Test plan Modeling and control of an industrial robot

Version 1.0

Author: Gabriella Ahlbert, Kristofer Klasson, Tobias Andersson Date: October 11, 2011

Status

Reviewed	Alexander Pettersson	2011-10-11
Approved	Patrik Axelsson	2011-10-11

Course name: Project group: Course code: Project: Control Project Laboratory Industrial robot TSRT10 Industrial robot E-mail: Document responsible: Author's E-mail: Document name:

Project Identity

Group E-mail:	toban607@student.liu.se
Homepage:	http://www.isy.liu.se/edu/projekt/reglerteknik/2011/industrirobot/
Orderer:	Patrik Axelsson, Linköping University
	Phone: 013 284474, E-mail: axelsson@isy.liu.se
Customer:	Mikael Norrlöf, ABB Robotics
	Phone: 021 346017, E-mail: mino@isy.liu.se
	Johan Sjöberg, ABB Corporate Research
	Phone: 013 284028 , E-mail: johans@isy.liu.se
Course Responsible:	David Törnqvist, Linköping University
	Phone: 013 281882, E-mail: tornqvist@isy.liu.se
	Daniel Axehill, Linköping University
	Phone: 013 284042, E-mail: daniel@isy.liu.se
Project Manager:	Tobias Andersson
Advisors:	André Carvalho Bittencourt, Linköping University
	Phone: 013 282622 , E-mail: andrecb@isy.liu.se

Group Members

Name	Responsibility	Phone	E-mail
			(@student.liu.se)
Tobias Andersson (TA)	Project manager	0730530440	toban607
Alexander Pettersson (AP)	Documents	0737767682	alepe490
Jonas Källman (JK)	Design	0739575719	jonka615
Victor Ingeström (VI)	Mechanical modeling	0704926973	vicin977
Kristofer Klasson (KK)	Tests	0738184392	krikl150
Gabriella Ahlbert (GA)	Information	0705911501	gabah362
Andreas Samuelsson (AS)		0730651177	andsa897
Anders Gällsjö (AG)		0733681099	andga726

Document History

Version	Date	Changes made	Sign	Reviewer
0.1	2011-10-03	First draft.	GA	André Carvalho Bittencourt
0.2	2011-10-07	First revision.	GA, TA	Patrik Axelsson
0.3	2011-10-10	Second revision.	AP	Patrik Axelsson
1.0	2011-10-11	First version.	AP	Patrik Axelsson

Course name: Project group: Course code: Project: Control Project Laboratory Industrial robot TSRT10 Industrial robot E-mail: Document responsible: Author's E-mail: Document name:

Contents

1	Intr	roduction	1
	1.1	Parties	1
	1.2	Purpose and goal	1
	1.3	Background information	1
2	Gui	delines	1
	2.1	Definition of a test session	2
	2.2	Participants	2
	2.3	Test criteria	2
	2.4	Interruption of a test	2
	2.5	Test report	2
3	Test	t sessions	3
4	Sun	nmary of tests	9
5	Арр	pendix A - Test protocol	10
R	efere	nces	11

1 Introduction

This project is a cooperation between a student group at Linköping University and ABB Robotics, with the goal to control an industrial robot which was build by Mechanical Engineering students 2010. This document is a description of the tests that are to be performed in order to verify that all the requirements in the requirement specification [1] are met. It is important to know how to verify all requirements to be able to show the orderer that all requirements indeed are met.

A picture of the robot and the control electronics can be seen in figure 1.

Figure 1: A picture of the robot and the control electronics.

1.1 Parties

The customers of the project are Mikael Norrlöf at ABB Robotics and Johan Sjöberg at ABB Corporate Research. An orderer, Patrik Axelsson, and an advisor, Andre Carvalho Bittencourt, are also connected to the project.

1.2 Purpose and goal

The purpose with this document is to describe the tests that are to be performed in order to validate the models and to evaluate the control system designed in this project.

1.3 Background information

This project is a part of the CDIO-course TSRT10 at Linköping University and is a collaboration with ABB Robotics. The group consists of 8 students at the Mechanical Engineering program and Applied Physics and Electrical Engineering program.

