
Zero Forcing 2015-12-16

Technical Report

Editor: Mikael Karlsson

Version 0.1

Status
Reviewed Mikael Karlsson 2015-12-14
Approved Hien Ngo 2015-12-XX

TSKS05
LIPS Technical Report

i

Zero Forcing 2015-12-16

Project Identity
HT 2015

Linkoping University, ISY

Name Responsibility Phone Email
Atheeq Ahmed Group Member 070-4131687 athah298
Martin Andersson Documentation

Manager
073-3912657 maran703

Björn Ekman Software Manager 070-2420137 bjoek586
Mikael Karlsson Project Manager 076-2257939 mikka789
Valens Nsengiyumva Hardware Manager 070-4131684 valns738
Oscar Silver Test Manager 073-0589005 oscsi278

Customer: ISY, Linkoping University, 581 83, Linkoping

Customer contact: Hien Ngo, hien.ngo@liu.se
Examiner: Danyo Danev, danyo.danev@liu.se

Tutor: Antonios Pitarokoilis, antonios.pitarokoilis@liu.se

TSKS05
LIPS Technical Report

ii

Zero Forcing 2015-12-16

Contents
1 Introduction 1

1.1 MIMO . 1
1.2 Beamforming . 1
1.3 The Project . 1
1.4 Aim and goals . 1
1.5 Definitions . 1

2 Overview of the System 2

3 Software 3
3.1 General Implementation of the Modules 3
3.2 Controller . 4

3.2.1 Implementation . 4
3.3 UI . 9

3.3.1 Implementation . 9
3.4 Channel Estimator . 11

3.4.1 Implementation . 14
3.5 Channel Coder . 17

3.5.1 MIMO . 18
3.5.2 Implementation . 18

3.6 Calibration . 25
3.6.1 Implementation . 25

3.7 Operating System and Drivers . 25

4 Hardware 26
4.1 Computer . 26
4.2 L/M pairs . 26
4.3 A/D and D/A converters . 26

4.3.1 Detection Board . 27
4.3.2 Maxxtro Mini Speaker 4W 27

4.4 Distribution Box . 28
4.5 Limitations on available hardware 28

4.5.1 Sampling frequency . 28
4.5.2 Data transmission . 29
4.5.3 A/D converters . 29

5 Limitations and Problems 29
5.1 First Run . 29
5.2 Blue Screen . 29
5.3 Sampling Clock Error . 29
5.4 Nonuniform L/M Unit Characteristics 30
5.5 Phase interval . 30
5.6 Distance constraints . 30
5.7 Background Noise . 30

TSKS05
LIPS Technical Report

iii

Zero Forcing 2015-12-16

References 31

TSKS05
LIPS Technical Report

iv

Zero Forcing 2015-12-16

DOCUMENT HISTORY
Version Date Changes Sign Reviewed
0.1 2015-12-14 First Draft Martin A Mikael K

TSKS05
LIPS Technical Report

v

Zero Forcing 2015-12-16

1 Introduction
The purpose of this document is to provide a detailed specification of the system, in-
cluding explanations of both the functionality and the implementation. The system
demonstrates the capabilities of Zero Forcing in the context of MIMO and Beamform-
ing. The system demonstrates, by using Zero Forcing, that transmissions can be fo-
cused to a specific geographical point of interest and at the same time be suppressed at
other specified points, to minimize the interference between different users in a wire-
less communication system.

1.1 MIMO
MIMO is an essential element of wireless communication that uses multiple antennas
at both the transmitter and receiver to enhance the capacity of the radio link. Mas-
sive MIMO is a new innovative version of MIMO which uses a very large number of
transmitter antennas that are operated in a completely coherent and adaptive manner to
focus the transmission of signal energy into small regions of space.

1.2 Beamforming
Beamforming is one of the techniques that can be used in a MIMO system. The concept
is that signals from the multiple antennas are transmitted in such a way that the signal
energy gets focused at certain points in space by constructive and combining. In the
case of Zero Forcing beamforming, the signal energy is focused at the relevant user
while the other users essentially receive no signal at all. In the ideal case this would
lead to zero interference between the different users of the communication system, a
very valuable property to have in a communication system.

1.3 The Project
The project in the course TSKS05 CDIO Communication Systems has been to demon-
strate the capabilities of Massive MIMO in an audio environment, building upon the
work done by a previous project, Massive Audio Beamforming [7]. Using the hard-
ware built in the previous project we have designed and implemented communication
and Zero Forcing capabilities to the already existing system. The Zero Forcing and
MIMO technique can ultimately be demonstrated in the implemented system by send-
ing different data to two different terminals, simultaneously.

1.4 Aim and goals
See section 2.1 in the document Project Plan [5].

1.5 Definitions
See Table 1 for definitions of words used in this document.

TSKS05
LIPS Technical Report

1

Zero Forcing 2015-12-16

Table 1: Definitions of words used in this document.

Word Definition
MIMO Multiple Input Multiple Output
A/D Analog to Digital
D/A Digital to Analog
L/M unit Loudspeaker/Microphone unit
L/M-pair A pair of Loudspeaker/Microphone units
MIMO-array The array of L/M pairs used to generate the Zero Forcing beam
Terminal One of the two units in the receiving L/M pair.
OS Operating System
Subsystem A part of the whole system

2 Overview of the System
The system implemented in this project is basically an upgrade of the existing system
designed in the previous project. The system consists of two subsystems, the Software
and the Hardware. The Hardware was not changed within this project and is therefore
same as in the system given to us. On the other hand, the Software subsystem is com-
pletely redone from the last year’s project. The new system is able to demonstrate Zero
Forcing by simultaneous data transmission to two different terminals, both receiving
different data at the same time. An overview of the system is depicted in Figure 1.

Briefly, the Hardware consists of eight L/M pairs of which seven pairs act like a
MIMO-array while one pair receives the signals from the MIMO-array, a distribution
box, A/D and D/A converters as well as the actual computer.

The Software subsystem consists of MatLab scripts and functions for controlling
the interface to the A/D and D/A converters, channel estimation, MIMO combining,
channel coding and calibration. It also includes the drivers for communication between
a Windows operative system and the Hardware.

