdf
http://www2.ceng.metu.edu.tr/~erogul/ceng585/13_DEC_2007_Presentation/d-star-hidden-slides-deleted.pdf
http://www2.ceng.metu.edu.tr/~erogul/ceng585/13_DEC_2007_Presentation/d-star-hidden-slides-deleted.pdf
http://www2.ceng.metu.edu.tr/~erogul/ceng585/13_DEC_2007_Presentation/d-star-hidden-slides-deleted.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.9279&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.9279&rep=rep1&type=pdf
http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf
http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf
http://www.cs.uml.edu/~lkyewook/hough/APPLICATION%20OF%20THE%20HOUGH%20TRANSFORM%20V1.9.pdf
http://www.cs.uml.edu/~lkyewook/hough/APPLICATION%20OF%20THE%20HOUGH%20TRANSFORM%20V1.9.pdf
http://cogvis.nada.kth.se/hic/~SLAM/Papers/lu_milios.pdf
http://delivery.acm.org/10.1145/1020000/1015413/p284-eliazar.pdf?key1=1015413&key2=9668716821&coll=GUIDE&dl=GUIDE&CFID=107205476&CFTOKEN=75751825
http://delivery.acm.org/10.1145/1020000/1015413/p284-eliazar.pdf?key1=1015413&key2=9668716821&coll=GUIDE&dl=GUIDE&CFID=107205476&CFTOKEN=75751825
http://delivery.acm.org/10.1145/1020000/1015413/p284-eliazar.pdf?key1=1015413&key2=9668716821&coll=GUIDE&dl=GUIDE&CFID=107205476&CFTOKEN=75751825
http://theory.stanford.edu/~amitp/GameProgramming/
http://theory.stanford.edu/~amitp/GameProgramming/
http://www.adriansotelo.com/Research/Dstar%20Lite.pptx
http://www.adriansotelo.com/Research/Dstar%20Lite.pptx
http://www.frc.ri.cmu.edu/~axs/dynamic_plan.html
http://www.frc.ri.cmu.edu/~axs/dynamic_plan.html
http://www.control.isy.liu.se/~andrecb/fidodido/doc/AriaReference.pdf
http://www.control.isy.liu.se/~andrecb/fidodido/doc/AriaReference.pdf

	Introduction
	Parties
	Purpose and goal
	Usage
	Background information
	Environmental limitations

	Overview of the System
	Subsytems
	Robot
	Laptop

	The Robot
	Odometers
	Laser Sensor
	Sonar Sensors

	Motion Model
	SLAM
	Sensor Models
	Laser Scans
	Sonar Measurement

	Building the Map
	Data Collection
	Offline-SLAM
	Detection of Strong Links
	Scan Matching
	Mapping and Map Conversion
	Line Based Map
	Grid Map

	Online-SLAM
	Monte Carlo Localization
	Online Mapping

	Trajectory planning
	Pathfinding
	The D* Lite algorithm
	Definitions
	Initialization
	First time computation of the shortest path
	Dynamic re-calculation of the path
	Practical implementation

	Control
	Robot Interface

	Documentation and coding conventions

