SOLUTIONS. Exam June 05, 2008

TSTE08 and TSTE80 Analog and Discrete-time Integrated Circuits.

Excercise 1.

a) Transistor M2 works in saturation.

Enclosed page of formulas gives:

$$
\begin{equation*}
I_{D 2}=\frac{\mu_{0 n} C_{o x}}{2}\left(\frac{W}{L}\right)_{2}\left(V_{G S 2}-V_{t n}\right)^{2}\left(1+\lambda\left(V_{D S 2}-V_{e f f 2}\right)\right) \tag{1}
\end{equation*}
$$

Neglecting channal-length modulation (i.e. $\lambda=0$) gives:

$$
\begin{equation*}
I_{D 2}=\frac{\mu_{0 n} C_{o x}}{2}\left(\frac{W}{L}\right)_{2}\left(V_{G S 2}-V_{t n}\right)^{2} \tag{2}
\end{equation*}
$$

Also transistor M1 works in saturation. Neglecting channal-length modulation gives:

$$
\begin{equation*}
I_{D 1}=I_{0}=\frac{\mu_{0 n} C_{o x}}{2}\left(\frac{W}{L}\right)_{1}\left(V_{G S 1}-V_{t n}\right)^{2} \tag{3}
\end{equation*}
$$

As $V_{G S 1}=V_{G S 2}$ equation (2) and equation (3) gives:

$$
\begin{equation*}
\frac{I_{D 2}}{I_{0}}=\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}} \Rightarrow I_{D 2}=\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}} I_{0}=K I_{0} \tag{4}
\end{equation*}
$$

Figure 1 gives:

$$
\begin{equation*}
V_{\text {out }}=V_{D D}-R I_{D 2} \Rightarrow \underline{\underline{V_{\text {out }}}=V_{D D}-R K I_{0}} \tag{5}
\end{equation*}
$$

Figure 1: A commonly used analog circuit.
b) At the limit of saturation region

$$
\begin{equation*}
V_{D S}=V_{G S}-V_{t n} \tag{6}
\end{equation*}
$$

In this case (note that $V_{G S 2}=V_{G S 1}$):

$$
\left.\begin{array}{c}
V_{D S 2}=V_{\text {out }} \tag{7}\\
V_{G S 2}-V_{t n}=V_{G S 1}-V_{t n}=\sqrt{\frac{I_{0}}{\alpha_{1}}}
\end{array}\right\} \stackrel{(6)}{\Rightarrow} V_{\text {out }}=\sqrt{\frac{I_{0}}{\alpha_{1}}}
$$

But, as before in a):

$$
\begin{equation*}
V_{o u t}=V_{D D}-R K I_{0} \tag{8}
\end{equation*}
$$

Combining (7) and (8) yields

$$
\begin{equation*}
\sqrt{\frac{I_{0}}{\alpha_{1}}}=V_{D D}-R K I_{0} \tag{9}
\end{equation*}
$$

which is reformulated to

$$
\begin{equation*}
K=\frac{V_{D D}-\sqrt{\frac{I_{0}}{\alpha_{1}}}}{R I_{0}}=\frac{V_{D D}}{R I_{0}}-\frac{1}{R \sqrt{\alpha_{1} I_{0}}} \tag{10}
\end{equation*}
$$

which is the answer.

Exercise 2.

a) Figure 2 a) gives the complete small signal equivalent circuit (SSEC).

Figure 2: Small signal equivalent circuit.
In Figure 2 b) the SSEC has been redrawn noticing that:

- $V_{g s 1}=0$
- $V_{g s 2}=0-V_{S 2}$
- $V_{g s 3}=V_{i n}$
- $g_{d s 1}$ is parallel to $\frac{1}{s C}$

Introducing the voltage \mathbf{V}_{x} in node $\mathbf{D 3}$, $\mathbf{S 2}$ yields:

- $V_{g s 2}=0-V_{x}=-V_{x}$

KCL in the output node and in ground node gives:

$$
\begin{gather*}
\left(0-V_{\text {out }}\right)\left(g_{d s 1}+s C_{L}\right)-\left(-g_{m 2} V_{x}\right)-g_{d s 2}\left(V_{\text {out }}-V_{x}\right)=0 \tag{11}\\
\left(V_{\text {out }}-0\right)\left(g_{d s 1}+s C_{L}\right)+g_{m 3} V_{\text {in }}+g_{d s 3}\left(V_{x}-0\right)=0 \tag{12}\\
(11) \Rightarrow V_{x}=\frac{V_{\text {out }}\left(g_{d s 1}+g_{d s 2}+s C_{L}\right)}{g_{m 2}+g_{d s 2}} \tag{13}\\
(12) \Rightarrow V_{x}=-\frac{V_{\text {out }}\left(g_{d s 1}+s C_{L}\right)+g_{m 3} V_{\text {in }}}{g_{d s 3}} \tag{14}
\end{gather*}
$$

