
Zero Forcing 2015-11-23

Design Specification

Editor: Mikael Karlsson

Version 1.0

Status 3

Reviewed Mikael Karlsson 2015-11-04
Approved Antonios Pitarokoilis 2015-11-04

TSKS05
LIPS Design Specification

i

Zero Forcing 2015-11-23

Project Identity
HT 2015

Linkoping University, ISY

Name Responsibility Phone Email
Atheeq Ahmed Group Member 070-4131687 athah298
Martin Andersson Documentation

Manager
073-3912657 maran703

Björn Ekman Software Manager 070-2420137 bjoek586
Mikael Karlsson Project Manager 076-2257939 mikka789
Valens Nsengiyumva Hardware Manager 070-4131684 valns738
Oscar Silver Test Manager 073-0589005 oscsi278

Customer: ISY, Linkoping University, 581 83, Linkoping

Customer contact: Hien Ngo, hien.ngo@liu.se
Examiner: Danyo Danev, danyo.danev@liu.se

Tutor: Antonios Pitarokoilis, antonios.pitarokoilis@liu.se

TSKS05
LIPS Design Specification

ii

Zero Forcing 2015-11-23

Contents
1 Introduction 1

1.1 MIMO . 1
1.2 Beamforming . 1
1.3 The Project . 1
1.4 Aim and goals . 1
1.5 Definitions . 1

2 Overview of the System 2
2.1 Validation of the Existing System . 3

3 Software 3
3.1 General Implementation of the Modules 3
3.2 Controller . 4

3.2.1 Implementation . 4
3.3 Calibration . 7

3.3.1 Implementation . 7
3.4 Channel Estimator . 7

3.4.1 Implementation . 9
3.5 Spectral Analyser . 11

3.5.1 Implementation . 11
3.6 MIMO . 11

3.6.1 Implementation . 11
3.7 Channel Coder . 13

3.7.1 Implementation . 13
3.8 User Interface . 15
3.9 Operating System and Drivers . 15

4 Hardware 16
4.1 Computer . 16
4.2 L/M pairs . 16
4.3 A/D and D/A converters . 17

4.3.1 Detection Board . 17
4.3.2 Maxxtro Mini Speaker 4W 18

4.4 Distribution Box . 18
4.5 Limitations on available hardware 19

4.5.1 Sampling frequency . 19
4.5.2 Data transmission . 19
4.5.3 A/D converters . 19

References 20

TSKS05
LIPS Design Specification

iii

Zero Forcing 2015-11-23

DOCUMENT HISTORY
Version Date Changes Sign Reviewed
0.1 2015-10-12 First Draft Martin A Mikael K
0.2 2015-10-20 Second Draft Martin A Mikael K
1.0 2015-11-04 First Version Martin A Mikael K

TSKS05
LIPS Design Specification

iv

Zero Forcing 2015-11-23

1 Introduction
We plan to design and realize a system that will demonstrate the Zero Forcing capa-
bilities and possible applications of Massive Multiple Input Multiple Output (Massive
MIMO). Zero Forcing is a type of beamforming technique used in Massive MIMO in
a multi-user environment where the signal energy towards an intended user is max-
imised under the constraint that no interference is caused to the remaining users. The
purpose of this document is to specify the design of the system and how we will be
implementing said design.

1.1 MIMO
MIMO is an essential element of wireless communication that uses multiple antennas
at the transmitter and receiver to enhance the capacity of the radio link. Massive MIMO
is a new innovative version of MIMO which uses a very large number of transmitter
antennas that are operated in a completely coherent and adaptive manner to focus the
transmission of signal energy into small regions of space. Massive MIMO can poten-
tially increase the capacity by at least 10 times due to its aggressive spatial multiplexing
while simultaneously improving the energy-efficiency with a factor 10-100.

1.2 Beamforming
Beamforming is one of the techniques that can be used in an MIMO system in which
signals from the multiple antennas as transmitted in such a way that the signal energy
gets focused at certain points in space by constructive combining. In the case of Zero
Forcing beamforming the signal energy is focused at the relevant user while the other
users essentially receive no signal at all. This is an important property for a wireless
communication system since, in the ideal case, transmission to one user does not causes
interference to other users.