Figure 1: Overview of the Hardware in the system. [7, Fig. 1]

TSKS05
LIPS Technical Report

2

Zero Forcing 2015-12-16

Figure 2: Overview of the software.

3 Software
The Software is built in a modular fashion with well defined interfaces in between the
different modules. As can be seen in Figure 2, the system has one main module called
Controller which takes care of all communication with the different modules as well
as with the drivers and interfaces to the A/D- and D/A-cards. This section will try
to summarize and explain the main tasks as well as the functions and scripts of the
different modules.

3.1 General Implementation of the Modules
The different modules in Figure 2 are all coded in MatLab in the form of different
functions and scripts. Scripts are mainly used in two ways, as main scripts to run the
system on a high level and as initialization scripts to set certain values needed through
out the runs.

Functions are mainly used for functionality as well as readability in the main
scripts.

Some coding guidelines have been used when writing the Software:

• Comments are written in such a way that the built in MatLab-functions "help"
and "doc" can be used with each function.

• Uppercase is used for constants.
Example: CONSTANT_VARIABLE.

TSKS05
LIPS Technical Report

3

Zero Forcing 2015-12-16

• Global constant have the letter "G" added to them.
Example: CONSTANT_GLOBAL_G.

• Camelcase is used for all other variable names, as well as functions and scripts
Example: variableName.

• All script names ends with Script.
Example: mainScript.

3.2 Controller
The Controller is responsible for the general flow of the program and supplies data to
and from the other modules. It also contains the functions necessary to communicate
with the hardware drivers. The controller contains the main loop of the system.

As for the controller functions, these are functions to communicate with the hard-
ware drivers. Thus, the functions for sending and receiving data are in the Controller,
since these are functions that need to interact with the drivers for the D/A and the A/D
converters.

3.2.1 Implementation

The Controller is built up by several scripts and functions which are described below.

mainScript

This script is a wrapper for the controllerMainScript that provides the user
with the choice to use the default parameters or to set the parameters manually. If the
user chooses to set the parameters manually uiScript will be started.

controllerMainScript

The controllerMainScript manages the flow of a test run. It uses basically all
other functions and scripts described in this document in order to estimate the channel,
send data to the terminals and then process the received data. If one is fine with slight
changes to the source code, then this script offers some more configuration possibilities
than the UI.

initSWGlobalsScript

This script initiates all global variables that are not directly associated with the hard-
ware and its drivers. Description of the different variables and their default values can
be seen in Table 2.

Table 2: Global constants set in initSWGlobalsScript

Variable Description Default Value
CARRIER_FREQ_G The passband carrier frequency

used by the system.
502

TSKS05
LIPS Technical Report

4

Zero Forcing 2015-12-16

SAMPLE_FREQ_G The sample frequency of the AD
and DA converters.

6060

ARRAY_PAIRS_G Pair indices to the LM-pairs act-
ing as array.

[1,2,3,4,6,7,8]

TERMINAL_PAIRS_G Pair indices to the LM-pairs act-
ing as terminals.

[5]

AMOUNT_LM_GROUPS_G Number of different groups for
the LM-pairs. Group selected
through hardware switch.

2

TERMINAL_GROUP_G ID for the terminal group, in
our case this corresponds to
switches in the down-position.

0

ARRAY_GROUP_G ID for the array group, in
our case this corresponds to
switches in the up-position.

1

PSK_K_G The k value of the PSK modu-
lation, e.g. 1 for BPSK, 2 for
QPSK.

1

PSK_M_G The M value of the PSK mod-
ulation, e.g. 2 for BPSK, 4 for
QPSK.

2

HAMMING_K_G k value of the Hamming code
used for error control.

4

HAMMING_N_G n value of the Hamming code
used for error control.

7

initHWGlobalsScript

This script initiates all global variables that are directly associated with the hardware
and its drivers. This script can only be used on the lab computer. It uses some of the
globals initialized in the initSWGlobalsScript, which must be run before this
script. The variables set in this script are described in Table 3. The Data Acquisition
Toolbox supplies functions and example to find these strings should the hardware be
changed.

TSKS05
LIPS Technical Report

5

Zero Forcing 2015-12-16

Table 3: Global constants set in initHWGlobalsScript

Variable Description Default Value
ADAPTOR_NAME_G A string with the HW card suppliers

name.
’contec’

AD_NAME_G The model number of the AD card. ’AD12-64’
DA_NAME_G The model number of the DA card. ’AIO001’
DIO_NAME_G The model number of the AD card (this

card also has four digital input/output
lines).

’AD12-64’

AO_G A Data Aqcuisition Toolbox analog
output object.

-

AI_G A Data Aqcuisition Toolbox analog in-
put object.

-

importGlobalsScript

Imports the globals initiated in initSWGlobalsScript and initHWGlobalsScript.

sendReceive()

This function does the simultaneous sending and receiving using the Matlab Data Ac-
quisition (DAQ) Toolbox objects and methods.

The input signal should contain an even number of rows between 2-16 (one row for
each speaker).

Hard coded in this file are the scaling factors determined by the calibration scripts
using a sound intensity meter. These values are used to make sure that each speaker
sends equally strong for the same software input and receives the same software values
for equally strong input audio signal.

TSKS05
LIPS Technical Report

6

Zero Forcing 2015-12-16

Table 4: In and out parameters for the sendReceive() function.

In parameters Description
sampleVec A vector consisting of different streams of samples. Each

row corresponds to one of the transmitting units.
analogOutput AO Object used for sending through D/A converter.
analogInput AI Object used for receiving data through A/D converter.
sendingLMPairsVec Vector consisting of the number corresponding to the trans-

mitting pairs.
receivingLMPairsVec Vector consisting of the numbers corresponding to the re-

ceiving pairs.
sampleFreq Sample frequency
sendingGroup Which group that are sending, corresponds to variable in

the importSWGlobals script.
Out parameters Description
receivedSampleVec A vector consisting of the different received streams of

samples. Each row corresponds to one of the receiving
units.

timeVec A vector consisting of the point in time of each sample in
receivedSignalVec.

sendReceiveData()

This function sends input data from the MIMO array and outputs what is received at
the terminals.

Table 5: In and out parameters for the sendReceiveData() function.

