Requirement Specification

Editor: Klas Gudmundsson

Version 1.0

Status

Reviewed	СМ	2016-09-16
Approved	MO	2016-09-23

PROJECT IDENTITY

 $2016 \ \mathrm{HT}$

Linköping University, Dept. of Electrical Engineering (ISY)

Group members					
Name	Responsibility	Phone	Email		
Linnea Faxén	Project Manager (PM)	073-829 65 09	linfa440@student.liu.se		
Klas Gudmundsson	Document Manager (DM)	072-714 06 66	klagu863@student.liu.se		
Eskil Jörgensen	Chief of Design (CoD)	076-222 53 72	eskjo325@student.liu.se		
Stefan Lundström	Hardware Specialist	070-379 80 79	stelu332@student.liu.se		
Ema Becirovic	Test Manager (TM)	073 564 15 73	emabe844@student.liu.se		
Javier Preciado	Software Specialist	$+34\ 647\ 92\ 61\ 38$	javpr698@student.liu.se		

Customer: ISY, Linköpings universitet, 58183 Linköping Customer contact: Mikael Olofsson, mikael.olofsson@liu.se Course leader: Danyo Danev, danyo.danev@liu.se Supervisor: Christopher Mollén, christopher.mollen@liu.se

Contents

D	ocument History	iii
1	Introduction 1.1 Who is involved 1.2 Goals 1.3 Usage 1.4 Background Information 1.5 Definitions	1 1 1 2 2
2	Overview of the System 2.1 Description of the System 2.2 General Requirements of the System	2 3 3
3	Hardware 3.1 Interfaces 3.2 Design Requirements 3.3 Functional Requirements	4 4 4 5
4	Software 4.1 API 4.1.1 Interfaces 4.2 Application 4.2.1 Interfaces 4.2.2 Functional Requirements	5 5 5 6 6
5	Performance Requirements	6
6	Possibility of Upgrading	7
7	Economy	7
8	Delivery	7
9	Documentation	7
10) Education	8
R	eferences	10

Massive Audio Beamforming

Document History

Version	Date	Changes	Sign	Reviewed
0.1	2016-09-15	First draft	KG	KG,LF
0.2	2016-09-21	Fixed CM:s com-	KG	KG,LF
		ments.		
1.0	2016-09-23	Updated version and	KG	KG,LF
		history.		

1 Introduction

The following requirement specification concerns Massive Audio Beamforming - version II, a project carried out at Linköping University, Department of Electrical Engineering (ISY). The project is implemented by a group of six students in the course TSKS05 and is commissioned and supervised by ISY. The aim of this project is to create a testbed capable of demonstrating the powers of massive MIMO in an intuitive and convincing manner using sound waves.

The testbed uses a number of loud-speakers that also function as microphones (L/M units) for antennas. To demonstrate the powers of MIMO, the testbed will be placed in a room and the L/M units will be used to transmit one sound to one corner of the room and another sound to another corner of the room. This requires the system to estimate the channel and then preprocess the desired signal for desired effect.

The purpose of this document is to specify all requirements of the product. All requirements are specified using a table row as shown below. The numbering increases throughout the document. The second column specifies if the requirement is an original one or has been modified. If it has been modified there will be a reference to the decision that forced the modification. In the third column, the requirement is described and, in the last column, the priority is stated. Priority Base means that the requirement is mandatory and priority Extra requirements should be fulfilled if there are resources available for it.

Req.nr	Change	Description of requirement nr.X	Priority
X			

1.1 Who is involved

The parties of the project as well as all the group members with specified responsibilities is defined in the section called "Project Identity" on page ii. They are also stated here for clarity. The group members are: Linnea Faxén, Klas Gudmundsson, Eskil Jörgensen, Stefan Lundström, Ema Becirovic and Javier Preciado. The customer is Mikael Olofsson. The examiner is Danyo Danev and the supervisor is Christopher Mollén.