1.3 The Project
For the project course TSKS05 CDIO Communication Systems, we plan to demon-
strate the Zero Forcing capabilities of Massive MIMO building upon the work done by
a previous project Massive Audio Beamforming [5]. Using the hardware built in the
previous project we will design and implement the Zero Forcing algorithm for the ex-
isting system. The Zero Forcing and MIMO technique will ultimately be demonstrated
by sending different data to the two different terminals, simultaneously.

1.4 Aim and goals
See section 2.1 in the document Project Plan [3].

1.5 Definitions
See Table 1 for definitions of words used in this document.

TSKS05
LIPS Design Specification

1

Zero Forcing 2015-11-23

Table 1: Definitions of words used in this document.

Word Definition
MIMO Multiple Input Multiple Output
A/D Analog to Digital
D/A Digital to Analog
L/M unit Loudspeaker/Microphone unit
L/M-pair A pair of Loudspeaker/Microphone units
MIMO-array The array of L/M pairs used to generate the Zero Forcing beam
Terminal One of the two units in the receiving L/M pair.
OS Operating System
Subsystem A part of the whole system

2 Overview of the System
The system will basically be an upgrade of the existing system which was built in the
previous project. The system will consists of two subsystems, namely the Software
and the Hardware. The Hardware of our project is the same as that of the existing
system, so this project’s focus is just the Software. The new system should be able to
demonstrate Zero Forcing by simultaneous data transmission to two different terminals,
both receiving different data at the same time.

The Hardware consist of eight L/M pairs of which seven act like a MIMO-array
while the last pair recievies the signals from the MIMO-array. An overview of the
system is depicted in Figure 1.

The Software of the existing system consists of MATLAB scripts for channel esti-
mation, signal generation and spectral analysis. It also includes drivers for communi-
cation between a Windows operative system and the Hardware.

Figure 1: Overview of the Hardware in the system. [5, Fig. 1]

TSKS05
LIPS Design Specification

2

Zero Forcing 2015-11-23

Figure 2: Overview of the software.

2.1 Validation of the Existing System
The current system will be checked to analyse its performance. To improve the perfor-
mance of the system the hardware has to be fine tuned to work harmoniously with the
software. The system will be tested to validate if the inputs to the hardware produce the
expected outputs. MIMO Zero Forcing requires accurate measurements of the channel
and the audio output of the L/M array also has to be precise. Any sensitivity differences
in the L/Ms need to be estimated and compensated for in the software.

3 Software
The Software will be built in a modular fashion with well defined interfaces in between
and an overview is depicted in Figure 2. This enables developers to easily tweak or
replace individual modules. Below follows a description of each module and its task.

3.1 General Implementation of the Modules
The different modules in Figure 2 will all be coded in MatLab, in the form of different
functions and scripts.

All scripts uses the underlying workspace while each function uses its own private
workspace. This gives scripts access to all variables already in the general workspace
and all variables declared in a script will end up in the general workspace. Functions on

TSKS05
LIPS Design Specification

3

Zero Forcing 2015-11-23

the other hand can only use copies of variables sent along with the function call. The
output of the function can be several variables, but all need to be stated in the function
signature and the caller can opt not to add them to its workspace. This difference makes
scrips ideal for start-up, initialisation and small tests while functions better provide
concrete interfaces, modularity and flexibility.

This project will mainly use functions. Scripts will be used when appropriate (ini-
tialisation and small tests) and will be named with a "*Script" suffix.

To get a clear and concise code the following coding guidelines will apply:

• Clear and concise commenting.

• Comments should be written in such a way that the built in Matlab-functions
"help" and "doc" are able to display information about the function.

• All in and out parameters should be well defined: purpose and expected dimen-
sionality.

• All global variables used should also be well defined at the top of the function,
clearly marked as globals.

• Data-type is only needed for parameters that are not the Matlab default type
(double-precision floating-point).

