SOLUTIONS. Exam August 25, 2009
TSTE08 Analog and Discrete-time Integrated Circuits.

Exercise 1.

a) As the small signals $V_{g s 2}=0$ and $V_{b s 2}=0$ we can sketch following SSEC:

Figure 1: Amplifier. Small-signal analysis. Small-signal equivalent circuit
KCL in node D1 gives: (Note that $r_{d s}=1 / g_{d s}$)

$$
\begin{equation*}
\left(V_{o u t}-0\right)\left(g_{d s 2}+s C_{L}\right)+V_{d s 1} g_{d s 1}+g_{m 1} V_{g s 1}+g_{m b s 1} V_{b s 1}=0 \tag{1}
\end{equation*}
$$

SSEC also gives: $V_{d s 1}=V_{o u t}-V_{i n}$ and $V_{g s 1}=-V_{i n}$.
Because bulk is grounded $V_{b s 1}=0-V_{i n}$.
(1) now gives:

$$
\begin{equation*}
V_{\text {out }}\left(g_{d s 2}+s C_{L}\right)+\left(V_{\text {out }}-V_{\text {in }}\right) g_{d s 1}-g_{m 1} V_{\text {in }}-g_{m b s 1} V_{\text {in }}=0 \tag{2}
\end{equation*}
$$

(2) gives $H(s)$:

$$
\begin{equation*}
\underline{\underline{H(s)}}=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{g_{m 1}+g_{m b s 1}+g_{d s 1}}{g_{d s 1}+g_{d s 2}+s C_{L}}=\underline{\underline{\frac{g_{m 1}+g_{m b s 1}+g_{d s 1}}{g_{d s 1}+g_{d s 2}}} \cdot \frac{1}{1+\frac{s C_{L}}{g_{d s 1}+g_{d s 2}}}} \tag{3}
\end{equation*}
$$

$s=0$ in (3) gives DC gain A_{0} :

$$
\xlongequal{A_{0}=\frac{g_{m 1}+g_{m b s 1}+g_{d s 1}}{g_{d s 1}+g_{d s 2}}}
$$

b) Setting the voltage source at the input to zero, i.e. replaceing it with a short-circuit, and introduceing $V_{\text {out }}$ and $I_{\text {out }}$ at the output (see Figure 2) gives $r_{\text {out }}=\frac{V_{\text {out }}}{I_{\text {out }}}$. (OBS! $V_{b s 1}=0$ now.)

Apparently, from Figure 2, also $V_{g s 1}=0$ whereby $g_{m 1} V_{g s 1}=0$, and so

$$
\underline{\underline{r_{o u t}}=r_{d s 1} / / r_{d s 2}=\frac{r_{d s 1} r_{d s 2}}{r_{d s 1}+r_{d s 2}}}
$$

Figure 2: Small-signal equivalent circuit for determing $r_{\text {out }}$.

Exercise 2.

Figure 3: Folded casacode stage.

$$
\begin{gather*}
\mathrm{KVL}: V_{o u t}+V_{S D 2}-V_{D S 1}=0 \Rightarrow V_{o u t}=V_{D S 1}-V_{S D 2} \tag{4}\\
V_{S D 2}=V_{S G 2}-V_{t p} \tag{5}\\
V_{S G 2}=V_{S 2}-V_{G 2}=V_{D S 1}-V_{\text {bias }} \tag{6}\\
(5),(6) \Rightarrow V_{S D 2}=V_{D S 1}-V_{\text {bias }}-V_{t p} \tag{7}\\
(4),(7) \Rightarrow V_{o u t}=V_{D S 1}-\left(V_{D S 1}-V_{\text {bias }}-V_{t p}\right)=V_{\text {bias }}+V_{t p} \tag{8}
\end{gather*}
$$

Choosing $V_{\text {bias }}=V_{\text {in }}-V_{t p}$ gives $V_{\text {out }}=V_{\text {in }}$ which was to be proved.

Exercise 3.