1.2 Goals

The first part of the goals is to deliver a MAB that can demonstrate massive MIMO. The customer also wants a MAB that can be used in other projects for implementing different kinds of demonstrations.

The second part of the goals is simply to educate the project group on a few subjects such as massive MIMO, communication systems, electronics, project management, collaboration and problem solving.

1.3 Usage

The testbed is to be used by students and researchers at the Division of Communication Systems of ISY for studies, research, experimentation and demonstrations on the possible applications of Massive MIMO systems.

1.4 Background Information

The idea of Massive MIMO is well known and has been around since early 2010 [4]. Theoretical results, such as channel capacity, have been established and the technology has been proved to have a huge potential. The technology of 5G will likely be based on massive MIMO for example.[3]

Physical experimentation, however, requires construction of equipment which is expensive. Radio testbeds have been built in a few places, e.g. Lund University. [2]

An approach that is easier to illustrate, because a direct experience is given to the user through hearing, is using an audio system for proof of concept and demonstrations. This is reasonable because the wavelengths used in modern radio communication systems is similar to the wavelengths of audio in the human hearing range.

1.5 Definitions

The abbreviations used in this document are specified in Table 1

Abbreviation	Definition
A/D	Analog to digital
API	Application programming interface
D/A	Digital to analog
GUI	Graphical user interface
L/M	Loudspeaker/microphone unit
LED	Light-emitting diode
MAB	Massive Audio Beamformer
MIMO	Multiple input multiple output

Table 1: Abbreviations used in the document

2 Overview of the System

The system consists of two subsystems: hardware and software. Software is further divided into an application programming interface (API) and an Application. The user interacts with the Application which use methods from the API to control the hardware. The hardware contains all L/M units and the necessary electronics to control them. This is illustrated in Figure 1.

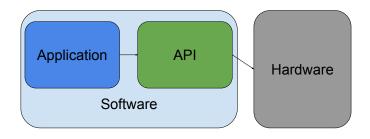


Figure 1: System overview

Massive Audio Beamforming

Controlling the hardware should be simple and the API will handle this. The idea is that later projects run on the MAB should not need to communicate directly with the hardware. Those projects can focus on implementing different demonstrations.

Req. 1	Original	The system should have a clear subdi-	Base
		vision according to figure 1.	
Req. 2	Original	The Application shall communicate	Base
		with the hardware through the API.	

2.1 Description of the System

The system consists of 64 L/M units that are connected to a system of hardware that can be controlled by the user through an API on a Windows computer. The L/M units are used for transmission and recording of signals to make a testbed for Massive MIMO. An example of the finished product can be seen in Figure 2.

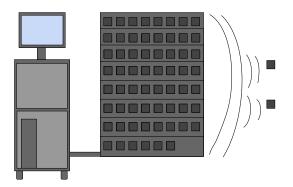


Figure 2: Example of finished product

2.2 General Requirements of the System

Req. 3	Original	The system should be able to transmit specified sound at specified L/M units.	Base
Req. 4	Original	The sound's frequency is in the interval 300 - 3000 Hz.	Base
Req. 5	Original	The system should be able to record signals at specified L/M units.	Base
Req. 6	Original	The system should be operable in a Windows environment.	Base
Req. 7	Original	The system should be able to direct sound so that it is heard loudly at a specified point in space while being much lower around it.	Base

3 Hardware

The hardware consists of a computer, expansion boxes, a distribution box and L/M units. The main purpose of the hardware is to control the L/M units in the system. This chapter will further describe the requirements on these entities. An overview of the hardware system is depicted in figure 3. A detailed explanation of the figure can be found in [5].

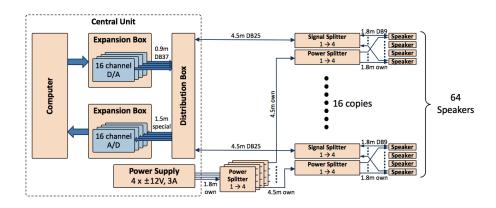


Figure 3: Hardware overview

3.1 Interfaces

The Hardware is interfaced to the API through the expansion boxes. The expansion boxes contain the A/D- and D/A-converters. After the expansion boxes comes the distribution box that contains the Arduinos used to control if the L/M unit:s are transmitting or receiving.

