Project Plan

Editor: Klas Gudmundsson Version 1.0

Status

Reviewed	CM	2016-09-16
Approved	MO	2016-09-23

PROJECT IDENTITY

 $2016~\mathrm{HT}$

Linköping University, Dept. of Electrical Engineering (ISY)

Group members

Name	Responsibility	Phone	Email
Linnea Faxén	Project Manager (PM)	073-829 65 09	linfa440@student.liu.se
Klas Gudmundsson	Documentation Manager (DM)	072-714 06 66	klagu863@student.liu.se
Eskil Jörgensen	Chief of Design (CoD)	076-222 53 72	eskjo325@student.liu.se
Stefan Lundström	Hardware Specialist	070-379 80 79	stelu332@student.liu.se
Ema Becirovic	Test Manager (TM)	073 564 15 73	emabe844@student.liu.se
Javier Preciado	Software Specialist	$+34\ 647\ 92\ 61\ 38$	javpr698@student.liu.se

Customer: ISY, Linköpings universitet, 58183 Linköping Customer contact: Mikael Olofsson, mikael.olofsson@liu.se Course leader: Danyo Danev, danyo.danev@liu.se Supervisor: Christopher Mollén, christopher.mollen@liu.se

Massive Audio Beamforming	December 2, 2016
Contents	
Document History	iii
1 Customer 1.1 Definitions	1 1
2 Overview of the Project 2.1 Purpose and goal 2.2 Deliveries	1 1 1
3 Phase Plan 3.1 Before 3.2 During 3.3 After	2 3 3 3
 4 Organization plan 4.1 Definition of responsibilities	3 4 4
5 Document plan	5
6 Training	5
7 Reporting Plan	5
8 Meeting Plan	5
9 Resource plan 9.1 People	5
10 Milestones and Tollgates 10.1 Milestones 10.2 Tollgates	6 6 7
11 Activities	7
12 Time plan	9
13 Quality plan 13.1 Review plan 13.2 Test plan	9
14 Priorities	9
15 Project termination	11
A Appendix: Timeplan	12
References	14

TSKS05

Massive Audio Beamforming

Document History

Version	Date	Changes	Sign	Reviewed
0.1	2016-09-15	First draft.	LF	KG,LF
0.2	2016-09-21	Fixed CM:s com-	LF	KG,LF
		ments.		
1.0	2016-09-23	Updated version and	LF	KG,LF
		history.		

1 Customer

The customer, Mikael Olofsson has ordered a Massive Audio Beamformer (MAB). It is a product that can beamform audio using a large number of combined loud-speakers and microphones (L/M unit). Mikael has also provided the design for the hardware. The project will assemble the hardware, design and implement software to control it, test it and finally deliver it to the customer. This document describes how the project will be run by the group. As a customer Mikael can be contacted at: mikael.olofsson@liu.se.

1.1 Definitions

The abbreviations used in this document are specified in Table 1

Abbreviation	Definition
A/D	Analog to digital
API	Application programming interface
D/A	Digital to analog
GUI	Graphical user interface
L/M	Loudspeaker/microphone unit
MAB	Massive Audio Beamformer
MIMO	Multiple input multiple output

 Table 1: Abbreviations used in the document

2 Overview of the Project

This chapter describes the goals, deliverables and limitations of the project.

2.1 Purpose and goal

The first part of the goals is to deliver a MAB that can demonstrate massive Multiple Input Multiple Output (MIMO). It will demonstrate massive MIMO by beamforming audio to two different locations in a room. The customer also wants a MAB that can be used in other projects for implementing different kinds of demonstrations.

A similar project was run in 2014 where a MAB with 16 L/M units was constructed from off-the-shelf loudspeakers. [2] This was used for other projects in 2015. The goal for the project this year is to create a new, bigger and better MAB.

The second part of the goals is simply to educate the project group on a few subjects such as massive MIMO, communication systems, electronics, project management, collaboration and problem solving.

2.2 Deliveries

Apart from a product that fullfills the Requirement Specification, the deliverables specified in Table 2 should be delivered to the customer. The due dates in Table 2 are described in Table 3.