I.e.

$$
\begin{equation*}
\frac{V_{o u t}\left(g_{d s 1}+g_{d s 2}+s C_{L}\right)}{g_{m 2}+g_{d s 2}}=-\frac{V_{\text {out }}\left(g_{d s 1}+s C_{L}\right)}{g_{d s 3}}-\frac{g_{m 3}}{g_{d s 3}} V_{i n} \tag{15}
\end{equation*}
$$

(15) gives:

$$
\begin{equation*}
\frac{V_{o u t}}{V_{\text {in }}}=\frac{\frac{-g_{m 3}}{g_{d s 3}}}{\frac{\left(g_{d s 1}+g_{d s 2}+s C_{L}\right)}{g_{m 2}+g_{d s 2}}+\frac{\left(g_{d s 1}+s C_{L}\right)}{g_{d s 3}}} \tag{16}
\end{equation*}
$$

Rewriting (16) gives the answer:

$$
\begin{aligned}
& H(s)=\frac{V_{o u t}}{V_{i n}}=\frac{-g_{m 3}}{\frac{g_{d s 3}\left(g_{d s 1}+g_{d s 2}\right)}{g_{m 2}+g_{d s 2}}+g_{d s 1}+s C_{L}\left(1+\frac{g_{d s 3}}{g_{m 2}+g_{d s 2}}\right)}
\end{aligned}
$$

b) Assuming $g_{m i} \gg g_{d s j}$ gives following approximation of $H(s)$:

$$
\begin{equation*}
H(s) \approx \frac{-g_{m 3}}{g_{d s 1}+s C_{L}}=-\frac{g_{m 3}}{g_{d s 1}} \cdot \frac{1}{1+\frac{s C_{L}}{g_{d s 1}}} \tag{17}
\end{equation*}
$$

(17) gives:

- DC-gain $A_{0}=\frac{-g_{m 3}}{g_{d s} 1}$
- First (and only) pole $p_{1}=-\frac{g_{d s 1}}{C_{L}}$

$$
H(\omega)=\frac{-g_{m 3}}{g_{d s 1}} \cdot \frac{1}{1+\frac{j \omega C_{L}}{g_{d s 1}}} \Rightarrow|H(\omega)|=\frac{g_{m 3}}{g_{d s 1}} \cdot \frac{1}{\sqrt{1+\left(\frac{\omega C_{L}}{g_{d s 1}}\right)^{2}}}
$$

The $3-\mathrm{dB}$ cut-off frequency $\omega_{3 d B}$ is the frequency when

$$
\sqrt{1+\left(\frac{\omega C_{L}}{g_{d s 1}}\right)^{2}}=\sqrt{2} \Rightarrow \omega_{3 d B}=\frac{g_{d s 1}}{C_{L}}
$$

Unity-gain frequency ω_{u} is the frequency when $|H(\omega)|=1$.

$$
|H(\omega)|=1 \Rightarrow \frac{\left|A_{0}\right|}{\sqrt{1+\frac{\omega^{2}}{p_{1}^{2}}}}=1 \Rightarrow \omega_{u}=\left|p_{1}\right| \sqrt{A_{0}^{2}-1} \approx\left|p_{1}\right|\left|A_{0}\right|
$$

In this case:

$$
\begin{equation*}
\omega_{u} \approx\left|p_{1}\right|\left|A_{0}\right|=\frac{g_{d s 1}}{C_{L}} \cdot \frac{g_{m 3}}{g_{d s 1}}=\frac{g_{m 3}}{C_{L}} \tag{18}
\end{equation*}
$$

Answer: $\xlongequal{A_{0}=\frac{-g_{m 3}}{g_{d s 1}}, \omega_{3 d B}=\frac{g_{d s 1}}{C_{L}}, \omega_{u}=\frac{g_{m 3}}{C_{L}}}$
c) As $g_{m i} \sim \sqrt{\frac{W_{i}}{L_{i}} I_{D i}}$ and $g_{d s i} \sim \frac{1}{L_{i}} I_{D i}$:

$$
\begin{equation*}
\overline{A_{0}=\frac{-g_{m 3}}{g_{d s 1}} \sim \frac{\sqrt{\frac{W_{3}}{L_{3}} I_{D}}}{\frac{1}{L_{1}} I_{D}}}=\sqrt{\frac{W_{3} L_{1}^{2}}{L_{3} I_{D}}} \tag{19}
\end{equation*}
$$

Equation (19) yields that:

- $\left|A_{0}\right|$ decreases with a factor 2 when I_{D} increases with a factor 4 .
- $\left|A_{0}\right|$ increases with a factor 2 when W_{3} increases with a factor 4 .

