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Goals
To get an overview of the DSP toolbox for MATLAB. Use the DSP toolbox to simulate
signal flow graphs and investigate the scaling and overflow problems using finite word
length. Compute precedence graphs and investigate the effect of pipelining.

Guidelines
Write proper code for the labs. For example, it should not be required to comment code
in/out when showing it to the lab assistants. The Matlab editor has a quite good code
alignment button. It is possible to use sections in the Matlab code by starting a line with
%%. Pressing ctrl + will execute the code in the current section.

Preparations
1. Read Chapters 3–5 in Wanhammar, DSP Integrated Circuits.

2. Read “Introduction to the DSP toolbox” below.

Online Mode
Use Teams and the team “TSTE87 2021VT Application-Specific Integrated Circuits”
to communicate with the lab assistants.

To work remotely, follow the instructions below. A good ssh-client for Windows
is MobaXTerm, https://mobaxterm.mobatek.net/.

1. Log in to LiU using ThinLinc or SSH (see link on Lisam page), do NOT use
RDP
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2. Log in to a computer in Muxen 1 or 2 using ssh with compression and X-
forwarding:
ssh -XC muxenY-0ZZ.ad.liu.se
where Y is 1 or 2 and ZZ in 01 to 16

Introduction to the DSP toolbox
The DSP toolbox provides a way of manipulating and simulating signal flow graphs,
and functions to evaluate properties of signal flow graphs. The signal flow graph can
later on be turned into a computational graph (where the operations have related timing
information) for synthesis of architectures.

Signal flow graph (SFG) creation

The signal flow graph (SFG) is constructed by adding operations connected to nodes, as
in, e.g., the circuit simulator SPICE. In MATLAB the SFG is represented as an array.
However, there are functions for manipulating the SFG, so there is no need to have an
in-depth knowledge about the format. An initial SFG is obtained using an empty matrix

sfg = []

To add an operation, the function addoperand can be used as follows

sfg = addoperand(sfg, operandname, id-number, innodes, outnodes,
operanddata, operandtype)

where sfg is the SFG to add the operand to, operandname is the name of an operand (see
Appendix for available operands), id-number is an identifying number for the operation,
innodes is one or more nodes to connect to the input(s), outnodes similarly for the
output(s), operanddata is an optional data for certain operations (e.g. the coefficient
for a multiplier or WDF adaptor), while operandtype is used for certain operands which
may have several different types (e.g. different types of quantization). More on possible
operanddata and operandtype are available in the Appendix.

To see how we can create an SFG, let us use the simple filter below, where we have
numbered the nodes 1 to 4. Each operand also has an identifying number, but as only
operands of the same type must have different numbers all operands are using 1 as the
identifying number.

To create the corresponding SFG we can use the following MATLAB code

sfg = [];
sfg = addoperand(sfg, ’in’, 1, 1);
sfg = addoperand(sfg, ’add’, 1, [1 2], 3);
sfg = addoperand(sfg, ’delay’, 1, 3, 4);
sfg = addoperand(sfg, ’constmult’, 1, 4, 2, 0.5);
sfg = addoperand(sfg, ’out’, 1, 4);



To obtain the SFG in readable form we can use the command printsfg as

printsfg(sfg)

which will give an output of

1. in id: 1 out: 1
2. add id: 1 in: 1, 2 out: 3
3. delay id: 1 in: 3 out: 4
4. constmult id: 1 in: 4 out: 2 coeff: 0.5
5. out id: 1 in: 4

Always make sure that the created SFG is valid, i.e., that no nodes have multiple
drivers and no dangling (unconnected) nodes are included, by using the function

errorlist = checknodes(sfg)

For a correct SFG the result, errorlist, is empty, otherwise a description of the error(s)
is printed at the prompt.