Massive Audio Beamforming

Table 2: Deliverables					
Name	Purpose	Due date	Due form	Approved by	
Documents					
Requirement Specifica-	Specifies all features and	TG2	pdf	KG	
tion	interfaces				
System Design Sketch	Initial sketch of the system	TG2	pdf	KG	
Project Plan	How the project will be ex- ecuted	TG2	pdf	KG	
Time Plan	Schedule of all activities	TG2	pdf	KG	
Design Specification	Detailed description of the planned system	TG3	pdf	KG	
Test Plan	Describes testing of prod- uct	TG3	pdf	KG	
Test Protocols	Protocols for each test	TG5	pdf	KG	
User Manual	Easy-to-understand de- scription of how to use product	TG5	pdf	KG	
Technical Report	Explains how product works in detail	TG6	pdf	KG	
Afterstudy	Retrospective discussion about the project	TG6	pdf	KG	
Poster	Presentation of project	TG6	pdf	KG	
Meeting Protocols	Protocols for each execu- tive meeting	TG6	pdf	KG	
Protocols from Mile- stones	Protocols from meetings where milestone fullfilment is evaluated	TG6	pdf	KG	
Reports					
Weekly report	Report of progress, plans and problems	Weekly, Mon.12.00	email	LF	
Individual and Collec-	Weekly reports about who	Weekly,	ods	LF	
tive Time Reports	has spent time on what	Mon.12.00			
Other					
Project Web Page	Presentation of project	TG6	webpage	LF	
Oral Presentation	Present to the Communi- cation Systems Group	Project confer- ence	orally	LF	

Table 3: Description of due dates

Description	Date	Deliverables				
TG2	23/9	Requirement Specification, System Design Sketch,				
		Project Plan				
TG3	10/10	Design Specification, Test Plan				
TG5	12/12	Product, Test Protocols, User Manuals				
TG6	15/12	Technical Report, Afterstudy, Poster, Webpage				
Project Conference	20/12	Oral Presentation				

3 Phase Plan

The time period that the project stretches is divided into 3 phases according to the LIPS model [1]. These periods are called: before, during and after. This chapter gives a brief description of the activities to be performed during the

different phases. Table 4 gives a rough overview of when different activities start and end. An x marks that the activity is active during that time.

Activity		TG2		TG3		TG5		TG6	
Req.spec, Des.sketch, Proj.plan	x	x							
Assembly, programming			х	x	х	x			
Des.schematic, Test Plan			х	x					
Technical Report				x	х	x			
Afterstudy, Poster, Webpage						x	х	x	
Prepare presentation								х	x

 Table 4: Overview of phases

3.1 Before

This is the first phase where the group is formed, they decide how to work together and plan the project. The Requirement Specification, Design Sketch, Project Plan and Time Plan are produced here and presented at tollgate 2, which concludes the before phase.

3.2 During

In this phase, the project group carries out the project according to the Project Plan. The first step is to define the product in a Design Specification. A Test Plan is also written, describing how and when the product should be tested to achieve the requirements of the Requirement Specification. Thereafter the other activities in the Project Plan are executed according to the Time Plan. The Time Plan describes who should perform what activity and when. As the project progresses some activities might take more and some less time than anticipated, therefore the Time Plan is continuously updated. At the end of this phase the product should be completed.

3.3 After

The last phase, the after-phase, is focused on finalizing the project. The product is completed at the end of the during phase. Now the technical report should be completed, as well as the poster, web-page and afterstudy. Finally a presentation at the project conference is held. The purpose of the presentation is to describe the final product in an understandable and concise manner to the customer, supervisor and other interested potential users.

4 Organization plan

The project is organized according to figure 1, where the connections between the members represent primary paths of communication.

Figure 1: System overview

4.1 Definition of responsibilities

Within the group, the roles Project Manager, Chief of Design, Documentation Manager, Test Manager, Hardware Specialist and Software Specialist have been assigned. The responsibilities of all roles are defined here.