Req. 8	Original	The API should be able to send digital	Base
		signals to the D/A -converters.	
Req. 9	Original	The API should be able to receive dig-	Base
		ital signals from the A/D-converters.	
Req. 10	Original	The operation mode of the L/M units	Base
		(transmit or receive) should change	
		when requested through the API.	

3.2 Design Requirements

For this project, the customer has provided designs for the hardware that describe how it should be implemented.

Req. 11	Original	The system should be built according	Base
		to the design provided by the customer	

3.3 Functional Requirements

These requirements describe the functional requirements on the hardware.

Req. 12	Original	The speakers should be able to both	Base
		send and receive sound and should be	
		individually controllable	

4 Software

The software used to control the system is divided into API and Application. The API handles all communication with the hardware while the Application performs required signal processing for directed sound transmission. A user interacts with the user interface in the Application to run the demonstration.

Req. 13 Original	The software is written in MATLAB	Base
------------------	-----------------------------------	------

4.1 API

The API is used to control the hardware. This consists of: transmitting the signal requested by the Application at the desired L/M unit, receiveing signals at desired L/M units, assigning L/M units to the array or terminals and controlling when the L/M unit transmits or receives. The API is an interface between the Application and the Hardware. The interface between the Application and API is described in the following section. The interface between the Hardware and the API is described in the Hardware section under Interfaces.

4.1.1 Interfaces

The API connects the Application to the Hardware making them able to communicate with each other. The API itself is a collection of MATLAB methods that the Application runs to communicate with the hardware.

Req. 14	Original	Given what L/M units to be used as receivers, the API should return the re- ceived signals from these receivers to the Application	Base
Req. 15	Original	The API should be able to send the requested data from the Application to the desired L/M units	Base

4.2 Application

The Application of this project is directive sound transmission, see [5]. In principle, the user will choose what L/M units that should belong to the array (which will be most of them) and what L/M units to use for the terminals. Two terminals will be supported. Thereafter the user chooses what sound to play at what terminal. All choices are made through a GUI. The MAB will then

beamform the two chosen sounds from the array to the two terminals. The sounds will only be heard at the respective terminal.

4.2.1 Interfaces

The Application will have a user interface that can be used to run the demonstration. The user interface should meet the following requirements:

Req. 16	Original	$\rm L/M$ units in array and at terminal can	Base
		be chosen in the user interface.	
Req. 17	Original	The user should be able to choose what	Base
		sound to transmit and which terminals	
		these sounds will be directed to	
Req. 18	Original	The system shall support two users	Base
Req. 19	Original	The system shall support more than	Advanced
		two users	

4.2.2 Functional Requirements

To actually perform directive sound transmission, the system will estimate the channel using pilots and then with help of this estimation precode the sound. The precoding will direct the sound to the desired position.

Req. 20	Original	The software shall be able to precode the signals that will be sent to the L/M units such that the sound is heard at the specified L/M unit but not at the other L/M units.	Base
Req. 21	Original	The software shall be able to produce pilot signals for channel estimation	Base
Req. 22	Original	The software shall perform channel estimation for each path between array L/M unit and terminal L/M unit	Base

5 Performance Requirements

Under this title, demands on the performance of the product are stated.

Req. 23	Original	The two sounds should be distinguishable from each other at each user. It should be clear that the two users receive different sounds.	Base
Req. 24	Original	Two songs should be easily recognised and distinguished from each other at each user.	Extra

6 Possibility of Upgrading

The product is divided into three subsystems. This is to simplify upgrading of one of the subsystems without changing the others. This especially holds true for the Application, it should be easy to implement a new Application that performs a different kind of demonstration while keeping the API and hardware intact.

Req. 25 C	Driginal	The system should be divided into sub-	Base
		systems to support easy upgrades of each.	

