

Specification Test Make sure the scenarios given in the specification is correct Build an executable specification Hencelly requires modeling of the environment of

5

lı.v

7

lı.u

kent.palmkvist@liu.se http://www.isy.liu.se/edu/kurs/TSTE:

kent.palmkvist@liu.se http://www.isy.liu.se/edu/kurs/TSTE17

Implementation Test

Department of Electrical Engineering Linköping University

Department of Electrical Engineering Linköping University

- Find manufacturing errors
- Needs to be inexpensive
 - Few testpatterns

TSTE17 System Design, CDIO Kent Palmkvist

TSTE17 System Design, CDIO Kent Palmkvist

18

I.U

Adaptive Modulation

52

I.U

- Previous systems all designed for worst case channels
- If we know the channel, we can reduce power or increase data rates when the channel is good
- Change power, modulation, constellation size, and/or coding rate/scheme depending on channel
- Requires good channel estimates in the receiver that is sent with low latency to the transmitter

rtment of Electrical Engineering Linköping University kent.palmkvist@liu.se http://www.isy.liu.se/edu/kurs/TSTE

TSTE17 System Design, CDIO Kent Palmkvist

TSTE17 System Design, CDIO Kent Palmkvist

54 Alternatives to OFDM • Want to use wide band for communication • High datarates • Problem caused by multipath channels • Fading • Narrow-band interference • OFDM solved these problems by using multiple carriers

Department of Electrical Engineering Linköping University

DS CDMA Properties

64

I.U

- Coded signal is easy to generate
- Carrier Generator easy to implement (single carrier)
- No synchronisation among users

TSTE17 System Design, CDIO Kent Palmkvist

• Difficult to aquire and maintain synchronization

kent.palmkvist@liu.se http://www.isy.liu.se/edu/kurs/TSTE1

 Synchronization error << chip time and nonavailable continous frequency bands => practical bandwidth limit 10-20 MHz

> tment of Electrical Engineering Linköping University

66 **Frequency Hopping** • Transmitter and Receiver structures Up-Down-Data Baseband Data converte demodula Synchr. tracking Code Frequency Code Frequency synthesize generato TSTE17 System Design, CDIO Kent Palmkvist Department of Electrical Engineering LU Linköning University

Frequency Hopping Properties

68

I.U

- Time synchronization easier than for DS-CDMA
- Frequency bands used in the hop sequence can be non-continous
- Better near-far performance

TSTE17 System Design, CDIO Kent Palmkvist

- Low probability to have multiple users transmitting on the same frequency band
- Requires a sophisticated frequency synthesizer
- Coherent demodulation difficult (phase reference difficult to maintain)

kent.palmkvist@liu.se http://www.isy.liu.se/edu/kurs/TSTE

ent of Electrical Engineering nköping University

<page-header><list-item><section-header><list-item><list-item><list-item><list-item><list-item><table-container>