• Try to split functionality into separate rows and avoid "one-row-magic". When
unavoidable (e.g. Matlab efficiency reasons): break it done into pseudo-code and
put that in comments above the magic line.

• Use uppercase for constants, e.g. CONSTANT_VARIABLE.

• Use camel case for variable names, functions and scripts, e.g. variableName.

• Avoid hardcoded numbers - declare a constant instead.

• Some constants, or read-only variables, could be declared as globals.

3.2 Controller
The Controller will be responsible for the general flow of the program and supplies
data to and from the other modules. It will also contain the functions necessary to
communicate with the hardware drivers. The controller will contain the main loop of
the system.

As for the controller functions, these are functions to communicate with the hard-
ware drivers. Thus the functions for sending and receiving data lies under the Con-
troller, since these are functions that need to interact with the drivers for the D/A and
the A/D converters.

3.2.1 Implementation

The Controller module consists of one main script and four subfunctions.

TSKS05
LIPS Design Specification

4

Zero Forcing 2015-11-23

controllerMainScript

controllerMain is the main script of the software. It will start with letting the user
choose his/her own values or the default values for different initial variables. It will then
continue by one at a time communicating to and in between the different subsystems,
in such a way that the end system does what is required. The main script can therefore
be read as a time line, from start to finish, of the scheduling of the different tasks in the
system. In Listing 1 you can see the pseudo-code of the Controller’s main function.

Listing 1: Pseudo code for the controllerMainScript script
controllerInitScript();
pilot = constructPilot(carrierFreq, timeDuration, sampleFreq);
receivedPilotVec = sendReceivePilots(pilotVec);
channelInformation = channelEstMain(pilots, receivedPilotVec);
bitVec = createBitVec();
errControlBitVec = errorControl(bitVec);
symbolVec = mapToSymbols(errControlBitVec);
MIMOSymbolVec = MIMOCombining(symbolVec, channelInformation);
outputSampleVec = upConvert(MIMOSymbolVec);
receivedSampleVec = sendReceiveData(outputSampleVec);
receivedBitVec = demodulate(receivedSampleVec);
decodedBitVec = decode(receivedBitVec);
errorRate = calcErrorRate(bitVec, decodedBitVec);

controllerInitScript()

controllerInitScript() is the function which will take care of the initialization of a lot
of the system’s different variables and constants. It will make the user able to set the
values of different variables through input but the user will also be able to set variables
to default values. It will further create the output and input channels for communication
with the D/A and A/D converters.

Table 2: Variables which can be chosen by the user, and their default values.

Variable Description Default Value
CARRIER_FREQ The carrier frequency

used by the system for
communication purposes

502

SAMPLE_FREQ_TERMINALS The sample frequency
used for the terminals

6024

SAMPLE_FREQ_ARRAY The sample frequency for
the MIMO-array

6024

ARRAY_PAIRS Vector of the numbers
of the LM-pairs in the
MIMO array

[1, 2, 3, 4, 6, 7, 8]

TERMINAL_PAIRS Vector of the numbers of
the LM-pairs working as
terminals

[5]

TSKS05
LIPS Design Specification

5

Zero Forcing 2015-11-23

Table 3: Constant Variables used in the system.

Variable Description Value
AMOUNT_LMGROUPS Number of LM-groups, groupmembers work

in the same operation mode
2

ARRAY_GROUP Which of the LM-groups are the MIMO ar-
ray, used as flag

0

TERMINAL_GROUP Which of the LM-groups that are the two ter-
minals, used as flag

1

CARRIER_FREQ_MIN The minimum possible carrier frequency 300
CARRIER_FREQ_MAX The maximum possible carrier frequency 3012
AO Analog output object for the D/A converter -
AI Analog input object for the A/D converter -

sendReceivePilots()

The high level function used in controllerMain to send and receive the pilots.

Listing 2: Pseudo code for the sendReceivePilots() function
function [receivedPilotVec] = sendReceivePilots(pilotVec)

% Setup variables
...
receivedPilotVec = sendReceive(

pilotVec,
AO,
AI,
TERMINAL_PAIRS,
ARRAY_PAIRS,
SAMPLE_FREQ_TERMINALS,
SAMPLE_FREQ_ARRAY);

end

sendReceiveData()

The high level function used in controllerMain to send and receive the pilots.