2 Guidelines

A number of guidelines are developed, which will help the group to have the right tools, knowledge and material when the tests are performed. The purpose of the tests is to

Course name:	Control Project Laboratory
Project group:	Industrial robot
Course code:	TSRT10
Project:	Industrial robot

E-mail: Document responsible: Author's E-mail: Document name:

verify the requirements. This chapter describes how the tests shall be performed. This document describes tests to investigate requirements of all priority levels.

2.1 Definition of a test session

A test session is an activity where at least 2 persons perform a test according to the test plan. The tests can either fulfill the requirements or not. To fulfill a requirement all tests concerning this specific requirement have to be passed.

2.2 Participants

At least 2 persons are responsible for the execution, verification and recording of a test. One of them act as a secretary and is responsible to keep records according to the test protocol in Section 5. A test manager also attends at the test to supervise and ensure that the tests are correctly executed. The test manager approves or rejects the test and is selected individually for each test.

2.3 Test criteria

The test criteria determine whether the test passes or fails the requirement. If a requirement is not met, the test has to be preformed again after changing what is believed wrong. A requirement is met when all tests concerning the specific requirement is passed a minimum 5 times in a row during a test, see table 2 for more information.

2.4 Interruption of a test

If the test manager or secretary has to leave the test before it is completed, a new test manager or secretary has to be elected. If the total number of participants is below the minimum level of two persons, the test has to be postponed.

2.5 Test report

During each test, a test report must be written, a template is available in Section 5. The test report declares which group members who were present, who was the test manager and who was the test secretary. It is also stated how the test was executed and whether the requirements were met. After the test, the test manager of the project will review the report in a maximum of 2 working days.

Course name: Project group: Course code: Project: Control Project Laboratory Industrial robot TSRT10 Industrial robot E-mail: Document responsible: Author's E-mail: Document name:

3 Test sessions

This section describes the different test sessions that are to be executed during the project.

Test 1: Forward kinematic model

Objectives:	Validating the forward kinematic model
Achievements:	Accurate forward kinematic model
Tasks involved:	Definition of at set of at least 12 joint coordinate angles for the validation
	Simulate the robot kinematics in those points
	Measurement of achieved angles on the actual robot, by keeping
	the robot with hands
	Comparing the model and measurements
Test criteria:	An accuracy of ± 2 cm should be achieved at least 12 times in a
	row
Resources needed:	Robot
	Computer
	Length and angle measurement tools
Requirements tested:	9, 10, 17, 18
Preliminary schedule:	2011-10-24 to 2011-10-28
Preliminary responsible:	AG, VI

Test 2: Inverse kinematic model

Objectives: Achievements: Tasks involved:	Validating the inverse kinematic model Accurate inverse kinematic model Definition of at set of at least 12 joint coordinate angles for the validation Calculating the position with the forward kinematic in those
	points Calculating the angles with the position gained from the forward kinematics using the inverse model Comparing the validation joint angles with the calculated
Test criteria:	An accuracy of $\pm 2^{\circ}$ should be achieved at least 12 times in a row
Resources needed:	Computer
Requirements tested:	9, 10, 17, 18
Preliminary schedule:	2011-10-24 to 2011-10-28
Preliminary responsible:	AG, VI

Test 3: Manual control with Labview

Objectives:	Controlling the motors in Labview
Achievements:	A manual operation mode in Labview
Tasks involved:	Define a set of 15 angles
	Using Labview to make the robot move to the correct angles
	Comparison of the angles
Test criteria:	An accuracy of \pm 2 $^{\circ}$ should be achieved at least 15 times in a row
Resources needed:	Robot
	Computer
	Angle measurement equipment
Requirements tested:	22
Preliminary schedule:	2011-10-24 to 2011-10-28
Preliminary responsible:	JK, TA, AP