In parameters Description
sampleVec A vector consisting of different streams of samples. Each

row corresponds to one of the transmitting units.
Out parameters Description
receivedSampleVec A vector consisting of the different received streams of sam-

ples. Each row corresponds to one of the receiving units.

sendReceivePilots()

This function sends input data from the terminals and outputs what is received at the
MIMO array.

TSKS05
LIPS Technical Report

7

Zero Forcing 2015-12-16

Table 6: In and out parameters for the sendReceivePilots() function.

In parameters Description
sampleVec A vector consisting of different streams of samples. Each

row corresponds to one of the transmitting units.
Out parameters Description
receivedSampleVec A vector consisting of the different received streams of sam-

ples. Each row corresponds to one of the receiving units.

simulateSendReceive()

This function emulates an AWGN channel with optional delay and echo. In short it:

• Adds AWGN noise to all streams

• Adds echo (set echoGain to zero to remove it)

• Attenuates the original signal

• Delays the input streams same amount for all streams

For the input variables they are all declared in the struct SIMU in the
controllerMainScript and contains the fields mentioned in the Table 7. The
output matrix will have simu.syncError + simu.echoDelay + simu.delay
extra samples.

Table 7: In and out parameters for the simulateSendReceive() function.

In fields Description
syncError Possible to force the synchronization to be some samples off,

though this requires the signals to be long enough. This many
zeros are added at the end.

echoDelay Delay the echo this many samples extra compared to the origi-
nal signal delay.

snr The SNR of the received signal (not taking echo into account).
chGain The gain/attenuation added by the channel to both the echo and

original signal.
echoGain Extra gain/attenuation added to the echo.
Out parameters Description
data The simulated result of sending. The matrix has the same

amount of rows as passbandSig (ie. not a correct MIMO
simulation)

pairIndexs2UnitIndexs()

A function that returns the corresponding LM-unit-indices vector to an input pair-index
vector.

TSKS05
LIPS Technical Report

8

Zero Forcing 2015-12-16

Table 8: In and out parameters for the pairIndexs2UnitIndexs() function.

In parameters Description
pairIndexs A vector of pair indexes.
Out parameters Description
unitIndexs A vector of unit indexes corresponding to input pair indexes.

3.3 UI
The UI is text-based and is responsible for allowing the user to set system parameters
manually. The usage of the UI is further described in the user manual [4].

3.3.1 Implementation

uiScript

This script provides the option to manually change the values of some global variables.
The variables that can be changed are listed in Table 9.

Table 9: Variables possible to change in uiScript

Variable Description Default Value
CARRIER_FREQ_G The passband carrier fre-

quency used by the sys-
tem.

505

SAMPLE_FREQ_G The sample frequency of
the AD and DA convert-
ers.

6060

ARRAY_PAIRS_G Pair indices to the LM-
pairs acting as array.

[1,2,3,4,6,7,8]

TERMINAL_PAIRS_G Pair indices to the LM-
pairs acting as terminals.

[5]

PSK_K_G The k value of the PSK
modulation, e.g. 1 for
BPSK, 2 for QPSK.

1

PSK_M_G The M value of the PSK
modulation, e.g. 2 for
BPSK, 4 for QPSK.

2

HAMMING_K_G k value of the Hamming
code used for error con-
trol.

4

HAMMING_N_G n value of the Hamming
code used for error con-
trol.

7

TSKS05
LIPS Technical Report

9

Zero Forcing 2015-12-16

USE_INTERLEAVER_G Boolean that decides
whether to use interleaver
or not in the channel
coding.

True

USE_RRC_FILTER_G Boolean that will use a
root raised cosine filter if
true, otherwise a rectan-
gular filter.

False

USE_K_MEAN_CLUSTERING_G Boolean that decides
whether or not phase de-
tection based on K-mean
clustering will be used.

True

USE_POWER_CONTROL_G Boolean that decides
wheter or not to use
power control.

True

USE_ZFG Boolean that decides
wheter to use Zero Forc-
ing (true) or Maximum
Ratio Combining (false).

True

uiQuestion()

Helper function for uiScript that gets an answer to a yes/no question from the user.
Parameters are described in Table 10.

Table 10: In and out parameters for the uiQuestion() function.

In parameters Description
question A string with a question asking for a yes/no answer.
Out parameters Description
answer A boolean that is 1 if the answer was yes, 0 if no.

uiValuePrompt()

Helper function to uiScript that prompts the user for an input value and returns that
value. Parameters are described in Table 11.

Table 11: In and out parameters for the uiValuePrompt() function.

In parameters Description
prompt A string prompting for a value.
Out parameters Description
answer The input value.

TSKS05
LIPS Technical Report

10

Zero Forcing 2015-12-16

Figure 3: Channels in the MIMO system.

getAvailableTerminalPairs()

Helper function to uiScript that uses the set Array pairs and calculates what terminal
pairs are available to use without collision. Parameters are described in Table 12.

Table 12: In and out parameters for the getAvailableTerminalPairs() func-
tion.

In parameters Description
arrayPairs A vector containing the array pairs currently in use.
Out parameters Description
terminalPairs A vector containing the available terminal pairs.

3.4 Channel Estimator
The Channel Estimator is used to estimate the impulse responses of each channel be-
tween the two terminals to each L/M-unit in the L/M-array, the channels are depicted
in Figure 3. In essence it is used to estimate the true channel matrix H defined in (1).

H :=

h1 1 h1 2
h2 1 h2 2

...
...

h14 1 h14 2

 (1)

The information for each channel is represented in H with a complex number where
its absolute value α represents the amplitude attenuation and its angle ϕ the phase shift
introduced by the channel. The estimate of the channel between unit i and j, ĥi, j, is
therefore defined as in (2).

ĥi, j = α̂ ϕ̂i, j
i, j (2)

TSKS05
LIPS Technical Report

11

Zero Forcing 2015-12-16

The channels are estimated by sending a known signal from the two terminals and
recording what the L/M-array receive. By comparing the known sent signal with the
received one, the characteristics of the channel are estimated.