- **Project Manager:** The link between the customer and the group. Responsible for that the work is done according to the Project Plan. This means to make sure that the project members work with and finish their scheduled activities. The schedule is specified in the Time Plan and the activities in the Project Plan. The Project Manager also sends the weekly reports to the customer.
- Chief of Design: The expert on the overall product. Should know the design and make sure the design specification is followed, or updated if needed.
- **Documentation Manager:** The person responsible for the writing and code that it lives up to quality expectations, that it is archived properly. Provides templates for documents.
- **Test Manager:** The person that plans the product testing and ensures that the Test Plan is followed.
- **Hardware Specialist:** Expert on hardware-part of the product. Should be able to answer most questions on hardware.
- **Software Specialist:** Expert on software-part of the product. Should be able to answer most questions on software.

4.2 Terms for cooperation within the group

A Group Contract has been written which describes the terms for cooperation.[4] The purpose of the Group Contract is to get all project members on the same page in regards to what is required from a project member. This will make it easier to discover if a project member is not doing their part and in that case expel them from the group. The Project Manager enforces the Group Contract.

5 Document plan

All documents produced in the project are described in Table 2 under the heading **Documents**. They are all reviewed by the Documentation Manager and one additional person. Thereafter they are sent to the supervisor to get additional feedback. Finally they are sent to the customer for approval. The documents are written in ShareLatex. Every version of a document sent to the supervisor or customer is also stored on the group's GitLab-repository. All documents are written in English.

6 Training

The project group has studied courses in communications but massive MIMO and beamforming is new to the group. The group will receive brief training in Massive MIMO and soldering. An introduction to the field of Massive MIMO will be given to the group by Prof. Erik G. Larsson. The hardware specialist of the group will give the rest of the group an introduction to soldering.

7 Reporting Plan

All reports produced in the project are described in Table 2 under the section **Reports**. In addition to this, all members report what they have done at the weekly meeting, see section 8.

8 Meeting Plan

The group will meet every Wednesday at 12:15-13:00 for a lunch meeting. During that meeting all members of the group will report what they have done since the last meeting and what they plan to do until the next meeting. Any problems that have arisen are also discussed. The number of reported hours are also checked for anomalies – if someone has worked unusually much or little time.

9 Resource plan

The resources for this project are described in the following subsections.

9.1 People

The project group consists of 6 persons that each will spend 240 hours on this project. This gives us a total of 1440 man-hours. The project also has access to 15 hours of supervision from the supervisor and 25 hours of expert consultancy from the customer and the PhD students at the Division of Communication Systems.

9.2 Facilities

The group has access to a room called CommSys lab with computers, all needed hardware, a workbench and tables. It can be accessed at all times.

9.3 Material

Hardware for the MAB has been purchased and partly assembled. All material in the CommSys lab is at the groups disposal. This material consists of various tools and electric components which cover most of our needs.

9.4 Economy

The money that already has been spent on the project seems to cover most of what we will need. If any more material is needed, it will be discussed with the customer.

The project has a total of 1440 man hours. We believe that this is enough to finish the project but problems we have not foreseen may arise. If so, the requirements in the Requirement Specification will be re-negotiated with the customer.

10 Milestones and Tollgates

This section describes the tollgates and milestones for the project.

10.1 Milestones

Important achievements for the project are listed in Table 5. The 1st and 2nd milestones may seem to occur late. This is because we need to assemble hardware and write code to control the hardware, preferably in parallel. In parallel since when the hardware is finished we need the controlling software in order to implement the beamforming. Both of these activities are estimated to take a long time and push the milestones forward.

Table 5	5: Mil	lestones
---------	--------	----------

Nr	Description	Date
1.	All L/M units are assembled	4/11
2.	All L/M units are tested	11/11
3.	The computer can communicate with the A/D and D/A cards	7/10
4.	All hardware is fully assembled and integration tested	16/11
6.	One can easily control the groups of speakers via the API	11/11
7.	The received signal is available in MatLab	16/11
8.	The system can receive and transmit sound from specified L/M units	16/11
9.	The system performs channel estimation	2/12
10.	The system performs precoding to beamform the signal	9/12
11.	One can hear one sound at one user and another sound at another user	9/12

10.2 Tollgates

Tollgates are meetings with the customer where all parties agree to move on to the next step in the project. For this project there are 4 tollgates. Their due dates and what deliverables that are due are specified in Table 2.