7 Economy

The hardware budget is handled by the customer. Much money has already been invested here. The human resource budget for the implementation is specified in this section.

Req. 26	Original	There are 240 hours per group member	Base
		for disposal.	
Req. 27	Original	No more than 15 hours of supervision	Base
		from the supervisor shall be used.	
Req. 28	Original	No more than 25 hours of expert consul-	Base
		tancy from the customer and the PhD	
		students at the Division of Communi-	
		cation Systems shall be used.	

8 Delivery

This section summarizes the deliveries of the project.

Req. 29	Original	All items in table 2 should be delivered	Base
		according to dates specified in table 2	
		and described in table 3	

9 Documentation

Table 2 contains details on the documents, reports and other media that should be delivered. The due dates for the documents are specified in Table 3.

Massive Audio Beamforming

Name	Table 2: Deliverabl	Due date	Due form	Approved
	1 urpose	Due date	Due Iorini	by
Documents				
Requirement Specifica- tion	Specifies all features and interfaces	TG2	pdf	KG
System Design Sketch	Initial sketch of the system	TG2	pdf	KG
Project Plan	How the project will be ex- ecuted	TG2	pdf	KG
Time Plan	Schedule of all activities	TG2	pdf	KG
Design Specification	Detailed description of the planned system	TG3	pdf	KG
Test Plan	Describes testing of prod- uct	TG3	pdf	KG
Test Protocols	Protocols for each test	TG5	pdf	KG
User Manual	Easy-to-understand de- scription of how to use product	TG5	pdf	KG
Technical Report	Explains how product works in detail	TG6	pdf	KG
Afterstudy	Retrospective discussion about the project	TG6	pdf	KG
Poster	Presentation of project	TG6	pdf	KG
Meeting Protocols	Protocols for each execu- tive meeting	TG6	pdf	KG
Protocols from Mile- stones	Protocols from meetings where milestone fullfilment is evaluated	TG6	pdf	KG
Reports				
Weekly report	Report of progress, plans and problems	Weekly, Mon.12.00	email	LF
Individual and Collec-	Weekly reports about who	Weekly,	ods	LF
tive Time Reports	has spent time on what	Mon.12.00		
Other				
Project Web Page	Presentation of project	TG6	webpage	LF
Oral Presentation	Present to the Communi- cation Systems Group	Project confer- ence	orally	LF

Table 3: Description of due dates

Description	Date	Deliverables	
TG2	23/9	Requirement Specification, System Design Sketch,	
		Project Plan	
TG3	10/10	Design Specification, Test Plan	
TG5	12/12	Product, Test Protocols, User Manuals	
TG6	15/12	Technical Report, Afterstudy, Poster, Webpage	
Project Conference	20/12	Oral Presentation	

10 Education

This section describes requirements on the educational material produced in the project.

BAR	K	Massive Audio Beamforming Decer	mber 2, 2016
Req. 30	Original	The user manual shall be enough to teach a new user how to run the MAB	Base
		for demonstration.	
Req. 31	Original	The technical documentation shall con-	Base
		tain all information needed for a non-	
		project member to continue the devel- opment of the MAB.	
Req. 32	Original	The customer shall be given the oppor-	Base
		tunity of a guided instruction on the	
		MAB.	

References

- [1] T.Svensson and C.Krysander, in *LIPS*, Version 1.0, Compendium, LiTH, 2002.
- [2] A.Wennberg.(2016, Sep.16). Redo för världens vassaste mimo, Elektronik-Tidningen. [Online] Available: http://etn.se/index.php/59642
- [3] E.G.Larsson. (2016). Intoductory lecture on massive MIMO.
- [4] S.Yang, L.Hanzo, "Fifty Years of MIMO Detection: The Road to Large-Scale MIMOs" in *IEEE Communications Surveys & Tutorials*, vol. 17, no. 4, pp. 1941-1988, Sep. 2015.
- [5] K.Gudmundsson et al. (2016). Design Sketch v0.2