Estimation

Amplitude is estimated by simply taking an average of the peaks of the received sig-
nals. While cross-correlation can be used to estimate the phase shift introduced by the
channel it is not accurate enough for our purposes. The cross-correlation between two
signals, s0 and s1, is given in Equation (3) for the time discrete case. The phase shift
τ between two signals can then be estimated as the argument of the maximum of the
cross-correlation, as stated in Equation (4). The accuracy of the cross-correlation is
improved if the signal is not periodic, therefore we add a BPSK part in the pilot along
with the sinusoid signal.

(s0 ⋆ s1)[n] = ∑
m

s∗0[m]s1[m+n] (3)

τ = argmax
n

(s0 ⋆ s1)[n] (4)

Phase Transfrom

A way to sharpen the peak of the cross-correlation and to better handle correlated noise
is to use a generalized cross correlation involving spectral weighting. The phase trans-
form (PHAT) method [2] whitens the signal spectrum and has been shown to be optimal
for minimizing the variance of the time delay estimate [3]. Applying PHAT improves
our results when compared with just using simple cross-correlation. Mathematically
the PHAT corresponds to equation (7).

Y (f) = F (s0 ⋆ s1) (5)

θ(f) =
Y (f)
|Y (f)|

(6)

τ = argmax
n

F−1(θ(f)) (7)

Zero Crossings

The PHAT method will give an estimate of the delay with a maximum 1 sample pre-
cision. Due to the constraints introduced by hardware even this is not enough for our
system. Therefore a second method, comparing zero-crossings (ZC) of the signals, is
also used. A zero-crossing is simply when the signal crosses zero. For this estimation
the sinusoid part of the pilot is used due to its periodicity. By interpolating between
samples and comparing positive zero-crossings between two signals we are able to get
sub-sample precision of the phase. Note that due to the periodicity of the signal (which

TSKS05
LIPS Technical Report

12

Zero Forcing 2015-12-16

increases accuracy since we can average over multiple measurements) the ZC method
will only output values in the range [0, 2π).

Our Solution

We combine these two methods to get an estimate of both the number of multiples of
2π and the phase within 2π . The PHAT method is used to estimate the multiples of
2π in the phase shift by simply flooring the result to the nearest multiple of 2π . Then
the ZC method is used to estimate the phase within the period (2π). Due to noise we
can end up in the situation depicted in Figure 4, where the PHAT method estimates
the phase to be just under 2π , and the ZC method estimates it to be just over 2π . This
would result in the combined estimate to be just over 0 since no multiples of 2π were
detected by the PHAT method. From the PHAT method we can calculate what phase
we should expect to get from the ZC method by taking the PHAT result modulo 2π . If
this expected phase differ too much from the result from the ZC method then we use
the expected value instead since we probably have the situation seen in Figure 4.

Figure 4: Potential problem due to noise in the phase estimation.

To avoid transients a window of the signals is used for the respective methods.
Note that we are only interested in relative phase shifts between the signals and not in
shifts introduced due to delays in software or hardware, therefore we subtract all phase
estimates with the minimum before returning from the function.

Training Pilot

The Channel Estimator module is also responsible for generating the pilot to be sent
during training. This is achieved with the constructPilot() function detailed
in section 3.4.1. Sending the pilot with a high and constant amplitude will ease the
amplitude estimation and hopefully overpower most of the noise. By assuming reci-
procity for the channel, the pilot only has to be sent from the two terminals instead of
all the units in the MIMO array. The pilot consists of two different types of signals,
the first half is a pure sinusoid and the second half is a BPSK modulated signal. The
pure sinusoid is used for the Zero Crossing method of the phase estimation since it has
the required periodicity. The BPSK signal is suitable for the PHAT method since it is
based on a random data stream and thereby the cross-correlation gives a clear peak.

TSKS05
LIPS Technical Report

13

Zero Forcing 2015-12-16

3.4.1 Implementation

The Channel Estimator module is called in the main script using just the function
performChannelEst().

performChannelEst()

This function performs the estimation for all terminals using the channelEst-
Main() function and combines the results from the different runs into two matrices
containing information about the amplitude and phase. Table 13 details its in and out
parameters.

Table 13: In and out parameters for the performChannelEst() function.

In parameters Description
carrierFreq The carrier frequency for the pilot.
sampleFreq The sampling frequency used for sending and receving the pi-

lot.
Out parameters Description
ampEst Estimates of the amplitude for the different channels, matrix

[terminals x units].
phaseEst Estimates of the phase for the different channels, matrix [termi-

nals x units].

channelEstMain()

The function channelEstMain(), see Table 14 for parameters, is used to estimate
the amplitude and phase respectively as perceived from one terminal. It has two sub-
functions, channelEstAmp and channelEstPhase.

Table 14: In and out parameters for the channelEstMain() function.

In parameters Description
pilot The signal used as training pilot, row vector [samples]
recordedSignals The signals recorded when the pilot was sent, matrix [units x

samples]
carrierFreq The carrier frequency for the pilot.
sampleFreq The sampling frequency used for sending and receiving the pi-

lot.
Out parameters Description
amplitudeEst Estimates of the amplitude for the different channels, row vec-

tor [units].
phaseEst Estimates of the phase for the different channels, row vector

[units].

TSKS05
LIPS Technical Report

14

Zero Forcing 2015-12-16

channelEstAmp()

This function, see Table 15 for parameters, is used to estimate the amplitudes of the
received signals.The amplitudes are estimated using the samples from a selected win-
dow of the received signals and taking an average of the peaks. The window used is
[0.1, 0.4] of the pilot if the full pilot is seen as the interval [0,1]. This window is used
to avoid transients and the sinusoid part of the pilot is used as it is more consistent in
amplitude.

Table 15: In and out parameters for the channelEstAmp() function.

In parameters Description
recordedSignals The signals recorded when the pilot was sent, matrix [units x

samples]
Out parameters Description
ampEst Estimates of the amplitude for the different recorded signals,

row vector [units].

channelEstPhase()

This function, see Table 16 for parameters, is used to estimate the phase
of the received signals. It in turns calls channelEstPhasePHAT() and
channelEstPhaseCrossing().

Table 16: In and out parameters for the channelEstPhase() function.