Listing 3: Pseudo code for the sendReceiveData() function
function [receivedDataVec] = sendReceiveData(dataVec)

% Setup variables
...
receivedDataVec = sendReceive(

dataVec,
AO,
AI,
ARRAY_PAIRS,
TERMINAL_PAIRS,
SAMPLE_FREQ_ARRAY,
SAMPLE_FREQ_TERMINALS);

end

TSKS05
LIPS Design Specification

6

Zero Forcing 2015-11-23

sendReceive()

A general, low level function for sending and receiving data. Will be used by
sendReceivePilots() and sendReceiveData().

Listing 4: Pseudo code for the sendReceive() function
function [receivedSignalVec] = sendReceive(

signalVec,
analogOutput,
analogInput,
sendingLMPairsVec,
receivingLMPairsVec,
sampleFreqSending,
sampleFreqReceiving)
...

end

3.3 Calibration
The amplitude parameters sent to the L/M units will be calibrated to ensure that all
the L/M pairs perform as uniformly as possible and any differences between them are
compensated for in software. This will be accomplished by using one pair as reference
microphones in order to be able to calibrate the rest. The reference pair should be the
same pair that later on will be used as the pair that the MIMO array will be sending to.

3.3.1 Implementation

The amplitude characteristics will be done by measuring the audio outputs of each L/M
unit for linearly increasing amplitude parameters in the software input. This test will
be done for each of the MIMO array units individually where each unit will act as a
speaker and the one of the terminal unit at the point of focus will act as the receiver.
A graph will be plotted which will give us the mapping of audio signal amplitude to
the amplitude parameters used in the software. Similarly the sensitivity characteristics
of the MIMO array units when they act as receivers is determined. The amplitude
calibration will then be done using the obtained mapping.

3.4 Channel Estimator
The Channel Estimator will be used to estimate the impulse responses of each channel
between the two terminals to each L/M-unit in the L/M-array, the channels are depicted
in Figure 3. An element hi, j of the true impulse response matrix H is stated in Equation
(2), where α is the complex attenuation and τ is the phase shift. H is defined in equation
(1).

TSKS05
LIPS Design Specification

7

Zero Forcing 2015-11-23

Figure 3: Channels in the MIMO system.

H :=


h1 1 h1 2
h2 1 h2 2

...
...

h14 1 h14 2

 (1)

hi, j(τ) =
(l)

∑
l=1

α
l
i, jδ (t − τ

(l)
i, j) (2)

With the assumed flat fading channel most of the energy from the reflections will ar-
rive within one symbol interval. Therefore the individual reflections are not resolvable
and only an estimate of their superposition is possible. The true H will be estimated
with Ĥ which will consists of elements defined in equation (3).

ĥi, j(τ) =
(l)

∑
l=1

α̂
l
i, jδ̂ (t) (3)

The channels, which are assumed to be flat fading, will be estimated by sending a
known signal from the two terminals and record what the L/M-array receive. By com-
paring the known sent signal with the received one, the characteristics of the channel
can be estimated.

The input to the Channel Estimator module will be the sent pilot signal and the
received signals for all the units in the L/M-array together with information about their
respective sampling frequencies. The output from the Channel Estimator module will
be the estimated relative amplitude change and phase shift for each channel.

Cross-correlation will be used to estimate the phase shift introduced by the chan-
nel. It will also be investigated whether the zero crossings of the signals can be used
for phase estimation since this would give a continuous scale rather than the discrete
one that the cross-correlation will give. To estimate the relative amplitude change the
recorded signals will be integrated over a characteristic section and then compared.

TSKS05
LIPS Design Specification

8

Zero Forcing 2015-11-23

The Channel Estimator module is also responsible for generating the pilot to be sent
during training. This is achieved with the constructPilot() function detailed
below.