Exercise 3.

a) a) This exercise is solved using the charge redistribution analysis. The voltage at the node between C_{1} and C_{2} is here denoted $V_{x}(t)$. First, the reference direction of the charge is chosen. Next, the charge of the capacitors are computed for time t, $t+\tau$, and $t+2 \tau$
For time t :

$$
\begin{align*}
& q_{1}(t)=\left(0-V_{x}(t)\right) C_{1} \\
& q_{2}(t)=\left(0-V_{x}(t)\right) C_{2} \\
& q_{3}(t)=\left(V_{\text {out }}(t)-V_{x}(t)\right) C_{3} \tag{20}\\
& q_{4}(t)=\left(V_{\text {out }}(t)-0\right) C_{4}
\end{align*}
$$

For time $t+\tau$:

$$
\begin{align*}
& q_{1}(t+\tau)=\left(V_{\text {in }}(t+\tau)-0\right) C_{1} \\
& q_{2}(t+\tau)=0 \tag{21}\\
& q_{3}(t+\tau)=q_{3}(t) \\
& q_{4}(t+\tau)=\left(V_{\text {out }}(t+\tau)-0\right) C_{4}
\end{align*}
$$

For time $t+2 \tau$:

$$
\begin{align*}
& q_{1}(t+2 \tau)=\left(0-V_{x}(t+2 \tau)\right) C_{1} \\
& q_{2}(t+2 \tau)=\left(0-V_{x}(t+2 \tau)\right) C_{2} \tag{22}\\
& q_{3}(t+2 \tau)=\left(V_{\text {out }}(t+2 \tau)-V_{x}(t+2 \tau)\right) C_{3} \\
& q_{4}(t+2 \tau)=\left(V_{\text {out }}(t+2 \tau)-0\right) C_{4}
\end{align*}
$$

Equations for the charge conservation:

$$
\begin{gather*}
q_{2}(t)-q_{4}(t)=q_{2}(t+\tau)-q_{4}(t+\tau) \tag{23}\\
q_{2}(t+\tau)=q_{2}(t+2 \tau) \tag{24}\\
-q_{1}(t+\tau)-q_{2}(t+\tau)-q_{3}(t+\tau)=-q_{1}(t+2 \tau)-q_{2}(t+2 \tau)-q_{3}(t+2 \tau) \tag{25}
\end{gather*}
$$

Figure 3: a) SC-circuit in clock phase 1. b) SC-circuit in clock phase 2.

As $q_{2}(t+\tau)=0$ and $q_{2}(t+\tau)=q_{2}(t+2 \tau)(24)$ also $q_{2}(t+2 \tau)=0$ and $V_{x}(t+2 \tau)=0$, which means that $V_{x}(t)=0$ for all t.
Furthermore equation (23) gives:

$$
\begin{equation*}
\left(0-V_{x}(t)\right) C_{2}-\left(V_{\text {out }}(t)-0\right) C_{4}=0-\left(V_{\text {out }}(t+\tau)-0\right) C_{4} \tag{26}
\end{equation*}
$$

As $V_{x}(t)=0$ equation (26) gives that:

$$
\begin{equation*}
V_{\text {out }}(t+\tau)=V_{\text {out }}(t) \tag{27}
\end{equation*}
$$

As q_{2} is zero for all t and $q_{3}(t+\tau)=q_{3}(t)$ equation (25) yields:

$$
\begin{equation*}
\left(V_{\text {in }}(t+\tau)-0\right) C_{1}+\left(V_{\text {out }}(t)-V_{x}(t)\right) C_{3}=\left(0-V_{x}(t+2 \tau)\right) C_{1}+\left(V_{\text {out }}(t+2 \tau)-V_{x}(t+2 \tau)\right) C_{3} \tag{28}
\end{equation*}
$$