In parameters Description
pilot The signal used as training pilot, row vector [samples]
recordedSignals The signals recorded when the pilot was sent, matrix [units x

samples]
carrierFreq The carrier frequency for the pilot.
sampleFreq The sampling frequency used for sending and receiving the pi-

lot.
Out parameters Description
phaseEst Estimates of the phase for the different channels, row vector

[units].

channelEstPhasePHAT()

This function performs a phase estimation using the phase transform (PHAT) and its
parameters are detailed in Table 17.

TSKS05
LIPS Technical Report

15

Zero Forcing 2015-12-16

Table 17: In and out parameters for the channelEstPhasePHAT() function.

In parameters Description
pilot The signal used as training pilot, row vector [samples]
recordedSignals The signals recorded when the pilot was sent, matrix [units x

samples]
carrierFreq The carrier frequency for the pilot.
sampleFreq The sampling frequency used for sending and receiving the pi-

lot.
Out parameters Description
phaseEst Estimates of the phase for the different channels, row vector

[units].

channelEstPhaseCrossing()

This function performs a phase estimation using zero crossings and its parameters are
detailed in Table 18.

Table 18: In and out parameters for the channelEstPhaseCrossing() function.

In parameters Description
pilot The signal used as training pilot, row vector [samples]
recordedSignals The signals recorded when the pilot was sent, matrix [units x

samples]
carrierFreq The carrier frequency for the pilot.
sampleFreq The sampling frequency used for sending and receiving the pi-

lot.
Out parameters Description
phaseEst Estimates of the phase for the different channels, row vector

[units].

constructPilot()

This function is used to generate the pilot, the parameters are given in Table 19. The
pilot consists of two different types of signals, the first half is a pure sinusoid and the
second half is a BPSK modulated signal.

TSKS05
LIPS Technical Report

16

Zero Forcing 2015-12-16

Table 19: In and out parameters for the constructPilot() function.

In parameters Description
carrierFreq The carrier frequency for the pilot.
timeDuration How long the resulting pilot should be in seconds.
sampleFreq The sampling frequency used for sending and receiving the pi-

lot.
amplitude The amplitude of the pilot.
Out parameters Description
pilot The generated pilot, row vector.

3.5 Channel Coder
The channel coder includes all functions that have to do with the actual channel coding.
This include functions for creating bit streams, modulation, filtering, interleaving, error
control and so on. A high level description of how the channel coder functions are used
can be seen in Figure 5. The MIMO block will be described in some more detail before
the implementation of all blocks are presented.

Figure 5: Overview of the flow of the channel coding.

TSKS05
LIPS Technical Report

17

Zero Forcing 2015-12-16

3.5.1 MIMO

This part of the Channel Coder performs Zero Forcing precoding for an antenna array.
This module will combine the results from the Channel Estimator with the data from the
Channel Coder according to a MIMO-combining technique, in this case Zero-Forcing,
in order to send signals to each terminal. The output will be the time signals for each
L/M-unit in the MIMO array. An overview of this setup is depicted in Figure 6.

Figure 6: Overview of MIMO system with Zero Forcing.

3.5.2 Implementation

The implementation of the Controller module consists of several different functions
and a script used for plotting. They are all described below.

createBitStream()

Creates a matrix of random bits. The size of the matrix is nrOfStreams × streamLength.

Table 20: In and out parameters for the createBitStream() function.

In parameters Description
nrOfStreams The number of streams in the output vector.
streamLength The length of the streams in the output vector.
Out parameters Description
bitVector A vector of random bits.

hammingEncode()

Adds redundancy bits to input bit vector by using a Hamming code with input n and k
values. For the input bit vector to work with the Hamming code, zeros are added at the

TSKS05
LIPS Technical Report

18

Zero Forcing 2015-12-16

end of input vector. The number of zeros added are specified in the added variable.
Each row of the input and output bit vectors represents different streams.

Table 21: In and out parameters for the hammingEncode() function.

In parameters Description
bitVec A vector of bits where each row represents different stream.
hammingN The n value of the used Hamming code.
hammingK The k value of the used Hamming code.
Out parameters Description
errCtrlBitVec The Hamming encoded bit vector. Each row represents differ-

ent streams.
zerosAdded The number of zeros added at the end of the input bit vector to

make its dimensions match with the Hamming code.

mapToSymbols()

Maps a vector of binary numbers to a vector of complex numbers. The mapping uses
an M-ary, graycoded PSK constellation where M = 2k and k is input to the function.
The initial phase is set to 0.

Table 22: In and out parameters for the mapToSymbols() function.

In parameters Description
bitVector A vector of bits.
k k value of the PSK modulation.
Out parameters Description
symbolVector A vector of complex symbols, mapped from the input bit vector.

createPreamble()

This function creates a preamble to be sent on the channels, see Table 23 for parameters.
The preamble consists of 18 bits (this is long enough and is also divisible by both two
and three as required by the mapToSymbols() function) which are then mapped to
symbols using the current modulation scheme.

The preambles for the first two streams are hardcoded in this file. Stream number
three and higher uses 18 random bits.

Table 23: In and out parameters for the createPreamble() function.

In parameters Description
nStreams Number of streams supposed to be in the output.
k Bits per symbol.
Out parameters Description
preambleSymb The output symbol vector representing the 18 bits for each

stream. Each row represents one stream.

TSKS05
LIPS Technical Report

19

Zero Forcing 2015-12-16

MIMOCombining()

This function performs Zero-Forcing precoding on the input data to achieve parallel
data transmission. The return value is the data to be sent from each unit in the antenna
array. Note that the output data is scaled to range between 0 and 1.

The idea is to use the estimated knowledge of the channel between each unit in
the antenna array and each terminal pair and invert that to achieve signal separation
to each of the terminal units. The inversion of the channel estimation is calculated by
using the pseudo-inverse as described in equation (8). If Maximum Ratio Combining is
performed instead then equation (9) is used. The precoding is then done by multiplying
the data to be sent with the pseudo-inverse W . Assuming perfect channel estimation
and no noise in the transmission this would achieve parallel data transmission. But
even though noise is present and with an imperfect channel estimation this technique
is good enough to achieve error-free parallel data transmission in most setups.

W = H∗(HH∗)−1 for Zero Forcing (8)
W = H∗ for Maximum Ratio combining (9)

Power control is then applied to W columnwise, as per equation (10), in order to nor-
malize the power each terminal receive. The parameters of the MIMOCombining func-
tion are described in table 24.

