2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8

Agenda

* Practical issues

* Hardware description
- FPGA

* HDL based design

2022-09-15

2

LINKOPING
UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 3

TSTE12 Deadlines Y,D,ED

* Final version of design sketch and project plan this week

- Show implementation ideas, show sequence of
implementation and task partitioning between group
members

* Weekly meetings should start
- Internal weekly meeting with transcript sent to supervisor

* Lab 2 results will be checked after the project ends

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 4

TSTE12 Deadlines MELE, erasmus

* Final requirement specification this week

* Wednesday 21 September 21.00: Lab 2 soft deadline
- Lab 2 results will be checked after project completed

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15

Handin (homework), Individual!

* 1**handin deadline Monday 19 September 23:30

* Use only plan text editor (emacs, vi, modelsim or similar) for code entry.
* Solve tasks INDIVIDUALLY

* Submit answers using Lisam assignment function

— 4 different submissions for code, one for each code task
— 1 submission for all theory question answers
* Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15

Hardware overview

» Detailed description of Hardware

« Standard parts
- TTL (SSI, MSI LSI)
- Memories, microprocessors, I/O

« ASIC (Application Specific Integrated Circuit)

- Integrated circuit that has been produced for a specific application and
(often) produced in small numbers

- Memories and microprocessors are general application devices

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 7

ASIC technologies

« May use different technologies for ASIC: PLD, Gate array, FPGA,
Standard cell, custom. ASIC is however limited to Standard cell
and gate array. Custom design is also used.

* CMOS switch. Power consumption: P ~ CV*f

- Use low power supply, reduce clock, reduce area

» Transistor channel length (old measure of chip manufacturing
process) shorter than 0.01 um (so called 5 nm used today, e.g.
TSMC N5 process in Ryzen 7000 series CPUs, 4 nm in Apple
A16 Bionic in Iphone 14)

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 8

Gate array, mask programmable

1V Metal
» Predefined pattern of transistors g P Diffusion Strip
- Add interconnect metal for each Poly GateS(ouT
design > N Diffusion Strip
- Fast manufacture (weeks)
[1 Vs Metal

il

- No transistor sizing

 Example shows inverter design

cells
- Basic gates, flipflops etc.

[
» Combined with library of existing :
[
[

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 9

Standard cell

» Transistor placement and
metal layers unique for |
. no ion
each design, needs to be canmeciign nefal2 cj"““’

10 power

;
manufactured pads meR ==

terrr}ina| vSS VDD

to power
pads

* Limited number of layout
cell types (Cell library)

* Cells already
characterized

 Slow manufacture

(month) metal row's of standard cells Lwd
LINKOPING
II." UNIVERSITY
TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 10

Full custom layout

* Full custom
- Individual placement and scaling of transistors
- Full control of wires and connections
- Maximum control, maximum effort

 Complete freedom to place and route transistors
- Not limited to existing logic style/library
- Slow manufacture (months)
- Higher performance than standard cells

* Requires more testing (simulation)

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8

Programmable devices: PLD

2022-09-15 11

B> 2128
* Input variables forming o e e
AND-OR arrays, flipflops = %jﬁi In
at the outputs. NN et
- Crosspoint can connect to 0250 i
create products % oLmMc L
a0 XOR-2049
« Inputs and outputs on B sH AC1-2121 |——
hi 0512 Ot
chip edge % oLMc L
. dOnly small circuit i3 5 Acraize |
esigns
v

TSTE12 Design of Digital Systems, Lecture 8

Programmable devices: CPLD

e Combine PLD structure
with additional onchip
interconnect

- Support larger designs

JTAG Port {

3
JTAG
e |~

2022-09-15 12

In-System Programming Controller

T 1
Function
o K — 18 Block 1
Macrocells
Vo K= 1t0 18
1o . F——— ¢ T T
3 E 54
. 5 Function
. = 18, Block 2
é Macrocells
] H 11018
° Blocks =
1o K F—— 5 ¢ T T
o
1o K F—— z % Function
o 18 Block 3
Y — S Macrocells
& 11018
o K —— S
: o fH
o/eek K= 54 =
unction
I/0/GSR K> 18 Block N
2ord Macrocells
110/GTS K 7 I 1to0 18
ososs o1_oszoor