Test 4: Manual control of the robot with the interface

Objectives:	Controlling the robot with the interface
Achievements:	The robot moves to a set of angles defined in the user interface
Tasks involved:	Define a set of 15 angles
	Using the interface to make the robot move to the correct angles
	Comparison of the angles
Test criteria:	An accuracy of \pm 2 $^{\circ}$ should be achieved at least 15 times in a row
Resources needed:	Robot
	Computer
	Angle measurement equipment
Requirements tested:	23
Preliminary schedule:	2011-10-24 to 2011-10-28
Preliminary responsible:	JK, TA, AP

Test 5: Dynamic model

Objectives:	Validating the dynamic model
Achievements:	Accurate dynamic model
	Accurate model parameters
Tasks involved:	Definition of at set of at least 12 joint coordinate angles, angular
	velocity and angular acceleration for the validation
	Calculating the torque for the input
	Estimating the angular velocity and angular acceleration
	Comparing the validation joint angular velocity and angular ac-
	celeration with the calculated
Test criteria:	An accuracy of \pm 5% should be achieved at least 12 times in a
	row
Resources needed:	Robot
	Computer
	Kinematic model
	Estimated unknown parameters
	Equipment for measuring the angles over time
Requirements tested:	11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
Preliminary schedule:	2011-10-15 to 2011-10-31
Preliminary responsible:	KK, GA, AS

Test 6: Current controller

Objectives: Achievements:	Validating the current controller Accurate torque to current conversion
Tasks involved:	Definition of constant torque over a period of 10 seconds Simulation of the defined torque Measurements of the motor currents on the robot with the same torque as in the simulation
Test criteria:	An accuracy of \pm 10% should be achieved at least 8 times in a row
Resources needed:	Robot Computer Kinematic model Dynamic model Equipment for measuring the current
Requirements tested: Preliminary schedule: Preliminary responsible:	24 2011-10-15 to 2011-10-31 KK, GA, AS

Course name: Project group: Course code: Project: Control Project Laboratory Industrial robot TSRT10 Industrial robot

Test 7: Simulating the robots control system in Matlab/Simulink

Simulating the robots movement in Matlab/Simulink
Working torque controller
Working control system
Define a set of 15 different reference signals of length 10 seconds
Simulate the control system with the given reference signals
Compare the simulated angles against the reference signal
Stationary error less then $\pm 10\%$ (priority 1) or $\pm 5\%$ (priority 2)
should be achieved at least 15 times in a row
Computer
25, 27, 28, 29, 30, 36, 37
2011-10-15 to 2011-10-31
AG, VI, GA

Test 8: Simulation of the trajectory planner

Objectives:	Simulating the robots movement in a straight line in Mat-
	lab/Simulink (priority 1)
	Simulating the robots movement in a non-linear trajectory in Mat-
	lab/Simulink (priority 2)
Achievements:	Working trajectory planner
Tasks involved:	Define a set of 10 different target positions and 10 different target angles
	Simulate the trajectory by using the trajectory planner
	Calculate the tools position over time with the forward kinematics model
	Compare the calculated tool position against the line between the current position and the target position
Test criteria:	Deviation from the trajectory should be less than $\pm 10\%$
Resources needed:	Computer
Requirements tested:	25, 26, 34, 42
Preliminary schedule:	2011-11-01 to 2011-11-16
Preliminary responsible:	TA, JK, GA

Test 9: Controller and trajectory planner working together

Objectives:	Controlling the robot when moving the robot along a straight path
	Controlling the robot when the motors go from one set of angles
	to another
Achievements:	Working controller
	Working trajectory planner
Tasks involved:	Define for each motor 5 different joint angle targets
	Calculate the step response for the motors with the trajectory
	planner
	Measure the step response on the angles of the robots motors
	Compare the calculated step response against the measured
	Define 10 different target positions
	Simulate the tool moving to the target position
	Measure the angles of the robot when moving to the target posi-
	tion
	Compare the simulated values and the measured ones
Test criteria:	Overshot for a step in desired joint angle should not exceed
	$\pm 10\%$ (priority 1) or $\pm 5\%$ (priority 2) at least 10 times in a row.
	The stationary error in the joint angles should not exceed
	$\pm 10\%$ (priority 1) or $\pm 5\%$ (priority 2) at least 10 times in a row.
	The overshot for at movement when moving from A to B should
	not exceed $\pm 10\%$ (priority 1) or $\pm 5\%$ (priority 2) at least 10 times
	in a row, when moving with maximum speed.
	Deviation from the trajectory should be less than $\pm 10\%$ (priority
	1) or $\pm 5\%$ (priority 2) at least 10 times in a row.
Resources needed:	Computer
	Robot
	Trajectory planner
	Controller
Requirements tested:	25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41
Preliminary schedule:	2011-11-01 to 2011-11-16
Preliminary responsible:	TA, JK, VI

