
SOLUTIONS. Exam August 25, 2009

TSTE08 Analog and Discrete-time Integrated Circuits.

Exercise 1.

a) As the small signals Vgs2 = 0 and Vbs2 = 0 we can sketch following SSEC:
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Figure 1: Amplifier. Small-signal analysis. Small-signal equivalent circuit

KCL in node D1 gives: (Note that rds = 1/gds)

(Vout − 0)(gds2 + sCL) + Vds1gds1 + gm1Vgs1 + gmbs1Vbs1 = 0 (1)

SSEC also gives: Vds1 = Vout − Vin and Vgs1 = −Vin.

Because bulk is grounded Vbs1 = 0 − Vin.

(1) now gives:

Vout(gds2 + sCL) + (Vout − Vin)gds1 − gm1Vin − gmbs1Vin = 0 (2)

(2) gives H(s):

H(s) =
Vout(s)

Vin(s)
=

gm1 + gmbs1 + gds1

gds1 + gds2 + sCL
=

gm1 + gmbs1 + gds1

gds1 + gds2
·

1

1 + sCL

gds1+gds2

(3)

s = 0 in (3) gives DC gain A0:

A0 =
gm1 + gmbs1 + gds1

gds1 + gds2

b) Setting the voltage source at the input to zero, i.e. replaceing it with a short-circuit,

and introduceing Vout and Iout at the output (see Figure 2) gives rout = Vout

Iout
. (OBS!

Vbs1 = 0 now.)

Apparently, from Figure 2, also Vgs1 = 0 whereby gm1Vgs1 = 0, and so

rout = rds1//rds2 =
rds1rds2

rds1 + rds2
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Figure 2: Small-signal equivalent circuit for determing rout.

Exercise 2.
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Figure 3: Folded casacode stage.

KVL: Vout + VSD2 − VDS1 = 0 ⇒ Vout = VDS1 − VSD2 (4)

VSD2 = VSG2 − Vtp (5)

VSG2 = VS2 − VG2 = VDS1 − Vbias (6)

(5), (6) ⇒ VSD2 = VDS1 − Vbias − Vtp (7)

(4), (7) ⇒ Vout = VDS1 − (VDS1 − Vbias − Vtp) = Vbias + Vtp (8)

Choosing Vbias = Vin − Vtp gives Vout = Vin which was to be proved.
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Exercise 3.

In Figure 4 VDSi, VGSi and IDi; i = 1 − 9 have been introduced. For determing CMR =
[Vin,min, Vin,max] and OR = [Vout,min, Vout,max] we notice that, when all nMOS transistors are

saturated, VDSi,min = Veffi = VGSi − Vtni =
√

IDi

αi
and corresponding VGSi =

√

IDi

αi
+ Vtni.

Corresponding for pMOS-transistors.

Notice that VDSi,min − VGSi = −Vtni, for nMOS-tansistors, and VSDi,min − VSGi = −Vtpi for

pMOS-transistors. Vtpi as well as Vtni are positive.

When gate and source are connected VDSi = VGSi =
√

IDi

αi
+ Vtni.

Corresponding for pMOS transistors.
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Figure 4: Transistor circuit.

– To determine Vin,min compare all different paths from ground to Vinn and from ground to

Vinp. I.e. Vin,min will be the maximum of following two expressions:

VDS5,min + VGS1 =
√

ID5

α5

+
√

ID1

α1

+ Vtn1

VDS5,min + VGS2 =
√

ID5

α5

+
√

ID2

α2

+ Vtn2

(9)

– To determine Vin,max compare all paths from VDD to Vinn and from VDD to Vinp. I.e. Vin,max

will be the minimum of following four expressions:

VDD − VSG3 − VDS1,min + VGS1 = VDD −
√

ID3

α3

− Vtp3 + Vtn1

VDD − VSG3 − VDS1,min + VGS2 = VDD −
√

ID3

α3

− Vtp3 −
√

ID1

α1

+
√

ID2

α2

+ Vtn2

VDD − VSD4,min − VDS2,min + VGS2 = VDD −
√

ID4

α4

+ Vtn2

VDD − VSD4,min − VDS2,min + VGS1 = VDD −
√

ID4

α4

−
√

ID2

α2

+
√

ID1

α1

+ Vtn1

(10)
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– To determine Vout,min compare all different paths from ground to Vout. Here we have actu-

ally just one way from VDD to Vout; via M9 and M8. I.e.:

Vout,min = VDS9,min + VDS8,min =

√

ID9

α9

+

√

ID8

α8

(11)

– To determine Vout,max compare all paths from VDD to Vout. Here we have actually just one

way from VDD to Vout; via M6 and M7. I.e.:

Vout,max = VDD − VSD6,min − VSD7,min = VDD −

√

ID6

α6

−

√

ID7

α7

(12)

Answer:

CMR=[max of expressions (9) above, min of expressions (10) above]

OR=
[√

ID9

α9

+
√

ID8

α8

, VDD −
√

ID6

α6

−
√

ID7

α7

]

b) The circuit is a OTA (Operational Transconductance Amplifier) that consists of a Differ-

ential gain stage cascaded wih a Common souce amplifier with cascodes. The cascode

transistors M7 and M8 are included in the Common souce stage to get higher gain. Actually

the output conductance will decreas because of M7 and M8 and lower output conductance

(higher output resistance) gives higher gain.

Exercise 4.
Figure 5a) gives a small-signal equivalent circuit, including noise-sources. (OBS! Rn =
V 2

n (f))
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Figure 5: a) A small-signal equivalent. b) Equivalent circuit for determing output noise spectral

density

As the noise sources are uncorrelated the output noise spectral density can be computed as
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Figure 5b) discribes, i.e. by the following formula

Rout(ω) = |H1(ω)|2|H2(ω)|2Rn1(ω) + |H2(ω)|2Rn2(ω) (13)

where H1(ω) is the transfer function for the first stage and H2(ω) the transfer function for

the second stage.

From Figure 5a) H1(s) = Vx(s)/Vin(s) and Vx(s) = −gm1Vin(s) · 1

gds1+sCgs2
which yiels

H1(s) = −
gm1

gds1 + sCgs2
⇒ H1(ω) = −

gm1

gds1 + jωCgs2
(14)

In the same way H2(s) is calculated to:

H2(s) = −
gm2

gds2 + sCL
⇒ H2(ω) = −

gm2

gds2 + jωCL
(15)

Equations (13)-(15) gives following spectral density of the output noise (here we also utilize

that gm1 = gm2 = gm and gds1 = gds2 = gds):

Rout(ω) = Rn1(ω)
g2

m

g2
ds + ω2C2

gs2

·
g2

m

g2
ds + ω2C2

L

+ Rn2(ω)
g2

m

g2
ds + ω2C2

L

(16)

Using that Rn1(ω) = Rn2(ω) = 8kT
3

1

gm
(from enclosed page of formulas) equation (16) gives:

Rout(ω) =
8kT

3
·

1

gm
·

g2
m

g2
ds + ω2C2

L

(

g2
m

g2
ds + ω2C2

gs2

+ 1

)

(17)

Which gives the answer:

Rout(ω) =
8kT

3
·

gm

g2
ds + ω2C2

L

(

g2
m

g2
ds + ω2C2

gs2

+ 1

)

(18)

Exercise 5

Rgz
−1/2 =

1
z1/2

Rg

(19)

Inserting z = ejωT in (19) gives

1
ejωT/2

Rg

=
1

cos ωT/2

Rg
+ j sin ωT/2

Rg

=
1

1

Rg

√

1 −
ω2

a

4s2

0

+ j ωa

2s0Rg

(20)

The last relation we got from ωa = 2s0 sin
ωT

2
⇒ sin

ωT

2
=

ωa

2s0

and cos
ωT

2
=

√

1 −
ω2

a

4s2
0

As the formula for two parallel impedances Z1 and Z2 can be written
1

1

Z1

+ 1

Z2

1

1

Rg

√

1 −
ω2

a

4s2

0

+ j ωa

2s0Rg

corresponds to parallel connection between Z1 =
Rg

√

1 −
ω2

a

4s2

0

and

Z2 =
1

j ωa

2s0Rg

.

As a capacitor Cx gives an impedance Z = 1

jωaCx
, deleting z−1/2 means that Rg changes to a

resistor R
′

g =
Rg

√

1 −
ω2

a

4s2

0

parallel to a capacitor Cx =
1

2s0Rg
. Quod est demonstrantum (QED)!
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As C1 in the analog reference filter is parallel to Rg we can compensate for that ”extra”

capacitor by changing C1 to

C
′

1 = C1 −
1

2s0Rg
(21)

Then the effective capacitance parallel to Rg after deleting z−1/2 still will be C1, as parallel

capacitors can be added.

To determine s0 so fc = 100 kHz when fac = 100 kHz and T = 1 µs we use the formula

ωa = 2s0 sin
ωT

2
which gives

s0 =
ωac

2 sin ωcT
2

=
2πfac

2 sin 2πfcT
2

=
2π105

2 sin 2π·105
·10−6

2

≈ 10.17 · 105 (22)

Answer: C
′

1 = C1 −
1

2s0Rg
and s0 ≈ 10.17 · 105
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