Fiqure 1: XC9500XL Architecture

LINKOPING
UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8

FPGA structure |

I:l

[

» Field Programmable Gate

Il
]
A
]

2022-09-15 13

0000 ooooooooooo

100 HHHHHHHHHDHH“
] DDD%DD

1l
]
N
|

|:|E|

o= _ UL =9

Array = : [0 o00Ord ¢ e
» Cells in an array, special I/O §§ : DD DDDDUI—IDD : %ﬁ
blocks around t%e]gdges. §§ DDDDDD DDDDDD EE

* Between cells (CLBs or LEs) g% = DDDDDDDDDDDD = %g
are routing wires located o= & DDEQDDDDEDDD =
(interconnect) E% S %%HHE%%%HH%E 3 %g
B =8

C =

v

TSTE12 Design of Digital Systems, Lecture 8

FPGA building blocks

« CLB/Logic Element

2022-09-15 14

- Different name in different manufacturers designs
- In many cases are they based on lookup tables (i.e., no simple gates,

instead more advanced functions) => less need

for routing channels (that

are expensive). Lookup table can be viewed as a small RAM or a MUX

with fixed inputs.

- Trade off between big lookup tables and utilization. Optimal around 4-6

bits address.
- Often a flip-flop included in the CLB/LE

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8

2022-09-15 15

CLB Example: Xilinx (AMD) Spartan Il

* Choose positive or negative

clock edge

* May combine lookup tables

* CLB may be rearranged into
a memory or shift register

13 Teble

4
Look-Up

2

8

Yo

X8

L«

xQ

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8

Xilinx Spartan Il I/0O logic

« Support multiple
I/O standards

- 3.3V, 1.8V, 1.2V etc.

- Differential

 Flipflops located
close to pin

- Reduce delays due
to routing signal to
pin

« Different drive
strength

CLK

TCE

SR

OCE

ICE

j_l

2022-09-15 16

Veeo

I\os

VCC

Packagel
Pin

Programmable

Bias & Package Pin
ESD Network

;

Programmable
Delay

{

Programmable
Output Buffer

Programmable

Input Buffer

Internal
Reference

—F

/O, VRer
|—< Package Pin »

To Next I/0

External Vggg Inputs

DS001_02_090800

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 17

Other FPGA example: Altera (intel)
Cyclone

« Same basic structure

- Logic Array
EPL1C3

- Separate I/O blocks
- Dedicated memory Logic Array .
- PLL for internal clock Block
generation PLL
D— [0 ES

LINKOPING
II." UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 18

Altera (Intel) Cyclone

Register chain
routing from

« Logic element structure -

Synchronous
LAB Cary-In
L5 Load Pogamiab

- More detailed description oo Samm o S e
Clear LUT chain

" routing to next LE

- One Lookup table + ng_> lv\r v

one flipflop T
data2 —— W Look-Up | Synchronous H and Directlink
detas —a Table gﬁ;’% Load and L routing

wn | Clear Lngic
datad |

. Row, olurnn,
and DirectLink
L routing

[y ap—
b k2 — L
labprefaload ——gm| ClearPresatf Local Reuting

Chipide | Lowd Logic
Reset

» Reuister ¢hain

[TClcks] Fegider routing to next LE
[k Ensble | Feeatark
Gelect
labelk1
fabek —— |
Ilabekena —L> j ‘
lebikenal el J Camy-0uto
= cary-Outt