Course name: Project group: Course code: Project:

Test 10: Alternative control of the robot

Controlling the robot with a joystick (priority 2)
Controlling the robot with voice control (priority 3)
Trajectory planer takes input from joystick
Trajectory planer takes input from voice input
Steer the robot up, down, left, right, forward and backward at
least 5 seconds and measure the result
Speak to the robot and measure the result
The robot steers in the given direction with at least 25% speed
when using the joystick
The robot does as told when spoken to
Computer
Robot
Trajectory planner
Controller
40, 43
2011-11-01 to 2011-11-16
TA, JK, VI

Course name: Project group: Course code: Project: Control Project Laboratory Industrial robot TSRT10 Industrial robot E-mail: Document responsible: Author's E-mail: Document name:

4 Summary of tests

A summary of the tests are presented in Table 1. In Table 2, an overview of all tests that need to be passed for each requirement is shown.

Test number	Requirement tested	Preliminary schedule
Test 1	9, 10, 17, 18	2011-10-24 to 2011-10-28
Test 2	9, 10, 17, 18	2011-10-24 to 2011-10-28
Test 3	22	2011-10-24 to 2011-10-28
Test 4	23	2011-10-24 to 2011-10-28
Test 5	11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21	2011-10-15 to 2011-10-31
Test 6	24	2011-10-15 to 2011-10-31
Test 7	25, 27, 28, 29, 30, 36, 37	2011-10-15 to 2011-10-31
Test 8	25, 26, 34, 42	2011-11-01 to 2011-11-16
Test 9	25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41	2011-11-01 to 2011-11-16
Test 10	40, 43	2011-11-01 to 2011-11-16

Table 1: Summary of the tests.

Table 2: Overview of all test that needs to be passed for each requirement. Requirement number 1-8 are not taken into account in this document.

Number (Priority 1)	Test needed	Number (Priority 2 and 3)	Tests needed
9	1, 2	19	5
10	1, 2	20	5
11	5	21	5
12	5	36	7, 9
13	5	37	7, 9
14	5	38	9
15	5	39	9
16	5	40	10
17	1, 2, 5	41	9
18	1, 2, 5	42	8
22	3	43	10
23	4		
24	6		
25	7, 8, 9		
26	8, 9		
27	7		
28	7		
29	7, 9		
30	7, 9		
31	9		
32	9		
33	9		
34	8, 9		
35	9		

Course name: Project group: Course code: Project: Control Project Laboratory Industrial robot TSRT10 Industrial robot E-mail: Document responsible: Author's E-mail: Document name:

5 Appendix A - Test protocol

est nr:	
Date and place:	
est manager/-secretary:	
Description:	
opproach:	
-pprocessi-	
Cest result: [] Pass [] Fail	
N	
Comment:	
Signature by participants:	
] Reviewed by project Test manager	
-	

Course name: Control F Project group: Industrial Course code: TSRT10 Project: Industrial

Control Project Laboratory Industrial robot TSRT10 Industrial robot E-mail: Document responsible: Author's E-mail: Document name:

References

[1] AG, VI, AP, *Requirements specification*, TSRT10: Modeling and control of an industrial robot project, 2011.

Course name: Project group: Course code: Project: Control Project Laboratory Industrial robot TSRT10 Industrial robot E-mail: Document responsible: Author's E-mail: Document name: