SOLUTIONS. Exam Aug 10, 2006

TSTE80 Analog and Discrete-time Integrated Circuits.

Excercise 1.

a) A PMOS transistor is saturated when $V_{S D}>V_{e f f}=V_{S G}-V_{t p}$.

Transistor M1: $V_{S D 1}=V_{D D}-V_{x}=V_{S G 1}$ i.e. $V_{S D 1}>V_{S G 1}-V_{t p 1}$, so M1 works in saturation.
Transistor M2: $V_{S D 2}=V_{x}-V_{\text {bias }}=V_{S G 2}$ i.e. $V_{S D 2}>V_{S G 2}-V_{t p 2}$, so M2 works in saturation.

A NMOS transistor is saturated when $V_{D S}>V_{e f f}=V_{G S}-V_{t n}$.
Transistor M3: $V_{D S 3}=V_{\text {bias }}-0=V_{G S 3}$ i.e. $V_{D S 3}>V_{G S 3}-V_{t n 3}$, so M3 works in saturation.

Figure 1: A bias circuit.
b) First note that $I_{D 1}=I_{D 2}=I_{D 3}=I_{D}$

Transistor M1: $V_{S B 1}=0$ i.e. $V_{t p 1}=V_{t 0 p}$.
Enclosed page of formulas gives:

$$
\begin{equation*}
\left(\frac{W}{L}\right)_{1}=\frac{I_{D}}{\frac{1}{2} \mu_{0 p} C_{o x p} V_{e f f 1}^{2}\left(1+\lambda_{p}\left(V_{S D 1}-V_{e f f 1}\right)\right)} \tag{1}
\end{equation*}
$$

$I_{D}=5 \mu \mathrm{~A}, \mu_{0 p} C_{o x p}=58.5 \mu \mathrm{~A} / \mathrm{V}^{2}$,
$V_{e f f 1}=V_{S G 1}-V_{t 0 p}=V_{D D}-V_{x}-V_{t 0 p}=3.3-0.6-0.62=2.08 \mathrm{~V}$,
$\lambda_{p}=0.05$.
Further $V_{S D 1}=V_{S G 1}$ gives $V_{S D 1}-V_{e f f 1}=V_{t 0 p}=0.62 \mathrm{~V}$.
Now equation (1) gives:

$$
\begin{equation*}
\left(\frac{W}{L}\right)_{1} \approx 0.42 \tag{2}
\end{equation*}
$$

Transistor M2: $V_{S B 2}=V_{S 2}-V_{B 2}=V_{x}-V_{D D}=-1.25 \mathrm{~V}$.
Enclosed page of formulas gives:

$$
\begin{gather*}
V_{t p 2}=V_{t 0 p}+\gamma\left(\sqrt{2 \phi_{F}-V_{S B 2}}-\sqrt{2 \phi_{F}}\right)=0.62+0.41(\sqrt{2.07}-\sqrt{0.82}=0.8386 \mathrm{~V} \tag{3}\\
\left(\frac{W}{L}\right)_{2}=\frac{I_{D}}{\frac{1}{2} \mu_{0 p} C_{o x p} V_{e f f 2}^{2}\left(1+\lambda_{p}\left(V_{S D 2}-V_{e f f 2}\right)\right)} \tag{4}
\end{gather*}
$$

$I_{D}=5 \mu \mathrm{~A}, \mu_{0 p} C_{o x p}=58.5 \mu \mathrm{~A} / \mathrm{V}^{2}$,
$V_{e f f 2}=V_{S G 2}-V_{t p 2}=V_{x}-V_{\text {bias }}-V_{t p 2}=2.05-0.6-0.8386=0.6114 \mathrm{~V}$,
$\lambda_{p}=0.05$.
Further $V_{S D 2}=V_{S G 2}$ gives $V_{S D 2}-V_{e f f 2}=V_{t p 2}=0.8386 \mathrm{~V}$.
Now equation (4) gives:

$$
\begin{equation*}
\left(\frac{W}{L}\right)_{2} \approx 0.44 \tag{5}
\end{equation*}
$$

Transistor M3: $V_{B S 3}=0$ i.e $V_{t n 3}=V_{t 0 n}=0.47$.

$$
\begin{equation*}
\left(\frac{W}{L}\right)_{3}=\frac{I_{D}}{\frac{1}{2} \mu_{0 n} C_{o x n} V_{e f f 3}^{2}\left(1+\lambda_{n}\left(V_{D S 3}-V_{e f f 3}\right)\right)} \tag{6}
\end{equation*}
$$