L @ LeBCam-Ou

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 19
Alternative FPGA structure: Actel
(Microsemi) NEINENTEEEEE
Horizontal P c £R| 2y X ” c|c ‘FR—‘ Output Track
) Tracks |.u\mF <x [Rx] | fi1],°*
 Smaller functions B 1L A 9
« Separate register from . e e e e L3 It
combination logic - il
D1 D3 B (L m m T
\;’ 3 Y
9 =h
A
Iwses,
TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 20

Programming of FPGA

« Two types: reprogrammable or
one-time programmable

* Control a CMOS-switch using a
RAM/EPROM/EEPROM-cell. The
CMOS switch is slow (compared
to the alternative)

» The alternative is fuse/Antifuse
(burn together two wires by
using high voltage)

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 21

Important aspects

* Speed of the switched (impedance, capacitans). Many switches
in series ruins the performance

 Reprogrammable? Needs any design changes to be done?

* Volatile designs? What happens at power failure? How is the
design put into the chip? How long delay from power on to
working design?

» Area of the switches? Needs many switches?

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 22

Technology comparison table

. Most SRAM Antifuse EPROM EEPROM/FLASH
0St common Volatile yes no no no
- SRAM Re-programmable yes no yes yes
_ Chip area large small small average
EEPROM/FLASH R (routing nets) large small large large
« Xilinx/Altera C large small large large
- SRAM/EEPROM
» Actel
- Antifuse

- Do also create classic FPGA (SRAM/EEPROM based)

SRAM based FPGA usually support automatic configuration from
serial flash memory at power-on

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

How to configure the FPGA

* Non-volatile technology
- FLASH, EEPROM, PROM, etc.

« External programmer
- Software on PC to program device

External ROM/FLASH
- Standard FLASH
- Serial FLASH

Embedded microcontroller
- Boot application configures FPGA
- Not possible if flash needed for CPU operation

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 24

FPGA configuration, cont.

« Large volumes may use non-programmable devices based on
FPGA
- Resynthesize: may give different behavior
- Strip FPGA: Remove configuration logic

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8

FPGA hardware options

» Multipliers

« DSP blocks
- Multiply-ackumulate
- Common operation in DSP
- High precision (> 20 bits)

* Optimized I/O support
- Differential signaling
- Low swing/current steering

2022-09-15

25

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8

FPGA hardware options, cont.

e Clock circuits

- Phase locked loops (PLL), Delay locked loops (DLL)

- Clock tree distribution

e Serializer/deserializer

- Support modern PC bus standards such as PCI Express

2022-09-15

- Dedicated block to send/recieve high speed (> Gbit/s) serial data

- Reduce number of I/O pins

26

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 27

FPGA hardware options, cont.

A/D and D/A converters
Memory units

- CPU
- e.g., physical powerpc or ARM core inside FPGA

- Usually combined with external memory interfaces and CPU-based I/O
support (e.g. wired ethernet, SD-card reader etc.)

Alternative to dedicated CPU hardware: soft cpu
- VHDL design of a processor
- Allows for modification of processor structure

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 28

ASIC vs FPGA

« ASIC have a large NRE cost

- Non-Recurring Engineering cost, price of 1st unit
* FPGA have large per unit cost

» Selection of technology depend on
- Performance requirements
- Number of units
- Time to market

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15

HDL based design

* Structured design using HDL
« FSM descriptions

29

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15

Example: Combination logic

* Binary comparison. Compare two two-bit words
- GE: Greater or equal

- LE: Less or equal Ny —> N
- E: Equal N, —> ——> LE
0 S
- G: Greater M, CoM g
- L: Less
My —> ——> L
entity COM is

generic (D:time);
port (N1, NO, M1, MO: in BIT,
GE, LE, E, G, L: out BIT);
end COM,;

30

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8

Descriptions

« ROM

- Table lookup

use work. TRUTH4x5.all;
architecture TABLE of COM is
begin

process (N1,NO,M1,MO0)

variable INDEX: INTEGER;