Simulation

Now, we would like to simulate the SFG. For this the function simulate is available. In
its simplest form it is used as

output = simulate(sfg, inputvalues)

where inputvalues is the sequence of samples to be used as input.
Two commonly used input data are an impulse and random data (uniformly dis-

tributed on the interval [−1, 1]) which can be obtained as

impulse = [1, zeros(1,N-1)]
random = 2*rand(1,N)-1

In its most complex form simulate is used as

[outputs, outputids, delays, delayids, nodes, nodeids] =
simulate(sfg, inputvalues, inputids, initialdelays, delayids, wordlength)

where it has support for multiple inputs and outputs, initializing delay elements, and
tracking values in delay elements and nodes. If the wordlength input value is specified,
the simulation will use finite word lengths for the nodes. The wordlength input can be
either [Wi Wf], where Wi denotes the number of integer bits and Wf fractional bits, or
Wf, where it is assumed that Wi is 1. Note that initialdelays and delayids can be set
to an empty vector [] if they are not needed, but you want to set the word length.

The outputs variable contains a 2D array, where each row contains the output values
of the output with identifying number given at the same row of outputids. Similarly,
delays-delayids and nodes-nodeids have the same structure. To obtain the values of
a certain output/delay/node the function getnodevalues can be used as

values = getnodevalues(outputs, outputids, outputidentifier)
values = getnodevalues(delays, delayids, delayidentifier)
values = getnodevalues(nodes, nodeids, nodenumber)



The functions impulseresponse and stepresponse are available for computing the im-
pulse response and step response, respectively. They are used as

output = impulseresponse(sfg, numberofsamples)

where numberofsamples is the number of samples of the impulse response to be com-
puted.

SFG modification

For scaling and pipelining purposes it is possible to insert a single input-single output
operation at a node. This is done with insertoperand as

sfg = insertoperand(sfg, operandname, idnumber, node, operanddata,
operandtype)

To insert a pipeline delay at the input of our previous SFG we would type

sfg = insertoperand(sfg, ’delay’, 2, 1)

Note that insertoperand adds a new node to the SFG for the input of the new operand.
For the case when a node is connected to more than one destination operands and

the new operand should only be connected to one of the destination operands, there is a
longer form available as

sfg = insertoperand(sfg, operandname, idnumber, node, operanddata,
operandtype, destinationoperandname,
destinationidnumber, destinationinputnumber)

where destinationoperandname and destinationidnumber is the name and id of the
operand to insert the new operand before. destinationinputnumber is the sequential
input number, a two-input adder has two inputs: 1 and 2, of the operand that the new
operand should be connected to. However, this is only needed when a node is connected
to more than one input of an operand and the new operand should only be inserted to
one of the inputs. If the new operand does not have operanddata or operandtype, just
leave and empty array [] for those arguments.

If you need to change the SFG further, you can use the functions removeoperand
(opposite to addoperand) or changeoperand, which are used as

sfg = removeoperand(sfg, operandname, idnumber)
sfg = changeoperand(sfg, operandname, idnumber, operanddata, operandtype)

There is also one function to replace a single input-single output operation with a short
circuit, i.e., the opposite to insertoperand. It is used as

sfg = deleteoperand(sfg, operandname, idnumber)

Some operations, e.g., butterflies and adaptors, are composed of lower level operations
(additions and multiplications). It is possible to transform these operations to the lower
level operations using the function flattensfg, which is used as

flatsfg = flattensfg(sfg)



Precedence form

To see the precedence relations between operands there are two functions available,
printprecedence and plotprecedence. Both functions takes an SFG as input.

Executing printprecedence(sfg) to the example SFG with an inserted delay yields
the following output

-----------------------------------------------------
1.1 in id: 1 out: 1
-----------------------------------------------------
2.1 constmult id: 1 in: 4 out: 2 coeff: 0.5
2.2 out id: 1 in: 4
-----------------------------------------------------
3.1 add id: 1 in: 5, 2 out: 3
-----------------------------------------------------
4.1 delay id: 1 in: 3 out: 4
4.2 delay id: 2 in: 1 out: 5
-----------------------------------------------------

The functions printprecedence and plotprecedence also returns an SFG sorted in
precedence order.