In Figure $4 V_{D S i}, V_{G S i}$ and $I_{D i} ; i=1-9$ have been introduced. For determing $C M R=$ $\left[V_{\text {in, min }}, V_{\text {in, max }}\right]$ and $O R=\left[V_{\text {out }, \text { min }}, V_{\text {out }, \text { max }}\right]$ we notice that, when all nMOS transistors are saturated, $V_{D S i, \min }=V_{e f f i}=V_{G S i}-V_{t n i}=\sqrt{\frac{I_{D i}}{\alpha_{i}}}$ and corresponding $V_{G S i}=\sqrt{\frac{I_{D i}}{\alpha_{i}}}+V_{t n i}$. Corresponding for pMOS-transistors.
Notice that $V_{D S i, m i n}-V_{G S i}=-V_{t n i}$, for nMOS-tansistors, and $V_{S D i, m i n}-V_{S G i}=-V_{t p i}$ for pMOS-transistors. $V_{t p i}$ as well as $V_{t n i}$ are positive.
When gate and source are connected $V_{D S i}=V_{G S i}=\sqrt{\frac{I_{D i}}{\alpha_{i}}}+V_{t n i}$.
Corresponding for pMOS transistors.

Figure 4: Transistor circuit.

- To determine $V_{i n, \min }$ compare all different paths from ground to $V_{i n n}$ and from ground to $V_{i n p}$. I.e. $V_{i n, \min }$ will be the maximum of following two expressions:

$$
\begin{align*}
& V_{D S 5, \text { min }}+V_{G S 1}=\sqrt{\frac{I_{D 5}}{\alpha_{5}}}+\sqrt{\frac{I_{D 1}}{\alpha_{1}}}+V_{t n 1} \tag{9}\\
& V_{D S 5, \text { min }}+V_{G S 2}=\sqrt{\frac{I_{D 5}}{\alpha_{5}}}+\sqrt{\frac{I_{D 2}}{\alpha_{2}}}+V_{t n 2}
\end{align*}
$$

- To determine $V_{i n, \max }$ compare all paths from $V_{D D}$ to $V_{i n n}$ and from $V_{D D}$ to $V_{i n p}$. I.e. $V_{i n, \max }$ will be the minimum of following four expressions:

$$
\begin{array}{ll}
V_{D D}-V_{S G 3}-V_{D S 1, \text { min }}+V_{G S 1}= & V_{D D}-\sqrt{\frac{I_{D 3}}{\alpha_{3}}}-V_{t p 3}+V_{t n 1} \\
V_{D D}-V_{S G 3}-V_{D S 1, \text { min }}+V_{G S 2}= & V_{D D}-\sqrt{\frac{I_{D 3}}{\alpha_{3}}}-V_{t p 3}-\sqrt{\frac{I_{D 1}}{\alpha_{1}}}+\sqrt{\frac{I_{D 2}}{\alpha_{2}}}+V_{t n 2} \tag{10}\\
V_{D D}-V_{S D 4, \text { min }}-V_{D S 2, \text { min }}+V_{G S 2}= & V_{D D}-\sqrt{\frac{I_{D 4}}{\alpha_{4}}}+V_{t n 2} \\
V_{D D}-V_{S D 4, \text { min }}-V_{D S 2, \text { min }}+V_{G S 1}= & V_{D D}-\sqrt{\frac{I_{D 4}}{\alpha_{4}}}-\sqrt{\frac{I_{D 2}}{\alpha_{2}}}+\sqrt{\frac{I_{D 1}}{\alpha_{1}}}+V_{t n 1}
\end{array}
$$

- To determine $V_{\text {out }, \text { min }}$ compare all different paths from ground to $V_{\text {out }}$. Here we have actually just one way from $V_{D D}$ to $V_{o u t}$; via M9 and M8. I.e.:

$$
\begin{equation*}
V_{o u t, \text { min }}=V_{D S 9, \text { min }}+V_{D S 8, \text { min }}=\sqrt{\frac{I_{D 9}}{\alpha_{9}}}+\sqrt{\frac{I_{D 8}}{\alpha_{8}}} \tag{11}
\end{equation*}
$$

- To determine $V_{\text {out }, \text { max }}$ compare all paths from $V_{D D}$ to $V_{\text {out }}$. Here we have actually just one way from $V_{D D}$ to $V_{o u t}$; via M6 and M7. I.e.:

$$
\begin{equation*}
V_{o u t, \max }=V_{D D}-V_{S D 6, \min }-V_{S D 7, \min }=V_{D D}-\sqrt{\frac{I_{D 6}}{\alpha_{6}}}-\sqrt{\frac{I_{D 7}}{\alpha_{7}}} \tag{12}
\end{equation*}
$$

Answer:

CMR=[max of expressions (9) above, min of expressions (10) above]
$\overline{\underline{\mathrm{OR}}=\left[\sqrt{\frac{I_{D 9}}{\alpha_{9}}}+\sqrt{\frac{I_{D 8}}{\alpha_{8}}}, V_{D D}-\sqrt{\frac{I_{D 6}}{\alpha_{6}}}-\sqrt{\frac{I_{D 7}}{\alpha_{7}}}\right]}$
b) The circuit is a OTA (Operational Transconductance Amplifier) that consists of a Differential gain stage cascaded wih a Common souce amplifier with cascodes. The cascode transistors M7 and M8 are included in the Common souce stage to get higher gain. Actually the output conductance will decreas because of $\mathbf{M} 7$ and $\mathbf{M 8}$ and lower output conductance (higher output resistance) gives higher gain.

Exercise 4.

Figure 5a) gives a small-signal equivalent circuit, including noise-sources. (OBS! $R_{n}=$ $V_{n}^{2}(f)$)

a)

b)

Figure 5: a) A small-signal equivalent. b) Equivalent circuit for determing output noise spectral density

As the noise sources are uncorrelated the output noise spectral density can be computed as

Figure 5b) discribes, i.e. by the following formula

$$
\begin{equation*}
R_{\text {out }}(\omega)=\left|H_{1}(\omega)\right|^{2}\left|H_{2}(\omega)\right|^{2} R_{n 1}(\omega)+\left|H_{2}(\omega)\right|^{2} R_{n 2}(\omega) \tag{13}
\end{equation*}
$$

where $H_{1}(\omega)$ is the transfer function for the first stage and $H_{2}(\omega)$ the transfer function for the second stage.
From Figure 5a) $H_{1}(s)=V_{x}(s) / V_{i n}(s)$ and $V_{x}(s)=-g_{m 1} V_{i n}(s) \cdot \frac{1}{g_{d s 1}+s C_{g s 2}}$ which yiels

$$
\begin{equation*}
H_{1}(s)=-\frac{g_{m 1}}{g_{d s 1}+s C_{g s 2}} \Rightarrow H_{1}(\omega)=-\frac{g_{m 1}}{g_{d s 1}+j \omega C_{g s 2}} \tag{14}
\end{equation*}
$$

In the same way $H_{2}(s)$ is calculated to:

$$
\begin{equation*}
H_{2}(s)=-\frac{g_{m 2}}{g_{d s 2}+s C_{L}} \Rightarrow H_{2}(\omega)=-\frac{g_{m 2}}{g_{d s 2}+j \omega C_{L}} \tag{15}
\end{equation*}
$$

Equations (13)-(15) gives following spectral density of the output noise (here we also utilize that $g_{m 1}=g_{m 2}=g_{m}$ and $\left.g_{d s 1}=g_{d s 2}=g_{d s}\right)$:

$$
\begin{equation*}
R_{\text {out }}(\omega)=R_{n 1}(\omega) \frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{g s 2}^{2}} \cdot \frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}}+R_{n 2}(\omega) \frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}} \tag{16}
\end{equation*}
$$

Using that $R_{n 1}(\omega)=R_{n 2}(\omega)=\frac{8 k T}{3} \frac{1}{g_{m}}$ (from enclosed page of formulas) equation (16) gives:

$$
\begin{equation*}
R_{o u t}(\omega)=\frac{8 k T}{3} \cdot \frac{1}{g_{m}} \cdot \frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{g s 2}^{2}}+1\right) \tag{17}
\end{equation*}
$$