Wi =
Wi

||Wi||
(10)

Table 24: In and out parameters for the MIMOCombining() function.

In parameters Description
data Data to be sent through the Zero-Forcing precoder.
Hamp Matrix of amplitudes from channel estimation.
Hphase Matrix of phases from channel estimation.
Out parameters Description
MIMOComplexVec Matrix containing MIMO precoded data.

createFilters()

This function creates two Root Raised Cosine (RRC) filters, one transmit filter and one
receiver filter. Used together these filters should minimize ISI and concentrate signal
power to the passband. If useRRCFilter is false, the transmit filter will be destroyed in
the end, signaling to other functions/scripts not to use it.

TSKS05
LIPS Technical Report

20

Zero Forcing 2015-12-16

Table 25: In and out parameters for the createFilters() function.

In parameters Description
useRRCFilter A boolean. If false the transmit filter is "destroyed" by setting

to a numeric value.
samplesPerSymbol The upsampling factor.
span The length of the filter in number of symbols.
rolloff The rolloff factor of the RRC filter. 1 gives sharp edges, 0

gives very smooth edges.
Out parameters Description
hRxFilter Communication toolbox object for a receive RRC filter.
hTxFilter Communication toolbox object for a transmit RRC filter. Or

a numeric (if useRRCFilter)

upConvert()

Up-converts a baseband signal to passband. First an up-sampling is done, either us-
ing a rectangular filter or a RRC-filter. Then up-conversion is done by multiplying
with a complex exponential at the carrier frequency and keeping the real part of that
multiplication.

Table 26: In and out parameters for the upConvert() function.

In parameters Description
symbolMatrix Symbol vectors to be upconverted. Each row corresponds to

different streams.
carrierFreq The carrier frequency for the upconversion.
sampleFreq The sample frequency.
samplesPerSymbol Amount of samples per symbol in the passband signal.
hTxFilter Optional. A compsys toolbox filter or a numeric. If numeric,

or not supplied at all, rectangular pulseshaping will be ap-
plied.

Out parameters Description
sampleMatrix The created passband signal.
carrierMatrix A corresponding carrier matrix (the carrier repeats in all

rows).
timeVec The corresponding time lags for each sample in sampleMa-

trix.

syncSignal()

This function looks for the preamble in the receivedData and returns all samples
after the identified preamble.

It works row by row through the preambleMatrix and receivedData find-
ing the lag of the preamble using the xcorr function. The maximum delay is con-
nected to how much extra the system needs to stop and listen after each send.

TSKS05
LIPS Technical Report

21

Zero Forcing 2015-12-16

Table 27: In and out parameters for the syncSignal() function.

In parameters Description
preambleMatrix The set of preambleSymbols upconverted to the passband.
receivedData Data received from the channel.
maxLags Maximum number of lags.
signalLength Number of samples with actual information content.
Out parameters Description
syncedData The received signal but with lag and preamble samples removed

from the beginning and only signalLength samples long.
allCorrelations The result of each xcorr call.
allLags The lag vectors.
delays The number of samples the received signal lagged.

filterSignal()

Implements both a LP plus a moving average or a RRC filter. Uses the variable
useRRCFilters to determine which filter output to use as output for this function.

Table 28: In and out parameters for the filterSignal() function.

In parameters Description
signal Either the inphase or quphase component of an unfiltered re-

ceived signal.
samplesPerSymbol The number of samples per symbol.
hRxFilter A Communication Systems Toolbox RRC receiver filter ob-

ject.
span Number of symbols that the filter spans.
useRRCFilters A boolean, if true the RRC filter is used, otherwise a LP filter

plus a moving average filter is applied.
Out parameters Description
filtSig The filtered output.
startOffset The delay introduced by the filters (in number of samples).

Can also be viewed as the number of samples before the first
sampling point.

kMeanClustering()

This function performs k-Mean clustering on the recevied symbols and outputs the
detected phase shift of the centroids, the found centroid’s locations as well as a vector
of all input data points moved to their respective centroid.

TSKS05
LIPS Technical Report

22

Zero Forcing 2015-12-16

Table 29: In and out parameters for the kMeanClustering() function.

In parameters Description
data Should be a complex vector of input data points.
nrClusters Number of clusters, i.e. 2 for BPSK, 4 for QPSK and so on.
Out parameters Description
phase The phase of shift of the clusters.
centroids The centroids’ locations, each row is a centroid where column

1 is the real part and column 2 is the imaginary part.
centroidData A vector of all data points moved to their respective centroid.

hammingDecode()

Decodes an input Hamming encoded bit vector. Also deletes any additional zeros added
in hammingEncode(). Each row of the input and output bit vectors represents dif-
ferent streams.

Table 30: In and out parameters for the hammingDecode() function.

In parameters Description
codedBitVec A Hamming encoded bit vector. Each row represents different

streams.
hammingN The n value of the used Hamming code.
hammingK The k value of the used Hamming code.
zerosAdded The number of zeros added to the original unencoded to make

its dimensions match with the used Hamming code.
Out parameters Description
decodedBitVec The decoded bit vector. Each row represents different streams.

calcBitError()

Calculates the number of bit errors as well as the ratio of bit errors between the two
input bit vectors. Each row of the vectors represents a stream which is compared to cor-
responding stream of the other vector, e.g. The first row of the first vector is compared
to the first row of the second vector, and so on.

Table 31: In and out parameters for the calcBitError() function.

In parameters Description
bitVec1 A vector of bits.
bitVec2 A vector of bits
Out parameters Description
nrOfErrors Vector consisting of the number of errors for each respective

stream.
errorRatio Vector consisting of the error ratio for each respective stream.