Generating an image of the SFG

To more easily see and identify the new node numbers after flattening or inserting new
operands, there is a command dotsfgplot to generate an image of the SFG. This is
based on the graph drawing toolkit Graphwiz, so this must be available. In its simplest
form, the command can be executed as

dotsfgplot(sfg)

Invoked in this form, the program shows the generated .eps-file (as it currently invokes
gv you may want to select “pixel-based” in the scaling menu to make it look better). It
can also be invoked as

filename = dotsfgplot(sfg)

where the name of the generated file is returned for external viewing.
It is also possible to generate a .dot-file for further modifications as

filename = dotsfgplot(sfg, ’dot’)

where now the name of the .dot-file is returned.
Since automatically drawing graphs in a “nice” way is a fundamentally hard problems,

there are a few different ways to draw graphs provided by Graphviz. It may be worthwhile
trying:

dotsfgplot(sfg, ’eps’, ’neato’)

to use the neato command or

dotsfgplot(sfg, ’eps’, ’fdp’)



to use fdp.
Finally, it is possible to provide a filename (the correct extension is automatically

added) as (with default settings)

dotsfgplot(sfg, ’eps’, ’dot’, ’myfilename’)

The result can be seen below for the default setting. As can be seen, the edges
include the node numbers and there is an indication which input of the operation (where
applicable) a specific node is connected to.

Input 1 Delay 2
1

Addition 1

Delay 13
4

Constant multiplication 1

Value: 0.5

2 (I: 2)

Output 1

5 (I: 1)

Tasks
Never execute commands at the prompt. Instead, write all the commands in a textfile
and run that file. You will have to use some of the functions in the Signal Processing
Toolbox, e.g., freqz.

1. Start MATLAB and add the path to the DSP toolbox in MATLAB. This can be
done using

addpath /courses/TSTE87/matlab/

To save the path for later laboratory works you can use savepath

2. Simulate and plot the impulse response of the example in “Introduction to the DSP
toolbox” above. stem is a good function for plotting discrete signals. Also plot
the frequency response (hint: use freqz for a long impulse response). The SFG is
available in the file

/courses/TSTE87/labs/lab1/introduction.m

(a) Give the exact value of all samples in the impulse response that are larger than
0.1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) What type of filter is this (lowpass, highpass, bandpass, or bandstop)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



3. Consider the following second-order direct form II IIR filter, where a0 = a2 = 57/256,
a1 = 55/128, b1 = 179/512, b2 = −171/512. The objective is to study the precedence
relations, to scale the filter, and to study effects of overflow.

T

T

x(n) y(n)a0

b1

b2

a1

a2

(a) Number the nodes and operations and create the signal flow graph.

(b) Print and plot the precedence graph.

(c) Simulate the filter using an impulse.

(d) What is the passband edge? Amax = 1.023 dB

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) How large is the stopband attenuation? ωsT = 0.88π rad

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(f) Plot the discrete values of all interesting nodes.

(g) Identify nodes that are possibly badly scaled under the safe scaling criteria, i.e.,
critical nodes where the sum of absolute node values are greater than one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(h) Scale all critical nodes using safe scaling only using power-of-two scaling coeffi-
cients. Indicate where you introduce scaling.

(i) Simulate the filter again. Are the nodes correctly scaled? What is the sum of
the absolute node values in the critical nodes?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(j) How does scaling affect the magnitude response?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(k) Simulate the original and scaled filters using the same random data for both.
Use 1 integer bit and 15 fractional bits. Compare the discrete outputs



by plotting them in the same figure with different markers, e.g., ’x’ and ’o’,
respectively (use hold on to plot several plots in the same figure). Comments?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. In this problem we consider a WDF based on first- and second-order allpass sec-
tions using symmetric two-port adaptors as shown below. The coefficients are α0 =
167/256, α1 = −135/256, α2 = 1663/2048, α3 = −1493/2048, α4 = 669/1024,
α5 = −117/128, α6 = 583/1024.