3.4.1 Implementation

The Channel Estimator module will consist of a main function, channelEstMain,
with two subfunctions, channelEstAmp and channelEstPhase, to estimate the
amplitude and phase respectively. The main function is responsible for executing the
two subfunctions for all the received signals and allocate the output matrix containing
information about amplitude and phase estimates and the pseudo code for it is given in
Listing 5.

Listing 5: Pseudo code for the channelEstMain function
function [estimationMatrix] = channelEstMain(pilot, recordedSignals)

amplitudeEst = channelEstAmp(recordedSignals)
phaseEst = channelEstPhase(pilot, recordedSignals)
estimationMatrix = generateMatrix(amplitudeEst, phaseEst)

end

channelEstAmp()

The amplitude of the received signals will be estimated using the samples from a se-
lected window of the received signal and taking an average of the integration.

Listing 6: Pseudo code for the channelEstAmp function
function [ampEst] = channelEstAmp(recordedSignals)

for i in recordedSignals
ampEst[i] = integrate(recordedSignals)/time

end
end

channelEstPhase()

The cross-correlation between two functions, f and g, is given in Equation (4) for the
time discrete case. The phase shift τ between two signals can then be estimated as
the argument of the maximum of the cross-correlation, as stated in Equation (5). If
this method is found to not be accurate enough then Fast Fourier Transform (FFT)
Maximum Likelihood Estimation (MLE), as discussed in [2], might be a possible way
of improving the accuracy.

(f ?g)[n] = ∑
m

f ∗[m]g[m+n] (4)

TSKS05
LIPS Design Specification

9

Zero Forcing 2015-11-23

Figure 4: Auto-correlation of a sinus signal.

τ = argmax
n

(f ?g)[n] (5)

MATLAB’s function xcorr will be used to cross-correlate the pilot with the re-
ceived signals and thereby get an estimate of the phase shift introduced by the channel.
To avoid transients a window of the signals will be used. Note that we are only in-
terested in relative phase shifts between the signals and not in shifts introduced due
to delays in software or hardware. If the sent pilot and recorded signals have differ-
ent sampling frequencies then the pilot will have to be downsampled before the cross
correlation.

Listing 7: Pseudo code for the channelEstPhase function
function [phaseEst] = channelEstPhase(pilot, recordedSignals)

if (different sampling frequencies)
pilot = downsample(pilot)

end
pilotWindow = extractWindow(pilot)
for i in recordedSignals

indexLag[i] = xcorr(pilotWindow, extractWindow(recordedSignals[i]))
end
% Convert the indexLag to phase
phaseEst = 2*pi*indexLag*carrierFreq/sampleFreq

end

constructPilot()

The pilot used for estimating the channel will be a chirp with frequencies around the
frequency which will be used as carrier frequency. See Listing 1 for the full function
signature. The channel is assumed to be flat in this interval and the chirp will thereby
provide better characteristics than a simple sinusoid for the phase estimation since with
the chirp delays larger than 2π can be detected as well. Furthermore, the chirp’s auto-
correlation gives a more distinct peak as seen in Figures 4 and 5. Sending the pilot
with a high and constant amplitude will ease the amplitude estimation and hopefully
overpower most of the noise. By assuming reciprocity for the channel, the pilot only
has to be sent from the two terminals instead of all the units in the MIMO array. The
output of the constructPilot() function will be a vector with samples to be sent.

TSKS05
LIPS Design Specification

10

Zero Forcing 2015-11-23

Figure 5: Auto-correlation of a chirp signal.

3.5 Spectral Analyser
The Spectral Analyser module will be responsible for estimating and plotting the power
spectral density and sound intensity at the terminals. The main purpose of the module
is testing and validation of input/output.

3.5.1 Implementation

The module will take the signal and the frequency with which it was sampled as input
and output the main frequency component of the signal. Plots can also be created by
setting the relevant flags.

The main frequency component will be calculated using the Fast Fourier Transform
(FFT) to transform the signal to the frequency domain and then locate the maximum
and convert the found index to the corresponding frequency.