11 Activities

To plan the project, a number of activities have been identified. They have a number, a description, a budget and dependencies. The number is used to describe dependencies. The description describes what should be accomplished to finish the activity. Number of hours needed to accomplish the activity is estimated and specified in budget. The unit is hours. Dependencies describe what other activities must be accomplished for the given activity to start. All activities in the project are specified in Table 6. In it, DB stands for Distribution Box (which the customer will finish), Dep. for Dependencies and ss for signal splitter. The Cross Coupling Board mentioned in Table 6 is a board in the Distribution Box that handles control signals.

Nr	Activity	Descritpion	Budget	Dep.
1	Meetings with group	Lunch meetings	90	-
2	Meetings with supervi-	-	100	-
	sor, customer			
3	Design Sketch	-	20	-
4	Project Plan	-	15	-
5	Group Contract	-	8	-
6	Requirement Specifica-	The work to create a Re-	25	-
	tion	quirement Specification		
7	Document Handling	Creating templates, shar-	15	-
		ing documents, solving git		
		conflicts		
8	Design Specification	-	40	3
9	Test Plan	-	10	3
10	Solder L/M	Solder 38 L/M units	60	-
11	Assemble L/M	Assemble 70 L/M units	90	10
12	Assemble ss	Assemble 15 signal split-	30	-
		ters		
13	Cross Coupling Board	Wire the board	10	8
14	Driver Control	Control A/D and D/A	30	-
		cards through drivers		
15	A/D and D/A sync.	Synchronize the A/D- and	30	14
		D/A-cards		
16	D/A queue	Queue data from Applica-	40	15
		tion to D/A		

Table	6.	Activities
Table	υ.	11001010105

Massive Audio Beamforming

December 2, 2016

17	L/M select	Program the Arduino to	30	13, DB
	,	select which L/M units to		
		use and how (transmit or		
		receive)		
18	API	Write Matlab script that	50	15,17
		lets user decide which		
		units to use and how		
		(transmit or receive)		
19	Full assembly	Assemble all hardware	30	11,12,13,DB
20	Simple System Test	Test transmitting and re-	20	18,19
		ceiving from different L/M		
		units.		
21	Unit Testing	Tests for L/M units, signal	40	11,12
		splitters and cables		
22	Integration Testing	Tests for integrating the	20	19
		L/M units to the central		
		unit		
23	A/D, D/A Testing	Tests for A/D- and D/A-	20	-
		converters		
24	GUI	Implement a GUI for the	40	20
		Application		
25	Channel measurements	Perform channel estima-	30	20
		tion using a chirp-signal to		
		see how different frequen-		
		cies in a signal affect the		
	- :	channel.		
26	Calibration	Implement calibration of	50	20
		each L/M unit in Software		
27	Channel estimation	Implement channel esti-	60	25
		mation in Software		
28	Precoding	Implement sound precod-	60	20
		ing in Software	1.0	
29	System Testing	Test the system function-	40	24,26,27,28
- 20		ality	10	
30	User Manual	-	10	-
31	Technical Report	-	60	-
32	Afterstudy	-	10	-
33	Poster	-	20	-
34	web Page	-	20	-
35	Ural Presentation	-	20	-
36	Review	1 ime to review documents	30	-
37	Education	MIMO lecture and solder-	15	-
	D	ing course	150	
38	Keserve	Extra hours to allocate as needed	152	-

12 Time plan

All activities from Table 6 have been scheduled in a spreadsheet, see Appendix A. In the spreadsheet one can see how many hours of each activity that should be spent by the assigned group members in total each week. Each group member is described by his or her initials.

13 Quality plan

To achieve a high quality product the plan is to review all documents and test all implementations. The tollgates with the customer will also ensure that the customer gets a clear picture of the ongoing projects progress and quality. The group will keep close contact with the customer to ensure that the achieved product meet the customers expectations on quality. This will be done through discussions at tollgates and if needed, at extra meetings with the customer.