2022-09-15 31

package TRUTH4X5 is
constant NUM_OUTPUTS: INTEGER:=5;
constant NUM_INPUTS: INTEGER:=4;
constant NUM_ROWS: INTEGER:= 2 ** NUM_INPUTS;
type WORD is array(NUM_OUTPUTS-1 downto 0) of BIT;
type ADDR is array(NUM_INPUTS-1 downto 0) of BIT;
type MEM is array (0 to NUM_ROWS-1) of WORD;
constant TRUTH: MEM :=
("11100", "01001", "01001", "01001",
"10010", "11100", "01001", "01001",
"10010", "10010", "11100", "01001",
“10010", "10010", “10010", *11100");
function INTVAL(VAL:ADDR) return INTEGER;
end TRUTH4x5;

Ni— {43 D4 —— GE variable WOUT: WORD; package body TRUTH4x5 is
No——az 16x5 D3= LE pegin function INTVAL(VAL: ADDR) return INTEGER is
%1—— Al pow DilM— @ INDEX := INTVAL (N1&NO&M1&MO); variable SUM: INTEGER:=0;
o A0 DO— I WOUT := TRUTH (INDEX); begin
: GE <= WOUT(4) after D; for N in VAL'LOW to VAL'HIGH loop
LE <= WOUT(3) after D; if VAL(N) = '1' then
E <= WOUT(2) after D; SUM := SUM + (2 ** N);
G <= WOUT(2) after D; end if;
L <=WOUT(0) after D; end loop;
end process; return SUM;
end TABLE; end INTVAL;
end TRUTH4x5;
LINKOPING
ll.ll UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8

Descriptions, CASE statement

* One multiplexer

for each output

architecture MUX of COM is

2022-09-15 32

begin
prgocess(Nl,No,Ml,Mo) when "1000" => GE <="1' after D; LE <="0" after D;
N M. M begin E <="0" after D; G <="1" after D; L <="0" after D;
1707170 case N1&NO&M1&MO is when "1001" => GE <= '1' after D; LE <= '0' after D;
| | ; | when "0000" => GE <=1 after D; LE <= "1 after D; E <=0 after D; G <="1" after D; L <="0" after D;
ASAZALAO E <='1" after D; G <="'0' after D; L <="0" after D; when "1010" => GE <="1" after D; LE <="1' after D;
1 DO when "0001" => GE <="'0" after D; LE <="1" after D; E <='1"after D; G <='0" after D; L <="0" after D;
0 D1 E <='0' after D; G <='0' after D; L <="'1' after D; when "1011" => GE <="'0' after D; LE <="1" after D;
0 Dz 16 x 1 when "0010" => GE <='0' after D; LE <="'1' after D; E <='0" after D; G <="0" after D; L <= '1" after D;
(1) Bi’ MUX E <="'0' after D; G <='0' after D; L <="'1' after D; when "1100" => GE <="1' after D; LE <='0' after D;
1 D5 when "0011" => GE <="'0" after D; LE <="1' after D; E <="'0' after D; G <='1' after D; L <= "'0" after D;
0——D6 E <='0" after D; G <='0' after D; L <="1" after D; when "1101" => GE <="1" after D; LE <= '0' after D;
0 —— D7 Mb——GE when "0100" => GE <="'1' after D; LE <= '0' after D; E <="0" after D; G <="1" after D; L <="0" after D;
} Bg E <='0" after D; G <="'1' after D; L <='0' after D; when "1110" => GE <="1" after D; LE <="'0' after D;
1 D10 when "0101" => GE <= '1' after D; LE <= '1' after D; E <='0' after D; G <=1 after D; L <= 0" after D;
0 D11 E <='1" after D; G <="'0' after D; L <="0" after D; when "1111" => GE <="1" after D; LE <="1" after D;
1 D12 when "0110" => GE <='0' after D; LE <= "'1' after D; E <="1' after D; G <="'0" after D; L <="0" after D;
} g%i E <="'0' after D; G <="'0' after D; L <="1' after D; end case;
1 D15 when "0111" => GE <= '0" after D; LE <="'1" after D; end process;
E <='0" after D; G <='0" after D; L <="'1"' after D; end MUX;
LINKOPING
Ilo“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8