TSKS05
LIPS Technical Report

23

Zero Forcing 2015-12-16

plotResultsScript

A plotting script. It is very dependant on variables set in controllerMainScript,
but does provide a neat way of replotting all results (if one forget to add a plot at the
start of the program).
There are five different plots available to the user (examples can be found in [4]).
Below is a list of the appropriate booleans in controllerMainScript and a short
description of what is plotted should that variable be set to true:

Table 32: Boolean name and plot description for plotResultsScript

Boolean Plot Description
PLOT_BEFORE Plots the sent passband signals both in time and frequency
PLOT_FREQ Plots the received signal: the time domain of the passband

signal and then the frequency contents during different phases
of the receiver process

PLOT_IQ Plots the unfiltered In and Quadrature phase parts of the re-
ceived signal together with the filtered versions. The filtered
version also have the sampling points marked out on the curve.
The sent bits are also plotted in a binary fashion

PLOT_SCATTER Plots the scatter diagram of the received signal
PLOT_EYE Plots the eye diagram of the received signal

createCarrier()

Outputs a carrier vector for given values of sample frequency, carrier frequency, num-
ber of samples, number of streams and phase offset.

Table 33: In and out parameters for the createCarrier() function.

In parameters Description
sampleFreq Sample frequency
carrierFreq Carrier frequency
nrOfSamples The number of samples in the output carrier vector
nrOfStreams The number of streams in the output vector, i.e. number of

rows. Note that all streams look the same.
phaseOffset Phase offset for the initial phase of the output carrier vector.
Out parameters Description
carrierVec The output carrier vector.
timeVec A time vector representing the times of each sample in the car-

rier vector.

repeatSample()

Upsamples each row in a matrix upSampleFactor times. Increases the number of
columns upSampleFactor times.

TSKS05
LIPS Technical Report

24

Zero Forcing 2015-12-16

Table 34: In and out parameters for the repeatSample() function.

In parameters Description
symbolMatrix The matrix to upsample.
upSampleFactor Integer. The factor by which each symbol is repeated.
Out parameters Description
repeatSampleMatrix The upsampled matrix.

3.6 Calibration
Unfortunately, the LM-units, if not calibrated in the software, differ a lot in input and
output values when receiving the same audio signal and trying to send the same signal.
Therefore, the system has been calibrated in the software by using two scripts in the
Calibration module. If the system changes, and someone wants to mixture with the
volume knobs of the LM-units, there will be a need for new calibration to make the
system work optimally. How to do the calibration is described in much detail in the
script files. A sound intensity meeter have been used to calibrate the delivered system,
and would also be useful for any future calibrations. The delivered system is calibrated
for a carrier frequency of 502 Hz.

3.6.1 Implementation

The calibration is used to set the scaling factors in the sendReceive function. It
uses the two scripts described below.

calibrationReceiveScript

This scripts calibrates the constant variable REC_SF in sendReceive. The script is used
to make sure that each LM-unit, when getting an equally strong audio signal, samples
an approximately equal level sampled signal.

calibrationSenderScript

This scripts calibrates the constant variable SEND_SF in sendReceive. The script is
used to make sure that each LM-unit outputs an approximately equal level audio signal
for a given sampled input signal.

3.7 Operating System and Drivers
In order to control the L/M-units the A/D and D/A card are used. These uses PCI-
connections and are controlled using their respective Windows drivers. The drivers are
accessed from MatLab (32-bit version) using the legacy interface of the "Data Acqui-
sition Toolbox" (DAQ) as well as a MatLab library called "MatLab-compliant Data
Acquisition Library" (MLDAQ) [7]. Preferably a 32-bit version of Windows should
also be used, but during this project a 64-bit Windows 7 was used, with the cost of
some random blue screens.

TSKS05
LIPS Technical Report

25

Zero Forcing 2015-12-16

Figure 7: The computer back panel with A/D and D/A slots. [8, Fig. 2]

4 Hardware
The hardware from the previous project has not been altered and the description given
here is therefore heavily based on the technical report produced by the previous project
[7]. The hardware is only described to make this document complete but no develop-
ment has been done regarding the hardware.

The existing hardware consists of a computer, an A/D converter, a D/A converter,
a distribution box and eight L/M-pairs. All these entities are described in this chapter.
An overview of the hardware is given in Figure 1.

4.1 Computer
The computer is an electronic device used for manipulating information or data, which
can be stored, retrieved and processed. The model of the computer used in the project
is a Hp Compaq Elite 8300 running Windows 7 as its operating system.

4.2 L/M pairs
The L/M units are modified loudspeakers that can also act as microphones. An L/M
unit can operate either as a loudspeaker or a microphone based on the input from the
user. A L/M pair is a set of two L/M units in which one is a master unit and the other a
slave unit. The system has eight L/M pairs and one of these pairs is depicted in Figure
8. The master unit is made of an original amplifier board and an additional detection
board designed by Mikael Olofsson.

The detection makes it possible for the L/M pair to operate as both loudspeaker and
a microphone. The 9-pole D-sub connector (DB-9) mounted on top of the master unit
serves as interface for signal to, or from, the L/M pair. The power supply to the L/M
pair is done through a USB cable, connected to the wall via a USB adapter.

4.3 A/D and D/A converters
The A/D converter is an electronic circuit used to convert an electrical signal into bi-
nary numbers to be used in a digital controller (computer). The D/A converter circuit is
used to convert binary numbers to analog voltage or current. The A/D converter (Con-
tec AD12-64) and the D/A converter (Contec DA12-16) are attached to the computer

TSKS05
LIPS Technical Report

26

Zero Forcing 2015-12-16

motherboard through PCI slots to ensure the communication between the computer and
the distribution box. With the help of the internal sample clock in each card, resolution
of 12V and then highest conversion speed of 100 kilosamples/s are attained for both
converters. The voltage levels for both converters are in the interval [-10, 10] V.

Only 16 of the, in total, 64 analog input channels are used in the product. The
A/D converter also has 4 digital inputs and 4 digital outputs for TTL level signals
(Transistor-Transistor-Logic). In the product only two of the digital outputs of the A/D
converter are utilized and these are responsible for switching between the two operation
modes of the L/M pairs.

Figure 8: The L/M pair and the master unit from different angles. [8, Fig. 6]

4.3.1 Detection Board

Microphone mode operation for the L/M pair is possible by means of the detection
board. When the L/M pair is working in this mode the circuit amplifies the audio
signals received using a differential-in-differential-out amplifier with a voltage gain
of 23 dB. Thereafter, the amplified signals are forwarded to the collection board for
further amplification.