3.6 MIMO
This module will combine the results from the Channel Estimator with the data from the
Channel Coder according to a MIMO-combining technique, in this case Zero-Forcing,
in order to send signals to each terminal. The output will be the time signals for each
L/M-unit in the MIMO array. An overview of this setup is depicted in figure 6.

3.6.1 Implementation

The implementation of this module consists of a main function and a help function
used to perform necessary matrix calculations.

MIMOCombining()

Performs MIMO combination with Zero-Forcing on input data. Returns a vector with
signals for each L/M-pair.

Listing 8: Pseudo code for the MIMOCombining() function
function [MIMOComplexVec] = MIMOCombining(complexVec, channelEstimationMatrix

)
W = calculatePseudoInverse(channelEstimationMatrix)
MIMOComplexVec = W*complexVec

end

TSKS05
LIPS Design Specification

11

Zero Forcing 2015-11-23

Figure 6: Overview of MIMO system with Zero Forcing.

Y = HWX , where (6)
H = Channel,
W = Pseudo Inverse of estimated channel
X = Input vector,
Y = Output vector,

We want to realize that the received signal Y equals our sent signal X at each ter-
minal as in equation 6. Assuming no noise on the channel and that we have the true
channel estimation matrix we can precode our input vector X by multiplying it by the
inverse W of the channel estimation matrix which is given by equation 7.

W = H∗(HH∗)−1 (7)

Then we get our precoded vector WX which yields Y = HWX = X at the the re-
ceiving terminals.

However we have noise on our channel which gives us an imperfect channel esti-
mation matrix. So a better representation of our situation is given by equation 8 where
H is multiplied by the pseudo-inverse of estimated H. In the implementation of zero-
forcing we will use our imperfect channel estimation matrix like if it were the true
channel estimation matrix.

Y = HĤ∗(ĤĤ∗)−1X (8)

We also have to consider the hardware limitations on the amplitude of the signals
which will restrict the amplitudes we can send from the sender. This will further com-
plicate the calculation of a perfect pseudo-inverse.

TSKS05
LIPS Design Specification

12

Zero Forcing 2015-11-23

3.7 Channel Coder
The Channel Coder will produce symbols to send to the terminals. This includes func-
tions for generating data, error-control, modulation, demodulation and decoding.

3.7.1 Implementation

The block structure of what the Channel Coder will do can be seen in Figure 7. Here
you can see the general flow of the different functions and data types, how to go from
an original bit stream to an actual output signal to send to the different speakers. The
different variables in the figure are:

• n: amount of bits in the created bit vector

• R: efficiency of the error control code

• m: number of symbols in the symbol constellation

• t: number of samples/symbol

The different functions (except MIMOCombining() which can be found under
Section 3.6) are described further under this section.

Figure 7: Overview over the flow of data from creation to sending.

TSKS05
LIPS Design Specification

13

Zero Forcing 2015-11-23

createBitStream()

Creates a random bitstream consisting of ones and zeros, given the size of the wanted
bit vector.

Listing 9: Pseudo code for the createBitStream() function
function [bitVec] = createBitStream(bitLength)

...
end

errorControl()

Extends the bits given by the data generation with extra redundancy for error control.
Aim is to go for something simple, for example Hamming code, and get something that
works.

Listing 10: Pseudo code for the errorControl() function
function [errControlBitVec] = createBitStream(bitVec)

...
end

mapToSymbols()

Maps a bit vector to a symbol vector. The symbols are expressed as complex values
which represent amplitude and phase shift of the carrier signal. The modulation tried
at first will be BPSK.

Listing 11: Pseudo code for the mapToSymbols() function
function [complexVec] = modulate(bitVec)

% read m bits
% map them to a complex value using an m-ary constellation

...
end

upConvert()

This function up converts the complex symbols given as input into an actual signal
represented by discrete samples. Input is a complex symbol vector and output will be
a vector of discrete samples.