13.1 Review plan

Each document should be reviewed by the Documentation Manager and at least one more member of the group, assigned by the Documentation Manager. All members should read all documents to be aware of their contents.

13.2 Test plan

A thorough Test Plan will be constructed for tollgate 3. The Test Plan will describe how the product will be tested to ensure that work goes according to the Time Plan and to ensure that the Requirement Specification is fulfilled.

14 Priorities

The first priority of this project is to assemble a working MAB. It should also be easy to implement new signal processing for the MAB at a later time. The second priority is to implement directive sound transmission that will demonstrate the powers of Massive MIMO.

The testbed from 2014 that were used in projects during 2015 had issues with the D/A and A/D converters. Two of the issues were computer crash (error message mentioning the converters) and converter malfunctioning with the error message: "Sample Clock Error". The groups of 2015 believed them to be due to the fact that the drivers for the converters are intended for 32-bit systems while the controlling computer was a 64-bit system. According to MATLAB:s webpage on data acquisition for these converters it should work if the MATLAB version is 32-bit.[3] Therefore we hope that installing a 32-bit MATLAB version will solve these issues. The third issue was: no signal longer than 2 seconds could be sent. This was due to the converters internal queue being filled. Therefore we plan on implementing a queue to the converters, a significant amount of time has been planned to establish a working communication with the converters.

To prioritize the activities in the project, their dependencies and estimated time have been drawn in Figure 2 and Figure 3.

Figure 2: Dependencies for the first part of the project

Looking at Figure 2, we see that the bottom box and the top box amount to the same number of hours. Therefore the group is split in two, working on the activities in each box in parallel. This is to make sure that all activities necessary to start the full assembly are finished at roughly the same time.

The activities in the project after the activity Full assembly does not have the same number of activities to coordinate. However, we can with a similar figure see that the channel measurement and estimation activities should be prioritized while still accomplishing the other activities, see Figure 3.

15 Project termination

Upon approval of all tollgates by the customer and participation in the Project Conference the project is terminated. The group is dissolved.

December 2, 2016

A Appendix: Timeplan

Base plan																				
Proiect:																				
Project group: Customer:			Date: Version: Editor:	Date: Reviewed:																
			WHO TIMEPLAN (when), week number																	
H	Description		hours	Initials	36	37	38	30	40	41	42	43 A	1 45	46	47	48	10	50	51	
1	Meetings with group		90	All	6	6	6	6	6	6	12	10 1	6	6	9	9	6	6	6	90
2	Meetings with superviso	or, sponsor	100	All	24	6	6	6	6	4		e e	6	6	6	6	6	6	6	100
3	Design Sketch	··,	20	EB. SL	7	13	Ť	Ű	, , , , , , , , , , , , , , , , , , ,					Ť	Ű	Ť				20
4	Project Plan		15		6															15
5	Group Contract		.8	AII	6.5	1.5														8
6	Requirement Specificati	ion	25	EJ, KG, JP	15	10														25
7	Document handling		15	All	5	3	l		l				1		2	3	2			15
				EJ,LF,KG,E			l						1							
8	Design Specification		40	В		10	30													40
9	Test Plan		10	EB,LF,KG			10													10
10	Solder L/M		60	SL,JP,EJ			25	15	10			10								60
11	Assemble L/M		90	SL,JP,EJ			5	25	25	20		15								90
12	Assemble ss		30	SL,JP,EJ						10		10	10							30
13	Cross Coupling Board		10	SL,JP,EJ								1()						_	10
14	Driver Control		30	EB,LF,KG				20	10											30
15	A/D and D/A sync.		30	EB,LF,KG				10	20											30
16	D/A queue		40	EB,LF,KG						10		10	20							40
17	L/M select		30	EB,LF,KG						10		1() 10							30
18	API		50	EB,LF,KG						10		- 30) 10							50
19	Full assembly		30	SL,JP,EJ									30							30
20	2014Test		20	EB,LF,KG									10	10						20
21	Unit Testing		40	SL,JP,EJ			5	5	5	10			5 10							40
22	Integration Testing		20	SL,JP,EJ									5	15						20
23	A/D,D/A Testing		20	EB,LF,KG				5	5	10										20
24	GUI		40	JP,KG										10	20	10				40
25	Channel measurements	3	30	EJ,EB,LF										30						30
26	Calibration		50	SL,JP										30	20					50
27	Channel estimation		60	EJ,EB,LF										10	30	20				60
28	Precoding		60	KG,LF,SL											20	20	20			60
29	System Testing		40	All												10	10	20		40
30	User Manual		10														5	5		10
31	Technical Report		60	All											10	20	20	10		60
32	Afterstudy		10	All														5	5	10
33	Poster		20														10	10		20
34	Web page		20	KG													10	10		20
35	Oral Presentation		20	All														20		20
36	Review		30	All		10			5							5	5	5		30