Figure 9: Detection board. [7, Fig. 3]

4.3.2 Maxxtro Mini Speaker 4W

A master loudspeaker and a slave loudspeaker constitute the main parts of the L/M pair.
Both speakers, joint by a stereo cable of length 0.3m, are supplied 5V by the USB cable

TSKS05
LIPS Technical Report

27

Zero Forcing 2015-12-16

of 1m length connected to an adapter. The adapter, called Euro-USB-laddare, has the
stock number 25-249-98 at ELFA. The USB cable and volume controller are attached
only to the master loudspeaker.

Figure 10: Overview of the L/M master unit. [7, Fig. 7]

4.4 Distribution Box
The distribution box depicted in Figure 11 works as a hub and distributes the signals
between the computer and the L/M pairs. It has 11 connections: eight for the L/M
pairs, one for the A/D and D/A converters respectively and a power supply connection.
For the purpose of letting the user choose which control group a L/M pair is part of the
distribution box also has a control board consisting of eight physical switches.

Figure 11: The Distribution Box. [8, Fig. 3]

4.5 Limitations on available hardware
4.5.1 Sampling frequency

The maximum sampling frequency that can be used for the A/D and D/A converter is
100 kHz. These 100 kHz are divided among all channels in use. Thus, when all 16 L/M

TSKS05
LIPS Technical Report

28

Zero Forcing 2015-12-16

units are in use the maximum sampling frequency is limited to 6250 Hz in theory. But
the sampling frequency is fixed to certain values, so practically the sampling frequency
6060Hz is used to get a good carrier frequency for an easy implementation.

4.5.2 Data transmission

The amount of data that can be put through the D/A engine is approximately 262144
samples,which translates to about 2.5 seconds of continuous sound, when using a sam-
pling frequency of 6060 Hz and 16 channels.

4.5.3 A/D converters

The A/D converter has a voltage range of [-10,+10] V. However the power supply can
deliver voltages in the interval [-11,11] V which means that the A/D converter can be
damaged by a too high sound level from the loudspeakers.

5 Limitations and Problems
The system has some limitations and problems that have been discovered and taken into
consideration in the development of the product. These are in addition to the inherent
hardware limitations already mentioned in section 4.5.

5.1 First Run
The values obtained from the first run using the system after switching on the computer
are inconsistent. We are not sure exactly why this happens but we suspect it may have
to do with initializations for the hardware that occur during the first run. Not a major
problem as long as you ignore the first run.

5.2 Blue Screen
While running the system, one might encounter a system crash and blue-screen which
we think is likely due to the Contect drivers. The Contect drivers, used for running the
A/D and D/A hardware, are specified for use with a 32-bit system while the system we
use is a 64-bit one.

5.3 Sampling Clock Error
One might also occasionally encounter a sampling clock error. We are not sure why
it occurs but we think it may also have something to do with the Contect drivers not
being specified for a 64-bit system.

TSKS05
LIPS Technical Report

29

Zero Forcing 2015-12-16

5.4 Nonuniform L/M Unit Characteristics
The L/M units have different characteristics for both sending and receiving. The re-
ceiving characteristics differ greatly for different carrier frequencies as well. Hence
calibration has to be done for proper functioning of the system. We have calibrated our
system for the carrier frequency 505 Hz and have compensated for these differences in
the software using hard-coded values in the sendReceive() function. So in order to use
the system at other carrier frequencies the calibration would have to be done again for
those frequencies.

5.5 Phase interval
Since the channel state matrix is represented with complex numbers it is only possi-
ble to represent phases in the interval [0,2π). Due to this fact the distance from one
terminal to the different units should not differ by more than one wavelength for cor-
rect synchronisation to be possible when sending. We use this assumption in the phase
estimation to correct outliers that are off from the expected values by multiples of 2π .

5.6 Distance constraints
The L/M units sensitivity is quite weak at long distances. Hence we can not operate the
system reliably with units placed long distances apart. We recommend using a distance
less than 3m.

5.7 Background Noise
Our system performance is very sensitive to noise especially in the audible range.
Hence for reliable functioning of the system it can only be used in a quite environ-
ment with minimum audible background noise.

TSKS05
LIPS Technical Report

30

Zero Forcing 2015-12-16

References
[1] Tomas Svensson, Christian Krysander, Projektmodellen LIPS. Studentlitteratur,

2011.

[2] C. H. Knapp and G. C. Carter, The generalized correlation method for estimation
of time delay, IEEE Trans. Acoust., Speech, Signal Processing, vol. 24, no. 4, pp.
320326, Aug. 1976.

[3] T. Gustafsson, B. Rao, M. Triverdi, "Source localization in reverberant environ-
ments: modeling and statistical analysis." IEEE Trans. Acoust., Speech, Signal
Processing, vol. 11, no. 6, pp. 791-803. 2003.

Unpublished References:

[4] Mikael Karlsson et al., User Manual. ISY, Linkoping University, 2015.

[5] Mikael Karlsson et al., Project Plan. ISY, Linkoping University, 2015.

[6] Mikael Karlsson et al., Requirement Specification. ISY, Linkoping University,
2015.

[7] Fredrik Stenmark et al., Technical Report. ISY, Linkoping University, 2014.

[8] Fredrik Stenmark et al., User Manual. ISY, Linkoping University, 2014.

[9] Fredrik Stenmark et al., Project Plan. ISY, Linkoping University, 2014.

TSKS05
LIPS Technical Report

31

	Introduction
	MIMO
	Beamforming
	The Project
	Aim and goals
	Definitions

	Overview of the System
	Software
	General Implementation of the Modules
	Controller
	Implementation

	UI
	Implementation

	Channel Estimator
	Implementation

	Channel Coder
	MIMO
	Implementation

	Calibration
	Implementation

	Operating System and Drivers

	Hardware
	Computer
	L/M pairs
	A/D and D/A converters
	Detection Board
	Maxxtro Mini Speaker 4W

	Distribution Box
	Limitations on available hardware
	Sampling frequency
	Data transmission
	A/D converters

	Limitations and Problems
	First Run
	Blue Screen
	Sampling Clock Error
	Nonuniform L/M Unit Characteristics
	Phase interval
	Distance constraints
	Background Noise

	References