(a) Number the nodes and operations and create the signal flow graph. The inputs
and outputs of the symmetric two-port adaptor are related and numbered as
shown below. Note that the position of the adaptor coefficient, α0, denotes
which input to be subtracted.

Alternatively, the SFG can be automatically generated by
sfg = sfg_LWDF(coeff)
where coeff is a vector containing the adaptor coefficients in order as
coeff = [alpha0, alpha1, ..., alpha6]
Using this approach means that you will have to figure out the node numbers of
the interesting nodes on your own.

(b) Simulate the filter using an impulse and check the values of all interesting nodes.
Comments?



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Plot the phase-response of the two allpass branches in the same plot. The
command angle determines the phase of the frequency response, which can be
obtained as output from freqz. Alternatively, phasez can be used to directly
obtain the phase response from the impulse response.

(d) How large is the difference in phase in the pass- and stopband?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Scale the filter using L2-scaling (only use power-of-two scaling coefficients). In-
dicate where you introduce scaling. Note that all four sections should have as
large dynamic range as possible.

(f) Simulate the scaled filter. What is the value of the L2-sum in the different nodes?
Are the nodes correctly scaled? How can you verify that the filter function is
not changed?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(g) Simulate the scaled filter with a random input. Comments? Can overflow occur
in any node?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(h) Introduce a pipelining delay in each branch and compare the output with the
non-pipelined SFG. Comments?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i) Plot the precedence graph for the pipelined SFG.

(j) Flatten the SFG and plot the precedence graph.



Appendix

The following operations are available and can be used as an input to addoperand:
operandname Description Operation
’in’ Input of SFG, one output node.
’out’ Output of SFG, one input node.
’add’ Addition of two inputs y1 = x1 + x2
’sub Subtraction of the second input from the

first input.
y1 = x1 − x2

’constmult’ Multiplication with constant coefficient
operanddata.

y1 = operanddata× x1

’delay’ Delay element delaying the signal one sam-
ple.

’quant’ Quantization to operanddata fractional
bits. Uses operandtype: ’truncation’,
’rounding’, or ’magnitudetruncation’.

’overflow’ Overflow detection. Uses operandtype:
’twosc’ or ’saturation’.

’negate’ Multiplication by −1. y1 = −x1
’shift’ Shift by operanddata bits. Direction

controlled by operandtype: ’left’ or
’right’.

’twoport’ Two-port WDF adaptor with coeffi-
cient operanddata. Uses operandtype:
’series’, ’parallel’, or ’symmetric’.

’threeport’
’fourport’

’butterfly2’ Radix-2 butterfly operation. y1 = x1 + x2
y2 = x1 − x2

’constdiv’ Division with constant coefficient
operanddata.

y1 =
x1

operanddata

’mux’
’demux’
’constmac’ Multiply-add with constant coefficient

operanddata.
y1 = x1 ×
operanddata+ x2

’mult’ Two-input multiplication. y1 = x1 × x2

’division’ Two-input division. y1 =
x1
x2

’reciprocal’ Reciprocal operation. y1 =
1

x1
’mac’ Multiply-add. y1 = x1 × x2 + x3
’constant’ Constant value. y1 = operanddata
’addsub’ Addition or subtraction depending on

operandtype: ’add’ or ’sub’.
y1 = x1 ± x2

’conjugate’ Complex conjugate. y1 = x∗1
’abs’ Absolute value. y1 = |x1|
’max’ Maximal value. y1 = max{x1, x2}
’min’ Minimal value. y1 = min{x1, x2}
’sqrt’ Square root. y1 =

√
x1

’recipsqrt’ Reciprocal square root. y1 =
1√
x1

’square’ Square. y1 = x21