Descriptions, improved CASE

architecture MUX3 of COM is

2022-09-15 33

begin
process (N1, NO, M1, MO)
« Remove one variable in the D L ANOEML is
1 when "000" => GE <= not MO after D; LE <= "'1' after D;
selectlon Of the case E <= not MO after D; G <='0" after D; L <= MO after D;
Statement when "001" => GE <="0" after D; LE <="1' after D;
E <='0" after D; G <="'0" after D; L <="1' after D;
o U h d . b]. when "010" => GE <="1" after D; LE <= MO after D;
se t € removed varila e E <= MO after D; G <= not MO after D; L <="'0" after D;
: when "011" => GE <="'0" after D; LE <="1' after D;
as OutpU't Value or 1ts E <="'0' after D; G <="'0" after D; L <="1' after D;
1 when "100" => GE <="1" after D; LE <="'0" after D;
imnverse E <="0' after D; G <="1" after D; L <="0' after D;
. when "101" => GE <= not MO0 after D; LE <="1" after D;
e More Va]f'lableS can be E <= not MO after D; G <="'0" after D; L <= MO after D;
when "110" => GE <="1' after D; LE <="'0' after D;
removed E <="'0" after D; G <='1' after D; L <="'0' after D;
.. when "111" => GE <="1' after D; LE <= MO after D;
- Increase 10g1C in front of E <= MO after D; G <= not MO after D; L <="0" after D;
multiplexer end case;
end process;
end MUX3;

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 34

Hardware, improved Case statement

* One mux plus inverter

Mo
« Every output have its own N NgMy
multiplexer (same as for non- | | ’
improved case statement) AZA1AO
0
0——D1
1—D2
o—— 3 S X1l op
1 —D4 ypy
D5
1— D6
1 —D7

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 35
P t n t |] n

* Rewrite expressions, sharing common subexpression
- E= GE AND LE
- G = GE AND NOT LE
- L =LE AND NOT GE

« That is, two expressions followed by simple generation of E, G,
and L

» Designer makes logic synthesis instead of tool
- Synthesis tool may still modify description

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 36

Two-level logic

* Many different choices
 Can be described as structure

architecture POSDF of COM is
signal Z1,Z0: BIT;
begin
Z1 <= (not NO or M1 or M0) and (not N1 or M1) and
(not N1 or not NO or MO);
Z0 <= (N1 or NO or not M0O) and (N1 or not M1) and
(NO or not M1 or not MO);
LE <= Z1 after D;
GE <= 70 after D;
E <= 71 and Z0 after D;
G <= Z0 and not Z1 after D;
L <= Z1 and not ZO0 after D;
end POSDF;

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design

of Digital Systems, Lecture 8

Structural description

architecture TWO_LEVEL_OR_AND of COM is

signal 210,211,712,700,Z01,Z02: BIT;
signal NOBAR,N1BAR,MOBAR,M1BAR: BIT;
signal Z0,Z1,ZONOT,Z1INOT: BIT;
component NOT2G

generic (D: TIME);

port (I: in BIT; O: out BIT);
end component;

for all: NOT2G use entity NOT2(BEHAVIOR);

component AND2G

generic (D: TIME);

port (11, 12: in BIT; O: out BIT);
end component;
for all: AND2G use entity AND2(BEHAVIOR);
component AND3G

generic (D: TIME);

port(11,12,13: in BIT; O: out BIT);
end component;
for all: AND3G use entity AND3(BEHAVIOR);
component OR2G

generic (D: TIME);

port(11,12: in BIT; O: out BIT);
end component;
for all: OR2G use entity OR2(BEHAVIOR);
component OR3G

generic (D: TIME);

port (11,12,13: in BIT; O: out BIT);
end component;
for all: OR3G use entity OR3(BEHAVIOR);
component WIREG

