
SOLUTIONS. Exam June 05, 2008

TSTE08 and TSTE80 Analog and Discrete-time Integrated
Circuits.

Excercise 1.

a) Transistor M2 works in saturation.

Enclosed page of formulas gives:

ID2 =
µ0nCox

2

(

W

L

)

2

(VGS2 − Vtn)
2
(1 + λ(VDS2 − Veff2)) (1)

Neglecting channal-length modulation (i.e. λ = 0) gives:

ID2 =
µ0nCox

2

(

W

L

)

2

(VGS2 − Vtn)2 (2)

Also transistor M1 works in saturation. Neglecting channal-length modulation gives:

ID1 = I0 =
µ0nCox

2

(

W

L

)

1

(VGS1 − Vtn)2 (3)

As VGS1 = VGS2 equation (2) and equation (3) gives:

ID2

I0
=

(

W
L

)

2
(

W
L

)

1

⇒ ID2 =

(

W
L

)

2
(

W
L

)

1

I0 = KI0 (4)

Figure 1 gives:

Vout = VDD − RID2 ⇒ Vout = VDD − RKI0 (5)
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Figure 1: A commonly used analog circuit.
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b) At the limit of saturation region

VDS = VGS − Vtn (6)

In this case (note that VGS2 = VGS1):

VDS2 = Vout

VGS2 − Vtn = VGS1 − Vtn =
√

I0

α1

}

(6)⇒ Vout =

√

I0

α1
(7)

But, as before in a):

Vout = VDD − RKI0 (8)

Combining (7) and (8) yields

√

I0

α1
= VDD − RKI0 (9)

which is reformulated to

K =
VDD −

√

I0

α1

RI0
=

VDD

RI0
− 1

R
√

α1I0

(10)

which is the answer.

Exercise 2.

a) Figure 2 a) gives the complete small signal equivalent circuit (SSEC).
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Figure 2: Small signal equivalent circuit.

In Figure 2 b) the SSEC has been redrawn noticing that:
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• Vgs1 = 0

• Vgs2 = 0 − VS2

• Vgs3 = Vin

• gds1 is parallel to 1
sC

Introducing the voltage Vx in node D3, S2 yields:

• Vgs2 = 0 − Vx = −Vx

KCL in the output node and in ground node gives:

(0 − Vout)(gds1 + sCL) − (−gm2Vx) − gds2(Vout − Vx) = 0 (11)

(Vout − 0)(gds1 + sCL) + gm3Vin + gds3(Vx − 0) = 0 (12)

(11) ⇒ Vx =
Vout(gds1 + gds2 + sCL)

gm2 + gds2
(13)

(12) ⇒ Vx = −Vout(gds1 + sCL) + gm3Vin

gds3
(14)

I.e.
Vout(gds1 + gds2 + sCL)

gm2 + gds2
= −Vout(gds1 + sCL)

gds3
− gm3

gds3
Vin (15)

(15) gives:

Vout

Vin

=

−gm3

gds3

(gds1+gds2+sCL)
gm2+gds2

+ (gds1+sCL)
gds3

(16)

Rewriting (16) gives the answer:

H(s) =
Vout

Vin

=
−gm3

gds3(gds1+gds2)
gm2+gds2

+ gds1 + sCL

(

1 + gds3

gm2+gds2

)

b) Assuming gmi >> gdsj gives following approximation of H(s):

H(s) ≈ −gm3

gds1 + sCL

= − gm3

gds1
· 1

1 + sCL

gds1

(17)

(17) gives:

• DC-gain A0 =
−gm3

gds1

• First (and only) pole p1 = −gds1

CL

•

H(ω) =
−gm3

gds1
· 1

1 + jωCL

gds1

⇒ |H(ω)| =
gm3

gds1
· 1
√

1 +
(

ωCL

gds1

)2

The 3-dB cut-off frequency ω3dB is the frequency when
√

1 +

(

ωCL

gds1

)2

=
√

2 ⇒ ω3dB =
gds1

CL
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Unity-gain frequency ωu is the frequency when |H(ω)| = 1.

|H(ω)| = 1 ⇒ |A0|
√

1 + ω2

p2

1

= 1 ⇒ ωu = |p1|
√

A2
0 − 1 ≈ |p1||A0|

In this case:

ωu ≈ |p1||A0| =
gds1

CL

· gm3

gds1
=

gm3

CL

(18)

Answer: A0 =
−gm3

gds1
, ω3dB =

gds1

CL

, ωu =
gm3

CL

c) As gmi ∼
√

Wi

Li

IDi and gdsi ∼
1

Li

IDi:

A0 =
−gm3

gds1
∼

√

W3

L3

ID

1
L1

ID

=

√

W3L2
1

L3ID

(19)

Equation (19) yields that:

• |A0| decreases with a factor 2 when ID increases with a factor 4.

• |A0| increases with a factor 2 when W3 increases with a factor 4.

