SOLUTIONS. Exam March 16, 2009
TSEI05 Analog and Discrete-time Integrated Circuits.

Exercise 1.

First notice that, because of symmetri, current through M1, M3 and M5 as well as current trough M2, M4 and M6 will be $I_{D} / 2$.

- $\mathrm{CMR}=\left[V_{i n, \text { min }}, V_{\text {in, max }}\right]$.
$V_{i n, \text { min }}=V_{G S 6}+V_{G S 4}+V_{S D 1, \text { min }}-V_{S G 1}=V_{e f f 6}+V_{t n}+V_{e f f 4}+V_{t n}+V_{e f f 1}-\left(V_{e f f 1}+V_{t p}\right)$
$=\sqrt{\frac{I_{D}}{2 \alpha_{n}}}+\sqrt{\frac{I_{D}}{2 \alpha_{n}}}+2 V_{t n}-V_{t p}=2 \sqrt{\frac{I_{D}}{2 \alpha_{n}}}+2 V_{t n}-V_{t p}$
$V_{i n, \max }=V_{D D}-V_{S D 7, \text { min }}-V_{S G 2}=V_{D D}-V_{e f f 7}-\left(V_{e f f 2}+V_{t p}\right)=V_{D D}-\sqrt{\frac{I_{D}}{\alpha_{p}}}-\sqrt{\frac{I_{D}}{2 \alpha_{p}}}-V_{t p}=$
$=V_{D D}-(1+\sqrt{2}) \sqrt{\frac{I_{D}}{2 \alpha_{p}}}-V_{t p}$
- $\mathrm{OR}=\left[V_{\text {out }, \text { min }}, V_{\text {out }, \text { max }}\right]$.
$V_{\text {out }, \text { min }}=V_{G S 6}+V_{G S 4}+V_{S D 1, \text { min }}-V_{S D 2, \text { min }}=V_{e f f 6}+V_{t n}+V_{e f f 4}+V_{t n}+V_{e f f 1}-V_{e f f 2}$
$=\sqrt{\frac{I_{D}}{2 \alpha_{n}}}+V_{t n}+\sqrt{\frac{I_{D}}{2 \alpha_{n}}}+V_{t n}+\sqrt{\frac{I_{D}}{2 \alpha_{p}}}-\sqrt{\frac{I_{D}}{2 \alpha_{p}}}=2 \sqrt{\frac{I_{D}}{2 \alpha_{n}}}+2 V_{t n}$
$V_{o u t, \max }=V_{D D}-V_{S D 7, \text { min }}-V_{S D 1, \text { min }}-V_{G S 4}+V_{D S 4, \text { min }}=V_{D D}-V_{e f f 7}-V_{e f f 1}-\left(V_{e f f 4}+\right.$ $\left.V_{t n}\right)+V_{e f f 4}=V_{D D}-\sqrt{\frac{I_{D}}{\alpha_{p}}}-\sqrt{\frac{I_{D}}{2 \alpha_{p}}}-V_{t n}=V_{D D}-(1+\sqrt{2}) \sqrt{\frac{I_{D}}{2 \alpha_{p}}}-V_{t n}$

Figure 1: Amplifier.

Answer:

Answer:
CMR $=\left[2 \sqrt{\frac{I_{D}}{2 \alpha_{n}}}+2 V_{t n}-V_{t p}, V_{D D}-(1+\sqrt{2}) \sqrt{\frac{I_{D}}{2 \alpha_{p}}}-V_{t p}\right]$
$\xlongequal{\text { OR }=\left[2 \sqrt{\frac{I_{D}}{2 \alpha_{n}}}+2 V_{t n}, V_{D D}-(1+\sqrt{2}) \sqrt{\frac{I_{D}}{2 \alpha_{p}}}-V_{t n}\right]}$

Exercise 2.

a) Figure 2 shows a small signal equivalent. As the bias current sources (I_{01} and I_{02}) are ideal they will be replaced by open circuits in the small signal equivalent circuit.
Notice that the current through $g_{d s 2}$ must be $g_{m 2} V_{g s 2}$. Then the current through $g_{d s 1}$ must be $g_{m 1} V_{i n}$. (Also the current through $g_{d s 3}$ must be $g_{m 3} V_{g s 3}$.)

Figure 2: Small signal equivalent.
From the small signal equivalent circuit we get:
$V_{\text {out }}=V_{d s 2}+V_{g s 3}=-\frac{1}{g_{d s 2}} g_{m 2} V_{g s 2}-\frac{1}{g_{d s 1}} g_{m 1} V_{\text {in }}$
$V_{g s 2}=V_{G 2}-V_{S 2}=V_{G 2}-V_{G 3}=-\frac{1}{g_{d s 3}} g_{m 3} V_{g s 3}-V_{g s 3}=-V_{g s 3}\left(1+\frac{g_{m 3}}{g_{d s 3}}\right)$
$V_{g s 3}=-\frac{1}{g_{d s 1}} g_{m 1} V_{i n}$
Equations (1)-(3) gives:
$V_{\text {out }}=\left(\frac{g_{m 2}}{g_{d s 2}}\left(1+\frac{g_{m 3}}{g_{d s 3}}\right)+1\right)\left(-\frac{g_{m 1}}{g_{d s 1}} V_{\text {in }}\right)$
Assuming that $g_{m} \gg g_{d s}$ equation (4) gives the transfer function:
$\xlongequal{H(s)=\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m 1}}{g_{d s 1}} \cdot \frac{g_{m 2}}{g_{d s 2}} \cdot \frac{g_{m 3}}{g_{d s 3}}}$
b) As $g_{m} \propto \sqrt{\frac{W}{L} I_{D}}$ and $g_{d s} \propto \frac{I_{D}}{L}$ we get from equation (5):
$H=K \cdot \frac{\sqrt{\frac{W_{1}}{L_{1}} I_{01}} \cdot \sqrt{\frac{W_{2}}{L_{2}} I_{01}} \cdot \sqrt{\frac{W_{3}}{L_{3}} I_{02}}}{\frac{I_{01}}{L 1} \cdot \frac{I_{01}}{L 2} \cdot \frac{I_{02}}{L 3}}$
As all $L_{i}=L$ equation (6) can be written:
$H=K \cdot \frac{\frac{\sqrt{W_{1} W_{2}}}{L} \cdot I_{01} \cdot \sqrt{\frac{W_{3}}{L} I_{02}}}{\frac{I_{01}^{2}}{L^{2}} \cdot \frac{I_{02}}{L}}=\frac{\sqrt{W_{1} W_{2} W_{3} L^{3}}}{I_{01} \sqrt{I_{02}}}$
Answer: $f=\frac{\sqrt{W_{1} W_{2} W_{3} L^{3}}}{I_{01} \sqrt{I_{02}}}$

Exercise 3.

A: M1 forms current mirrors together with M5, M7 and M9, giving the gainstages B, C and \mathbf{D} appropriate current. The current through M10 can be changed by changing $R_{\text {offchip }}$.

B: Forms a differential gain-stage. Gives the OP-amp. high input resistans. Gives also high gain.
C: M6 and M7 forms a common source stage (CS-stage), giving high voltage gain.
Capacitor C_{c} is a feed-back capacitor that increases phase-margin. (Compensation capacitor.)

D: M8 and M9 forms a common drain stage (CD-stage) giving low output resistans to the OP-amp. (The CS-stage has a high ouput resistans, which means that excluding stage D we have an OTA, but in an OP-amp. we want low output resistans.)

Exercise 4.

To determine the spectral density $R_{\text {out }}$ on the output, caused by flicker noise at the gate of transistor M2, you first have to determine the transfer function from G2 to output. I.e. you have to determine $H(\omega)=V_{\text {out }} / V_{\text {sg2 }}$ when $V_{\text {in }}$ is short-circuited. Then you introduce the noise source between G2 and S2.
If the flicker noise has spectral density R_{n} then $R_{\text {out }}=|H(\omega)|^{2} R_{n}$.

Figure 3: Small signal equivalent circuit.
As $V_{\text {in }}=0, g_{m 1} V_{\text {in }}=0 . V_{\text {out }}$ then can be written

$$
V_{o u t}=g_{m 2} V_{s g 2} \cdot \frac{1}{g_{d s 1}+g_{d s 2}} \Rightarrow H=\frac{V_{o u t}}{V_{s g 2}}=\frac{g_{m 2}}{g_{d s 1}+g_{d s 2}}
$$

From the formulas at page 7 we have: $R_{n}=\frac{K_{2}}{W_{2} L_{2} C_{o x 2} f}$
Thus

$$
\text { Answer: } \xlongequal{R_{\text {out }}(f)=\frac{g_{m 2}^{2}}{\left(g_{d s 1}+g_{d s 2}\right)^{2}} \cdot \frac{K_{2}}{W_{2} L_{2} C_{o x 2} f}}
$$

Exercise 5

In Figure 4 a) below current $I_{x}=I_{f}$ and voltage $V_{-}=0$ because OP-amp. is ideal. The voltage over R_{f} then will be $V_{\text {out }}-0$.

Figure 4: D/A-converter.

$$
I_{x}=I_{f}=\frac{V_{\text {out }}-0}{R_{f}} \Rightarrow V_{\text {out }}=R_{f} I_{f}
$$

As $V_{-}=0$ (virtual ground) the $R, 2 R$ resistor net can be redrawn as figures 4 b) and 4 c) show, to get the relation between currents I_{x}, I_{y} and I.
Current division in Figure 4 c) gives:

$$
I_{y}=\frac{R}{R+R+\frac{2}{3} R} \cdot I=\frac{3}{8} I
$$

Using current division and noticing that $I_{x}=I_{f}$ Figure 4 b) gives:

$$
I_{f}=I_{x}=\frac{2 R}{R+2 R} \cdot I_{y}=\frac{2}{3} I_{y} \Rightarrow I_{f}=\frac{2}{3} \cdot \frac{3}{8} I=\frac{1}{4} I
$$

As $V_{\text {out }}=R_{f} I_{f}$ we have, finally

$$
V_{o u t}=R_{f} \frac{1}{4} I
$$

Answer: $\underline{\underline{V_{\text {out }}=R_{f} \frac{I}{4}}}$