Using $V_{x}=0$ for all t equation (28) can be simplified to:

$$
\begin{equation*}
V_{\text {in }}(t+\tau) C_{1}+V_{\text {out }}(t) C_{3}=V_{\text {out }}(t+2 \tau) C_{3} \tag{29}
\end{equation*}
$$

Since $V_{i n}(t+\tau)=V_{i n}(t)$ (given in the exercise) equation (29) yields:

$$
\begin{equation*}
V_{\text {in }}(t) C_{1}+V_{\text {out }}(t) C_{3}=V_{\text {out }}(t+2 \tau) C_{3} \tag{30}
\end{equation*}
$$

Setting $2 \tau=T$ gives the differens equation:

$$
\begin{equation*}
C_{1} V_{\text {in }}(t)+C_{3} V_{\text {out }}(t)=C_{3} V_{\text {out }}(t+T) \tag{31}
\end{equation*}
$$

Finally, z-transforming (31):

$$
\begin{equation*}
C_{1} V_{\text {in }}(z)+C_{3} V_{\text {out }}(z)=C_{3} z V_{\text {out }}(z) \tag{32}
\end{equation*}
$$

Which gives the answer:

$$
V_{\text {out }}(z)=\frac{C_{1}}{C_{3}} \cdot \frac{1}{z-1} \cdot V_{\text {in }}
$$

b) Switches, capacitors, and the operational amplifier introduce parasitic capacitors into the circuit as is shown in Figure 4.

* $C_{p a}$ is connected between the ideal input voltage source and ground where the input source can source/sink as much charge as is required. Hence, this parasitics do not change the transfer function.

Figure 4: SC-circuit with parasitics in clock phase 1.

* $C_{p b}$ is in one clock phase shorted to ground and the next connected to the ideal voltage source. Thus, the charge on the capacitor does not discharge into a sensitive node and this parasitic will not be part of the transfer function.
* $C_{p c}$ is in one clock phase connected to virtual ground ($V_{x}=0$) and the next connected to ground. Hence the transfer function will not be affected.
* $C_{p d}$ is always connected to virtual ground and will not be part of the transfer function.
* $C_{p e}$ is in one clock phase connected to the ideal output and the next connected to a floating node. Hence the transfer function will not be affected.
* $C_{p f}$ is either shorted to ground or connected to virtual ground so the transfer function is not changed.
* $C_{p g}$ is always connected to the ideal output of the operational amplifier and ground and thereby will not be a part of the transfer function.
Hence, the circuit is not sensitive to capacitive parasitics when the transfer function is of concern.

Exercise 4.

Figure 5 shows the circuit with voltages $V_{G S i}$ and $V_{D S i}$ introduced.

- For transistors M1, M2, M5 and M6: $V_{D S i, \text { min }}=V_{e f f i}=\sqrt{\frac{I_{D_{i}}}{\alpha_{i}}}$ and for transistor $\mathbf{M 4} V_{S D 4, \text { min }}=\sqrt{\frac{I_{D 4}}{\alpha_{4}}}$.
- For transistors M7 and M8: $V_{D S i, \min }=V_{G S i}=V_{e f f i}+V_{t i}=\sqrt{\frac{I_{D i}}{\alpha_{i}}}+V_{t i}$ and for transistor M3 $V_{S D 3, \text { min }}=\sqrt{\frac{I_{D 3}}{\alpha_{3}}}+V_{t 3}$.
- As M5 and M8 are identical the current mirror M8, M5 will give the current I_{0} through M5 and M6 as well as through M7 and M8.
- As M3 and M4 are identical the currents trough M1 and M2, as well as through $\mathbf{M} 3$ and $\mathbf{M} 4$, will be $\frac{I_{0}}{2}$.

Figure 5: Differential gain-stage.
I. First we will determine $C M R=\left[V_{i n, \min } ; V_{i n, \max }\right]$.

Because of symmetry $V_{i n n, \min }=V_{i n p, \min }$, so we just have to look at one of the input voltages, e.g. $V_{i n p}$.
$V_{\text {in, min }}$ will be the maximum value of
and

$$
\begin{gather*}
V_{D S 6, \text { min }}+V_{D S 5, \text { min }}+V_{G S 1}=\sqrt{\frac{I_{0}}{\alpha_{6}}}+\sqrt{\frac{I_{0}}{\alpha_{5}}}+\sqrt{\frac{I_{0} / 2}{\alpha_{1}}}+V_{t 1} \tag{33}\\
V_{D S 7, \text { min }}+V_{G S 8}-V_{G S 5}+V_{D S 5, \text { min }}+V_{G S 1}= \\
=\sqrt{\frac{I_{0}}{\alpha_{7}}}+V_{t 7}+\sqrt{\frac{I_{0}}{\alpha_{8}}}+V_{t 8}-V_{t 5}+\sqrt{\frac{I_{0} / 2}{\alpha_{1}}}+V_{t 1} \tag{34}
\end{gather*}
$$