begin
C1: NOT2G

generic map (2 ns)

port map (NO, NOBAR);
C2:NOT2G

generic map (2 ns)

port map (N1, N1BAR);
C3: NOT2G

generic map (2 ns)

port map (MO, MOBAR);
C4: NOT2G

generic map (2 ns)

port map (M1, M1BAR);
C5: OR3G

generic map (2 ns)

port map (NOBAR, M1, MO, Z10);
C6: OR2G

generic map (2 ns)

port map (N1BAR, M1, Z11);
C7: OR3G

generic map (2 ns)

port map (N1BAR, NOBAR, MO, Z12);
C8: AND3G

generic map (2 ns)

port map (210, Z11, 212, Z1);
C9: OR3G

generic map (2 ns)

port map (N1, NO, MOBAR, Z00);

2022-09-15 37

C10:0R2G

generic map (2 ns)

port map (N1, M1BAR, Z01);
C11:0R3G

generic map (2 ns)

port map (NO, M1BAR, MOBAR, Z02);
C12:AND3G

generic map (2 ns)

port map (200, Z01, Z02, Z0);
C13:NOT2G

generic map (2 ns)

port map (Z1, ZINOT);
C14:NOT2G

generic map (2 ns)

port map (Z0, ZONOT);
C15:AND2G

generic map (2 ns)

port map (Z0, Z1, E);
C16:AND2G

generic map (2 ns)

port map (Z0, ZINOT, G);
C17:AND2G

generic map (2 ns)

port map (Z1, ZONOT, L);
C18:WIREG

port map (20, GE);
C19: WIREG

port map (Z1, LE);
end TWO_LEVEL_OR_AND;

LINKOPING
Il.u UNIVERSITY

TSTE12 Design

Finite state machines (FSM)

port(i—im Bi T, O out BIT);
end component;
for all: WIREG use entity WIRE(BEHAVIOR);

of Digital Systems, Lecture 8

« Example: serial/parallel converter
- Aindicates start of data
- Output Z only during one clock cycle
(055G [[O Y B OO I A

R

A —

D —>

CLK

4
ﬁ% 7
STOP

entity STOP is
port (R, A, D, CLK: in BIT;

Z: out BIT_VECTOR(3 downto 0);

DONE: out BIT);

end STOP;

——> DONE

2022-09-15 38

R[]

A —

D L
DONE [
7041 B

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 39
n
FSM design, cont.

» First: Select type of state machine (Moore, Mealy)
- Moore machine have stable output after a few gate delays

- Moore machine can not produce output dependent on current input
values

- Moore machine may require more states than Mealy machines

- Mealy machine may sometimes be required due to direct respons from
FSM on input signal change

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 40

FSM Design, cont.

« Second: Create a state diagram. Good start is reset-state SO.
- S1: First data on D, Done=0, Z unspecified
- S2: Second data on D, Done =0, Z unspecified
- S3: Third data on D, Done = 0, Z unspecified
- S4: Fourth data on D, Done = 0, Z unspecified
- S5: Outputon Z, Done=1
- In S5 can A also be 1 (indicating new data)
* Next clock cycle must take care data, i.e., use S1 without passing through SO

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 41

FSM state diagram

* Some tools can translate state diagram automatically to VHDL
(e.g., HDL Designer)

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 42

Alternate desription

 Transition list

Textual description of the FSM

Useful for large state diagrams

Graphs become hard to understand when number of states increase
Possible to cope with complexity by use of hierarchy