Exercise 3.

a) a) This exercise is solved using the charge redistribution analysis. The voltage at

the node between C1 and C2 is here denoted Vx(t). First, the reference direction of

the charge is chosen. Next, the charge of the capacitors are computed for time t,
t + τ , and t + 2τ

For time t:
q1(t) = (0 − Vx(t))C1

q2(t) = (0 − Vx(t))C2

q3(t) = (Vout(t) − Vx(t))C3

q4(t) = (Vout(t) − 0)C4

(20)

For time t + τ :
q1(t + τ) = (Vin(t + τ) − 0)C1

q2(t + τ) = 0
q3(t + τ) = q3(t)
q4(t + τ) = (Vout(t + τ) − 0)C4

(21)

For time t + 2τ :
q1(t + 2τ) = (0 − Vx(t + 2τ))C1

q2(t + 2τ) = (0 − Vx(t + 2τ))C2

q3(t + 2τ) = (Vout(t + 2τ) − Vx(t + 2τ))C3

q4(t + 2τ) = (Vout(t + 2τ) − 0)C4

(22)

Equations for the charge conservation:

q2(t) − q4(t) = q2(t + τ) − q4(t + τ) (23)

q2(t + τ) = q2(t + 2τ) (24)

−q1(t + τ) − q2(t + τ) − q3(t + τ) = −q1(t + 2τ) − q2(t + 2τ) − q3(t + 2τ) (25)
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Figure 3: a) SC-circuit in clock phase 1. b) SC-circuit in clock phase 2.

As q2(t + τ) = 0 and q2(t + τ) = q2(t + 2τ) (24) also q2(t + 2τ) = 0 and Vx(t + 2τ) = 0,

which means that Vx(t) = 0 for all t.

Furthermore equation (23) gives:

(0 − Vx(t))C2 − (Vout(t) − 0)C4 = 0 − (Vout(t + τ) − 0)C4 (26)

As Vx(t) = 0 equation (26) gives that:

Vout(t + τ) = Vout(t) (27)

As q2 is zero for all t and q3(t + τ) = q3(t) equation (25) yields:

(Vin(t+τ)−0)C1+(Vout(t)−Vx(t))C3 = (0−Vx(t+2τ))C1+(Vout(t+2τ)−Vx(t+2τ))C3

(28)

Using Vx = 0 for all t equation (28) can be simplified to:

Vin(t + τ)C1 + Vout(t)C3 = Vout(t + 2τ)C3 (29)

Since Vin(t + τ) = Vin(t) (given in the exercise) equation (29) yields:

Vin(t)C1 + Vout(t)C3 = Vout(t + 2τ)C3 (30)

Setting 2τ = T gives the differens equation:

C1Vin(t) + C3Vout(t) = C3Vout(t + T ) (31)

Finally, z-transforming (31):

C1Vin(z) + C3Vout(z) = C3zVout(z) (32)

Which gives the answer:

Vout(z) =
C1

C3
· 1

z − 1
· Vin

b) Switches, capacitors, and the operational amplifier introduce parasitic capacitors

into the circuit as is shown in Figure 4.

∗ Cpa is connected between the ideal input voltage source and ground where

the input source can source/sink as much charge as is required. Hence, this

parasitics do not change the transfer function.
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Figure 4: SC-circuit with parasitics in clock phase 1.

∗ Cpb is in one clock phase shorted to ground and the next connected to the ideal

voltage source. Thus, the charge on the capacitor does not discharge into a

sensitive node and this parasitic will not be part of the transfer function.

∗ Cpc is in one clock phase connected to virtual ground (Vx = 0) and the next

connected to ground. Hence the transfer function will not be affected.

∗ Cpd is always connected to virtual ground and will not be part of the transfer

function.

∗ Cpe is in one clock phase connected to the ideal output and the next connected

to a floating node. Hence the transfer function will not be affected.

∗ Cpf is either shorted to ground or connected to virtual ground so the transfer

function is not changed.

∗ Cpg is always connected to the ideal output of the operational amplifier and

ground and thereby will not be a part of the transfer function.

Hence, the circuit is not sensitive to capacitive parasitics when the transfer func-

tion is of concern.

Exercise 4.

Figure 5 shows the circuit with voltages VGSi and VDSi introduced.

• For transistors M1, M2, M5 and M6: VDSi,min = Veffi =
√

IDi

αi

and for transistor

M4 VSD4,min =
√

ID4

α4

.

• For transistors M7 and M8: VDSi,min = VGSi = Veffi + Vti =
√

IDi

αi

+ Vti and for

transistor M3 VSD3,min =
√

ID3

α3

+ Vt3.

• As M5 and M8 are identical the current mirror M8, M5 will give the current I0

through M5 and M6 as well as through M7 and M8.

• As M3 and M4 are identical the currents trough M1 and M2, as well as through

M3 and M4, will be
I0

2
.
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Figure 5: Differential gain-stage.

I. First we will determine CMR = [Vin,min;Vin,max].

Because of symmetry Vinn,min = Vinp,min, so we just have to look at one of the input

voltages, e.g. Vinp.