Which gives the answer:

$$
\begin{equation*}
R_{\text {out }}(\omega)=\frac{8 k T}{3} \cdot \frac{g_{m}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{g s 2}^{2}}+1\right) \tag{18}
\end{equation*}
$$

Exercise 5

$$
\begin{equation*}
R_{g} z^{-1 / 2}=\frac{1}{\frac{z^{1 / 2}}{R_{g}}} \tag{19}
\end{equation*}
$$

Inserting $z=e^{j \omega T}$ in (19) gives

$$
\begin{equation*}
\frac{1}{\frac{e^{j \omega T / 2}}{R_{g}}}=\frac{1}{\frac{\cos \omega T / 2}{R_{g}}+j \frac{\sin \omega T / 2}{R_{g}}}=\frac{1}{\frac{1}{R_{g}} \sqrt{1-\frac{\omega_{a}^{2}}{4 s_{0}^{2}}+j \frac{\omega_{a}}{2 s_{0} R_{g}}}} \tag{20}
\end{equation*}
$$

The last relation we got from $\omega_{a}=2 s_{0} \sin \frac{\omega T}{2} \Rightarrow \sin \frac{\omega T}{2}=\frac{\omega_{a}}{2 s_{0}}$ and $\cos \frac{\omega T}{2}=\sqrt{1-\frac{\omega_{a}^{2}}{4 s_{0}^{2}}}$
As the formula for two parallel impedances Z_{1} and Z_{2} can be written $\frac{1}{\frac{1}{Z_{1}}+\frac{1}{Z_{2}}}$
$\frac{1}{\frac{1}{R_{g}} \sqrt{1-\frac{\omega_{a}^{2}}{4 s_{0}^{2}}}+j \frac{\omega_{a}}{2 s_{0} R_{g}}}$ corresponds to parallel connection between $Z_{1}=\frac{R_{g}}{\sqrt{1-\frac{\omega_{a}^{2}}{4 s_{0}^{2}}}}$ and $Z_{2}=\frac{1}{j \frac{\omega_{a}}{2 s_{0} R_{g}}}$.
As a capacitor C_{x} gives an impedance $Z=\frac{1}{j \omega_{a} C_{x}}$, deleting $z^{-1 / 2}$ means that R_{g} changes to a resistor $R_{g}^{\prime}=\frac{R_{g}}{\sqrt{1-\frac{\omega_{a}^{2}}{4 s_{0}^{2}}}}$ parallel to a capacitor $C_{x}=\frac{1}{2 s_{0} R_{g}}$. Quod est demonstrantum (QED)!

As C_{1} in the analog reference filter is parallel to R_{g} we can compensate for that "extra" capacitor by changing C_{1} to

$$
\begin{equation*}
C_{1}^{\prime}=C_{1}-\frac{1}{2 s_{0} R_{g}} \tag{21}
\end{equation*}
$$

Then the effective capacitance parallel to R_{g} after deleting $z^{-1 / 2}$ still will be C_{1}, as parallel capacitors can be added.

To determine s_{0} so $f_{c}=100 \mathrm{kHz}$ when $f_{a c}=100 \mathrm{kHz}$ and $T=1 \mu$ s we use the formula $\omega_{a}=2 s_{0} \sin \frac{\omega T}{2}$ which gives

$$
\begin{equation*}
s_{0}=\frac{\omega_{a c}}{2 \sin \frac{\omega_{c} T}{2}}=\frac{2 \pi f_{a c}}{2 \sin \frac{2 \pi f_{c} T}{2}}=\frac{2 \pi 10^{5}}{2 \sin \frac{2 \pi \cdot 10^{5} \cdot 10^{-6}}{2}} \approx 10.17 \cdot 10^{5} \tag{22}
\end{equation*}
$$

Answer: $\underline{\underline{C_{1}^{\prime}=C_{1}-\frac{1}{2 s_{0} R_{g}} \text { and } s_{0} \approx 10.17 \cdot 10^{5}}}$