Listing 12: Pseudo code for the upConvert() function
function [sampleVec] = upConvert(complexVec)

%map each symbol into a set of discrete samples representing one waveform

TSKS05
LIPS Design Specification

14

Zero Forcing 2015-11-23

%output a vector of discrete samples representing a signal
...

end

\paragraph{demodulate()}
Using an appropriate detector scheme to retrieve bits given a received wave-

form.

\begin{lstlisting}[caption={Pseudo code for the \texttt{demodulate()}
function}, label={lst:demodulate}]

function [demodBitVec] = demodulate(receivedSampleVec)
% correlate received signal with possible sent signals.
% pick the best one as the sent symbol
% translate into bit block
...

end

decode()

Decodes the error controlled bit vector to a clean bit vector with no redundancy bits.

Listing 13: Pseudo code for the decode() function
function [decodedBitVec] = decode(codedBitVec)

...
end

calcErrorRate()

Inputs the sent as well as the received bit vector and checks the error rate.

Listing 14: Pseudo code for the getErrorRate() function
function [errorRate] = calcErrorRate(origBitVec, recBitVec)

...
end

3.8 User Interface
The User Interface will be the user’s main way of running the program and modify its
behaviour. The idea is to build upon the previous project’s command line tool running
in the MATLAB console. Through the interface the user should be able to modify some
of the parameters controlling the execution of the program.

3.9 Operating System and Drivers
In order to control the L/M-units the A/D and D/A card used by previous project will be
used this year too. These uses PCI-connections and are controlled using their respective
Windows drivers. The drivers are accessed from MATLAB by use of an add-on called

TSKS05
LIPS Design Specification

15

Zero Forcing 2015-11-23

Figure 8: The computer back panel with A/D and D/A slots. [6, Fig. 2]

"Data Acquisition Toolbox" (DAQ) as well as a MATLAB library called "MATLAB-
compliant Data Acquisition Library" (MLDAQ) [5]. We expect most of this to be in
place already from last year.

4 Hardware
The hardware from the previous project will not be altered and the description given
here is therefore heavily based on the technical report produced by the previous project
[5]. The hardware is only described to make this document complete but no develop-
ment will be done regarding the hardware.

The existing hardware consists of a computer, an A/D converter, a D/A converter,
a distribution box and L/M-pairs. All these entities are described in this chapter. An
overview of the hardware is given in Figure 1.

4.1 Computer
A computer is an electronic device for manipulating information or data, which can be
stored, retrieved and processed. The model of the computer used in the project is a Hp
Compaq Elite 8300 running Windows 7 as its operating system.

4.2 L/M pairs
A L/M unit is a modified loudspeaker that can also act as a microphone. The L/M
unit can operate either as a loudspeaker or a microphone based on the input from the
user. A L/M pair is a set of two L/M units in which one is a master unit and the other
a slave unit. The system has 8 L/M pairs and one of these pairs is depicted in Figure
9. The master unit is made of an original amplifier board and an additional detection
board designed by Mikael Olofsson. The detection makes it possible for the L/M pair
to operate as both loudspeaker and a microphone. The 9-pole D-sub connector (DB-9)
mounted on top of the master unit serves as interface for signal to, or from, the L/M
pair. The power supply to the L/M pair is done through the USB cable, connected to
the wall via a USB adapter.

TSKS05
LIPS Design Specification

16

Zero Forcing 2015-11-23

4.3 A/D and D/A converters
An A/D converter is an electronic circuit used to convert an electrical signal into bi-
nary numbers to be used in a digital controller (computer). A D/A converter circuit is
used to convert binary numbers to analog voltage or current. One A/D converter (Con-
tec AD12-64) and one D/A converter (Contec DA12-16) are attached to the computer
motherboard through PCI slots to ensure the communication between the computer and
the distribution box. With the help of the internal sample clock in each card, resolution
of 12V and highest conversion speed of 100 kilosamples/s are attained for both con-
verters. The voltage levels for both converters are in the interval [-10, 10] V. Of the 64
analog input channels only 16 are used in the product. The A/D converter also has 4
digital inputs and 4 digital outputs for TTL level signals (Transistor-Transistor-Logic).
In the product only two of the digital outputs of the A/D converter are utilized and these
are responsible for switching between the two operation modes of the L/M pairs.