As M6 and M7 are identical the first terms in (33) and (34) are the same, and as M5 and M8 are identical $\sqrt{\frac{I_{0}}{\alpha_{5}}}=\sqrt{\frac{I_{0}}{\alpha_{8}}}$ and $V_{t 5}=V_{t 8}$. Thus, (34) include all terms in (33) and also the term $V_{t 7}$. That means that (34) must be larger than (33). I.e.

$$
\begin{equation*}
V_{i n, \min }=\sqrt{\frac{I_{0}}{\alpha_{7}}}+V_{t 7}+\sqrt{\frac{I_{0}}{\alpha_{8}}}+\sqrt{\frac{I_{0}}{2 \alpha_{1}}}+V_{t 1} \tag{35}
\end{equation*}
$$

$V_{i n, \max }$ will be the smallest of $V_{i n n, \max }$ and $V_{i n p, \max }$ i.e. the smallest of

$$
\begin{equation*}
V_{D D}-V_{S D 4, \min }-V_{D S 2, \text { min }}+V_{G S 2}=V_{D D}-\sqrt{\frac{I_{0} / 2}{\alpha_{4}}}-\sqrt{\frac{I_{0} / 2}{\alpha_{2}}}+\sqrt{\frac{I_{0} / 2}{\alpha_{2}}}+V_{t 2} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{D D}-V_{S D 3, \text { min }}-V_{D S 1, \text { min }}+V_{G S 1}=V_{D D}-\sqrt{\frac{I_{0} / 2}{\alpha_{3}}}-V_{t 3}-\sqrt{\frac{I_{0} / 2}{\alpha_{1}}}+\sqrt{\frac{I_{0} / 2}{\alpha_{1}}}+V_{t 1} \tag{37}
\end{equation*}
$$

Because of matched transistor only the term $V_{t 3}$ differs in (37) compared to (36), making (37) smaller. Thus

$$
\begin{equation*}
V_{i n, \max }=V_{D D}-\sqrt{\frac{I_{0} / 2}{\alpha_{3}}}-V_{t 3}+V_{t 1} \tag{38}
\end{equation*}
$$

II. Determination of $O R=\left[V_{\text {out }, \text { min }} ; V_{\text {out }, \text { max }}\right]$:

As when determining $V_{\text {out, min }}$ the path from ground through $\mathbf{M} 7$ and $\mathbf{M 8}$ will give a larger $V_{\text {out }, \text { min }}$ (compared to the path through M6 and M5). Then you have to compare the path through M2 and the path through M1, M3 and M4.
The path through M2 will give the contribution $V_{D S 2, s a t}$ to $V_{\text {out,min }}$ while the other path will give the contribution $V_{D S 1, s a t}+V_{S G 4}-V_{S D 4, s a t}=V_{D S 1, s a t}+V_{t 4}$. As $V_{D S 2, s a t}=$ $V_{D S 1, s a t}$, because of matched transistors, $V_{D S 1, s a t}+V_{t 4}$ will give the largest contribution to $V_{\text {out }, \text { min }}$. I.e.

$$
\begin{aligned}
\underline{\underline{V_{o u t, \text { min }}}}=V_{D S 7, \text { min }}+V_{G S 8}- & V_{G S 5}+V_{D S 5, \text { min }}+V_{D S 1, \text { min }}+V_{t 4}= \\
& \xlongequal{\sqrt{\frac{I_{0}}{\alpha_{7}}}+V_{t 7}+\sqrt{\frac{I_{0}}{\alpha_{8}}}+\sqrt{\frac{I_{0} / 2}{\alpha_{1}}}+V_{t 4}}
\end{aligned}
$$

$V_{\text {out }, \text { max }}$ will be the smallest value of

$$
\begin{equation*}
V_{D D}-V_{S D 4, \min }=V_{D D}-\sqrt{\frac{I_{0} / 2}{\alpha_{4}}} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{D D}-V_{S G 3}-V_{D S 1, \text { min }}+V_{D S 2, \text { min }}=V_{D D}-V_{S G 3} \tag{42}
\end{equation*}
$$

The last equality comes from the fact that $V_{D S 1}=V_{D S 2}$ as $V_{G S 1}=V_{G S 2}$ in Common Mode (M1 and M2 are identical and $V_{i n n}=V_{i n p}$).
As $\alpha_{3}=\alpha_{4}$ (42) gives the smallest value.

$$
\begin{equation*}
V_{o u t, \max }=V_{D D}-\sqrt{\frac{I_{0} / 2}{\alpha_{3}}}-V_{t p} \tag{43}
\end{equation*}
$$

Exercise 5.