Current Transition Next Data Output

State |Expression State Transfers

SO R+A SO None DONE=0, Z unspecified

SO R&A S1

S1 R S2 Store bit 1 [DONE=0, Z unspecified

S1 R SO

S5 R&A s1 None DONE=1, Z=parallel data out
S5 R+A SO

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8

FSM description in VHDL

architecture FSM_RTL of STOP is
type STATE_TYPE is (SO, S1, S2, S3, S4, S5);
signal STATE: STATE_TYPE;
signal SHIFT_REG: BIT_VECTOR (3 downto 0);

begin

STATE: process (CLK)
begin
if CLK="1' then
case STATE is
when S0 =>
-- Data Section
-- Control Section
if R="1"' or A="0" then
STATE <= S0;
elsif R='0"' and A="1' then
STATE <= S1,
end if;
when S1 =>
-- Data Section
SHIFT_REG <= D & SHIFT_REG(3 downto 1);
-- Control Section
if R='0" then

when S2 =>
-- Data Section
SHIFT_REG <= D & SHIFT_REG(3 downto 1);
-- Control Section
if R="0" then
STATE <= S3;
elsif R="1' then
STATE <= SO0;
end if;
when S3 =>
-- Data Section
-- Shift in the third bit
SHIFT_REG <= D & SHIFT_REG(3 downto 1);
-- Control Section
if R="0" then
STATE <= S4;
elsif R="1' then
STATE <= SO;
end if;
when S4 =>
-- Data Section
-- Shift in the fourth bit
SHIFT_REG <= D & SHIFT_REG(3 downto 1);
-- Control Section

STATE <= S2; i '0"
|) if R='0" then
elsif R="1" then
then STATE <= S5;
SJAfTE <= S0; elsif R="1" then
end if; STATE <= S0;
end if;

2022-09-15 43

when S5 =>
-- Data Section
-- Control Section
if R='0" and A="1" then
STATE <= S1,
elsif R="1" or A='0' then
STATE <= S0;
end if;
end case;
end if;
end process STATE;

OUTPUT: process (STATE)
begin
case STATE is
when SO to S4 =>
DONE <="0";
when S5 =>
DONE <="1";
Z <= SHIFT_REG;
end case;
end process OUTPUT,
end FSM_RTL;

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8

State machine partitioning

» State machines partitioned into multiple processes

- Updating (clocked), i.e., the state register

- Next state calculation
- Output calculation

* May find different combinations of these

- Single process

- Two processes (nextstate + output, state update)
- Three processes (nextstate, output, state update)

* Multiple processes to avoid creating Mealy instead of Moore

machine

2022-09-15 44

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 45

State assignment

« States are not coded in VHDL
- Use enumeration
+ Allows synthesis tools do a better work
- Powerful computer algorithms usually find better state assignment
- Possible to control state minimisation and assignment in synthesis tool
* E.g. one-hot encoding may be more suitable in same cases

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 8 2022-09-15 46

Alternative description: table based

« Small statemachine, one input X and one output Z
» Code the state table as an array with nextstate and output

entity TWO_CONSECUTIVE is
port(CLK,R,X: in BIT; Z: out BIT);
end TWO_CONSECUTIVE;

- begin
architecture FSM of TWO_CONSECUTIVE is process(R,X,CLK,FSM_STATE)
type STATE is (S0,S1,S2); begin
signal FSM_STATE: STATE := SO; if R ='0" then -- Reset
type TRANSITION is record FSM_STATE <= S0;
OUTPUT: BIT; elsif CLK'EVENT and CLK ='1' then -- Clock event
NEXT_STATE: STATE; FSM_STATE <= STATE_TRANS(FSM_STATE,X).NEXT_STATE;
end record; end if;
type TRANSITION_MATRIX is array(STATE,BIT) of TRANSITION; if FSM_STATE'EVENT or X’EVENT then -- Output Function
constant STATE_TRANS: TRANSITION_MATRIX := Z <= STATE_TRANS(FSM_STATE,X).OUTPUT;
(S0 => (‘0" => ('0",S1), '1' => ('0",S2)), end if;
S1=>(0"=>(1,S1),'1 =>(0,S2)), end process;
S2 => ('0'=> ('0",S1), '1' => ('1',S2))); end FSM;

LINKOPING
II.“ UNIVERSITY

2022-09-14 14:59