Vin,min will be the maximum value of

VDS6,min + VDS5,min + VGS1 =

√

I0

α6
+

√

I0

α5
+

√

I0/2

α1
+ Vt1 (33)

and

VDS7,min + VGS8 − VGS5 + VDS5,min + VGS1 =

=

√

I0

α7
+ Vt7 +

√

I0

α8
+ Vt8 − Vt5 +

√

I0/2

α1
+ Vt1 (34)

As M6 and M7 are identical the first terms in (33) and (34) are the same, and as M5

and M8 are identical
√

I0

α5

=
√

I0

α8

and Vt5 = Vt8. Thus, (34) include all terms in (33)

and also the term Vt7. That means that (34) must be larger than (33). I.e.

Vin,min =

√

I0

α7
+ Vt7 +

√

I0

α8
+

√

I0

2α1
+ Vt1 (35)
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Vin,max will be the smallest of Vinn,max and Vinp,max i.e. the smallest of

VDD − VSD4,min − VDS2,min + VGS2 = VDD −
√

I0/2

α4
−

√

I0/2

α2
+

√

I0/2

α2
+ Vt2 (36)

and

VDD − VSD3,min − VDS1,min + VGS1 = VDD −
√

I0/2

α3
− Vt3 −

√

I0/2

α1
+

√

I0/2

α1
+ Vt1 (37)

Because of matched transistor only the term Vt3 differs in (37) compared to (36), making

(37) smaller. Thus

Vin,max = VDD −
√

I0/2

α3
− Vt3 + Vt1 (38)

II. Determination of OR = [Vout,min;Vout,max]:

As when determining Vout,min the path from ground through M7 and M8 will give a

larger Vout,min (compared to the path through M6 and M5). Then you have to compare

the path through M2 and the path through M1, M3 and M4.

The path through M2 will give the contribution VDS2,sat to Vout,min while the other

path will give the contribution VDS1,sat + VSG4 − VSD4,sat = VDS1,sat + Vt4. As VDS2,sat =
VDS1,sat, because of matched transistors, VDS1,sat +Vt4 will give the largest contribution

to Vout,min. I.e.

Vout,min = VDS7,min + VGS8 − VGS5 + VDS5,min + VDS1,min + Vt4 =

√

I0

α7
+ Vt7 +

√

I0

α8
+

√

I0/2

α1
+ Vt4

(40)
Vout,max will be the smallest value of

VDD − VSD4,min = VDD −
√

I0/2

α4
(41)

and

VDD − VSG3 − VDS1,min + VDS2,min = VDD − VSG3 (42)

The last equality comes from the fact that VDS1 = VDS2 as VGS1 = VGS2 in Common

Mode (M1 and M2 are identical and Vinn = Vinp).

As α3 = α4 (42) gives the smallest value.

Vout,max = VDD −
√

I0/2

α3
− Vtp (43)
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Exercise 5.

First, draw a small signal equivalent circuit for the amplifier.

The thermal noise kan be represented by a voltage source between Gate-Source with

spectral density R = 8kT
3 · 1

gm

or by a current parallel to Drain-Source with spectral

density R = 8kT
3 · gm, as the small-signal drain current id = gmvgs.

In the small signal equivalent circuit we also use to have a current source gbsVbs, par-

allel to Drain-Source, when Vbs 6= 0. As the substrate noise is represented by a voltage

souce Vsn between bulk and souce in the given figure, the substrate noise can be repre-

sented by a current souce gbsVsn parallel to Drain-Source in the small signal equivalent

circuit.

Thus, the thermal noise as well as the substrate noise are represented by current noise

sources between Drain-Source.
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Figure 6: Determing Hthi = Vout/Ithi and Hsni = Vout/Vsni.

As Vout = Ithi · 1
gds1+gds2+sCL

when Vin = 0 and Vsni = 0, the transfer function Hthi(s)

from each current source Ithi to the output (zeroing the input signal, i.e. Vin = 0) will

be:

Hthi(s) =
Vout

Ithi

=
1

gds1 + gds2 + sCL

⇒ Hthi(ω) =
1

gds1 + gds2 + jωCL

(44)

Ithi = gmiVthi givs spectral density g2
miV

2
thi = 8kT

3 · gmi for Ithi

As Vout = gbsiVsni · 1
gds1+gds2+sCL

when Vin = 0 and Ithi = 0, the transfer function Hsni(s)

from each voltage source Vsni to the output (zeroing the input signal, i.e. Vin = 0) will

be:

Hsni(s) =
Vout

Vsni

=
gbsi

gds1 + gds2 + sCL

⇒ Hsni(ω) =
gbsi

gds1 + gds2 + jωCL

(45)

As all noise-sources are uncorrelated, the output noise spectral density can be computed

by the following formula

Rout(ω) =
∑

i

|Hi(ω)|2Ri(ω) =
1

(gds1 + gds2)2 + (ωCL)2
(R0(g

2
bs1 + g2

bs2) +
8kT

3
(gm1 + gm2))

(46)

Answer:

Rout =
R0(g

2
bs1 + g2

bs2) + 8kT
3 (gm1 + gm2)

(gds1 + gds2)2 + (ωCL)2
(47)
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