December 2, 2016

37	Education	15	All		15															15	
38	Reserve	152	All		2	4	2	2	5			20	20	20	17	15	15	15	15	152	
39																				0	
40	Milestones																			0	
41	All L/M and ss are assembled											Fri								0	
42	All L/M are tested												Fri							0	
	The computer can communicate with the A/D and D/A																				
43	cards							Fri												0	
44	All hardware is fully assembled and integration tested													Wed						0	
46	One can easily control the groups of speakers via the API												Fri							0	
47	The received signal is available in MatLab													Wed						0	
48	The system can receive and transmit sound from specified L/M units													Wed						0	
49	The system performs channel estimation															Fri				0	
50	The system performs precoding to beamform the signal																Fri			0	
51	One can hear one sound at one user and another sound at another user																Fri			0	
52																				0	
53	Tollgates																			0	
54	TG2 – Approval of Requirement specification, Design sketch and Project Plan					Fri														0	
55	TG3 – Approval of Design Specification and Test Plan								Wed											0	
56	TG5 – Delivery of product, test protocols and the user manual																	Mon		0	
57	TG6 – Approval of technical report, afterstudy, poster and webpage																	Thu		0	
58																				0	
59	Project Conference																		Мо	0	
60																				0	
	Summa antal timmar:	1440		69.5	85.5	91	94	94	95	0	0	132	137	137	134	118	109	112	32	1440	
			VEM					TIDPL	AN (n	iär),	veo	ckon	umr	ner							
			Initialer	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	Sum	
			LF	11.6	14.3	15.2	15.7	15.7	15.8	0.0	0.0	22.0	22.8	22.8	22.3	19.7	18.2	18.7	5.3	240	
			JJ	11.6	14.3	15.2	15.7	15.7	15.8	0.0	0.0	22.0	22.8	22.8	22.3	19.7	18.2	18.7	5.3	240	
			GE	11.6	14.3	15.2	15.7	15.7	15.8	0.0	0.0	22.0	22.8	22.8	22.3	19.7	18.2	18.7	5.3	240	
			ME	11.6	14.3	15.2	15.7	15.7	15.8	0.0	0.0	22.0	22.8	22.8	22.3	19.7	18.2	18.7	5.3	240	
			СВ	11.6	14.3	15.2	15.7	15.7	15.8	0.0	0.0	22.0	22.8	22.8	22.3	19.7	18.2	18.7	5.3	240	
			OA	11.6	14.3	15.2	15.7	15.7	15.8	0.0	0.0	22.0	22.8	22.8	22.3	19.7	18.2	18.7	5.3	240	
			SUMMA	69.5	85.5	91	94	94	95	0	0	132	137	137	134	118	109	112	32	1440	

References

- [1] T.Svensson and C.Krysander, in *LIPS*, Version 1.0, Compendium, LiTH, 2002.
- F.Stenmark. (2016, Sep 19). Technical Report, Version 1.1 [Online]. Available: http://www.isy.liu.se/edu/projekt/kommunikationssystem/2014/documents/TR₁.pdf
- [3] Mathworks. (2016, Sep 19). CONTEC Support from Data Acquisition Toolbox [Online]. Available: http://se.mathworks.com/hardwaresupport/contec.html
- [4] K.Gudmundsson et al. (2016). Group Contract v.1.1