First, draw a small signal equivalent circuit for the amplifier.
The thermal noise kan be represented by a voltage source between Gate-Source with spectral density $R=\frac{8 k T}{3} \cdot \frac{1}{g_{m}}$ or by a current parallel to Drain-Source with spectral density $R=\frac{8 k T}{3} \cdot g_{m}$, as the small-signal drain current $i_{d}=g_{m} v_{g s}$.
In the small signal equivalent circuit we also use to have a current source $g_{b s} V_{b s}$, parallel to Drain-Source, when $V_{b s} \neq 0$. As the substrate noise is represented by a voltage souce $V_{s n}$ between bulk and souce in the given figure, the substrate noise can be represented by a current souce $g_{b s} V_{s n}$ parallel to Drain-Source in the small signal equivalent circuit.

Thus, the thermal noise as well as the substrate noise are represented by current noise sources between Drain-Source.

Figure 6: Determing $H_{t h i}=V_{\text {out }} / I_{t h i}$ and $H_{\text {sni }}=V_{\text {out }} / V_{\text {sni }}$.
As $V_{\text {out }}=I_{\text {thi }} \cdot \frac{1}{g_{d s 1}+g_{d s 2}+s C_{L}}$ when $V_{\text {in }}=0$ and $V_{s n i}=0$, the transfer function $H_{t h i}(s)$ from each current source $I_{t h i}$ to the output (zeroing the input signal, i.e. $V_{i n}=0$) will be:

$$
\begin{equation*}
H_{t h i}(s)=\frac{V_{o u t}}{I_{t h i}}=\frac{1}{g_{d s 1}+g_{d s 2}+s C_{L}} \Rightarrow H_{t h i}(\omega)=\frac{1}{g_{d s 1}+g_{d s 2}+j \omega C_{L}} \tag{44}
\end{equation*}
$$

$I_{t h i}=g_{m i} V_{t h i}$ givs spectral density $g_{m i}^{2} V_{t h i}^{2}=\frac{8 k T}{3} \cdot g_{m i}$ for $I_{t h i}$
As $V_{o u t}=g_{b s i} V_{s n i} \cdot \frac{1}{g_{d s 1}+g_{d s 2}+s C_{L}}$ when $V_{\text {in }}=0$ and $I_{t h i}=0$, the transfer function $H_{s n i}(s)$ from each voltage source $V_{\text {sni }}$ to the output (zeroing the input signal, i.e. $V_{\text {in }}=0$) will be:

$$
\begin{equation*}
H_{s n i}(s)=\frac{V_{o u t}}{V_{s n i}}=\frac{g_{b s i}}{g_{d s 1}+g_{d s 2}+s C_{L}} \Rightarrow H_{s n i}(\omega)=\frac{g_{b s i}}{g_{d s 1}+g_{d s 2}+j \omega C_{L}} \tag{45}
\end{equation*}
$$

As all noise-sources are uncorrelated, the output noise spectral density can be computed by the following formula

$$
\begin{equation*}
R_{\text {out }}(\omega)=\sum_{i}\left|H_{i}(\omega)\right|^{2} R_{i}(\omega)=\frac{1}{\left(g_{d s 1}+g_{d s 2}\right)^{2}+\left(\omega C_{L}\right)^{2}}\left(R_{0}\left(g_{b s 1}^{2}+g_{b s 2}^{2}\right)+\frac{8 k T}{3}\left(g_{m 1}+g_{m 2}\right)\right) \tag{46}
\end{equation*}
$$

Answer:

$$
\begin{equation*}
\xlongequal{R_{\text {out }}=\frac{R_{0}\left(g_{b s 1}^{2}+g_{b s 2}^{2}\right)+\frac{8 k T}{3}\left(g_{m 1}+g_{m 2}\right)}{\left(g_{d s 1}+g_{d s 2}\right)^{2}+\left(\omega C_{L}\right)^{2}}} \tag{47}
\end{equation*}
$$