Figure 9: The L/M pair and the master unit from different angles. [6, Fig. 6]

4.3.1 Detection Board

Microphone mode operation for the L/M pair is possible by means of the detection
board. When the L/M pair is working in this mode the circuit amplifies the audio
signals received using a differential-in-differential-out amplifier with a voltage gain
of 23 dB. Thereafter, the amplified signals are forwarded to the collection board for
further amplification.

Figure 10: Detection board. [5, Fig. 3]

TSKS05
LIPS Design Specification

17

Zero Forcing 2015-11-23

4.3.2 Maxxtro Mini Speaker 4W

A master loudspeaker and a slave loudspeaker constitute the main parts of the L/M pair.
Both speakers, joint by a stereo cable of length 0.3m, are supplied 5V by the USB cable
of 1m length connected to an adapter. The adapter, called Euro-USB-laddare, has the
stock number 25-249-98 at ELFA. The USB cable and volume controller are attached
only to the master loudspeaker.

Figure 11: Overview of the L/M master unit. [5, Fig. 7]

4.4 Distribution Box
The distribution box depicted in Figure 12 works as a hub and distributes the signals
between the computer and the L/M pairs. It has 11 connections: eight for the L/M
pairs, one for the A/D and D/A converters respectively and a power supply connection.
For the purpose of letting the user choose which control group a L/M pair is part of the
distribution box also has a control board consisting of eight physical switches.

Figure 12: The Distribution Box. [6, Fig. 3]

TSKS05
LIPS Design Specification

18

Zero Forcing 2015-11-23

4.5 Limitations on available hardware
Limitations on the hardware available from the previous project are presented below in
the different sections.

4.5.1 Sampling frequency

The maximum sampling frequency that can be used for the A/D and D/A converter is
100 kHz. These 100 kHz are divided among all channels in use. Thus, when all 16 L/M
units are in use the maximum sampling frequency is limited to 6250 Hz in theory. But
the sampling frequency is fixed to certain values so in practice the maximum sampling
frequency is 6024 HZ.

4.5.2 Data transmission

The limit of the amount of data that can be put through the D/A engine is limited to 250
000 samples, which translates to about 2.5 seconds of continuous sound, when using a
sampling frequency of 6024 Hz and 16 channels.

4.5.3 A/D converters

The A/D converter has a voltage range of [-10,+10] V. However the power supply can
deliver voltages in the interval [-11,11] V which means that the A/D converter can be
damaged by a too high sound level from the loudspeakers.

TSKS05
LIPS Design Specification

19

Zero Forcing 2015-11-23

References
[1] Tomas Svensson, Christian Krysander, Projektmodellen LIPS. Studentlitteratur,

2011.

[2] D. Rife and R. Boorstyn, Single-tone parameter estimation from discrete-time ob-
servations, IEEE Transactions on Information Theory, vol. 20, no. 5, pp. 591–598,
1974.

Unpublished References:

[3] Mikael Karlsson et al., Project Plan. ISY, Linkoping University, 2015.

[4] Mikael Karlsson et al., Requirement Specification. ISY, Linkoping University,
2015.

[5] Fredrik Stenmark et al., Technical Report. ISY, Linkoping University, 2014.

[6] Fredrik Stenmark et al., User Manual. ISY, Linkoping University, 2014.

[7] Fredrik Stenmark et al., Project Plan. ISY, Linkoping University, 2014.

TSKS05
LIPS Design Specification

20

	Introduction
	MIMO
	Beamforming
	The Project
	Aim and goals
	Definitions

	Overview of the System
	Validation of the Existing System

	Software
	General Implementation of the Modules
	Controller
	Implementation

	Calibration
	Implementation

	Channel Estimator
	Implementation

	Spectral Analyser
	Implementation

	MIMO
	Implementation

	Channel Coder
	Implementation

	User Interface
	Operating System and Drivers

	Hardware
	Computer
	L/M pairs
	A/D and D/A converters
	Detection Board
	Maxxtro Mini Speaker 4W

	Distribution Box
	Limitations on available hardware
	Sampling frequency
	Data transmission
	A/D converters

	References