$I_{D}=5 \mu \mathrm{~A}, \mu_{0 n} C_{o x n}=180 \mu \mathrm{~A} / \mathrm{V}^{2}$,
$V_{e f f 3}=V_{G S 3}-V_{t 0 n}=V_{\text {bias }}-0-V_{t p 2}=0.6-0.47=0.13 \mathrm{~V}$, $\lambda_{n}=0.03$.
Further $V_{D S 3}=V_{G S 3}$ gives $V_{D S 3}-V_{e f f 3}=V_{t 0 n}=0.47 \mathrm{~V}$.
Now equation (6) gives:

$$
\begin{equation*}
\left(\frac{W}{L}\right)_{3} \approx 3.24 \tag{7}
\end{equation*}
$$

$\underline{\underline{\text { Answer: }\left(\frac{W}{L}\right)_{1} \approx 0.42,\left(\frac{W}{L}\right)_{2} \approx 0.44 \text { and }\left(\frac{W}{L}\right)_{3} \approx 3.24}}$

Exercise 2.

Figure 2 gives the complete small signal equivalent circuit (SSEC):
Notice that:

- $V_{g s 1}=V_{g 1}-V_{s 1}=V_{i n}$
- $V_{g s 2}=V_{g 2}-V_{s 2}=V_{i n}$
- $V_{g s 3}=0-V_{s 3}=-V_{x}$
- $V_{g s 4}=0-V_{s 4}=-V_{y}$

Figure 2: Small signal equivalent circuit.
Determine $r_{i n}$
KCL gives:

$$
\begin{align*}
I_{i n} & =g_{m 3}\left(-V_{x}\right)+\left(V_{i n}-V_{x}\right) g_{d s 3} \tag{8}\\
I_{i n} & =V_{i n} g_{m 1}+V_{x} g_{d s 1} \tag{9}
\end{align*}
$$

Equations (8) and (9) give the input resistance:

$$
\begin{equation*}
\underline{\underline{r_{i n}}=\frac{V_{i n}}{I_{i n}}=\frac{g_{d s 1}+g_{d s 3}+g_{m 1}}{g_{m 1}\left(g_{d s 3}+g_{m 3}\right)+g_{d s 1} g_{d s 3}}} \tag{10}
\end{equation*}
$$

Determine $r_{\text {out }}$ (OBS! Put $V_{\text {in }}$ to zero when calculating $r_{\text {out }}$)
KCL gives:

$$
\begin{align*}
I_{\text {out }} & =g_{m 4}\left(-V_{y}\right)+\left(V_{\text {out }}-V_{y}\right) g_{d s 4} \tag{11}\\
I_{\text {out }} & =V_{\text {in }} g_{m 2}+V_{y} g_{d s 2} \tag{12}
\end{align*}
$$

Putting $V_{i n}=0$ gives the output resistans:

$$
\begin{equation*}
r_{o u t}=\frac{V_{\text {out }}}{I_{\text {out }}}=\frac{g_{d s 2}+g_{d s 4}+g_{m 4}}{g_{d s 2} g_{d s 4}} \tag{13}
\end{equation*}
$$

Exercise 3.

a) This exercise is solved using the charge redistribution analysis. First, the reference direction of the charge is chosen. Next, the charge of the capacitors are computed for time $t, t+\tau$, and $t+2 \tau$.

Clock phase 1

Clock phase 2

Figure 3: A switched-capacitor circuit in clock phase 1 and clock phase 2.
For time t :

$$
\begin{align*}
& q_{1}(t)=\left(V_{\text {in }}(t)-0\right) C_{1} \\
& q_{2}(t)=\left(V_{\text {out }}(t)-0\right) C_{2} \tag{14}\\
& q_{3}(t)=\left(0-V_{\text {in }}(t)\right) C_{3}
\end{align*}
$$

For time $t+\tau$:

$$
\begin{align*}
& q_{1}(t+\tau)=\left(V_{\text {in }}(t+\tau)-0\right) C_{1} \\
& q_{2}(t+\tau)=\left(V_{\text {out }}(t+\tau)-0\right) C_{2} \tag{15}\\
& q_{3}(t+\tau)=(0-0) C_{3}
\end{align*}
$$

For time $t+2 \tau$:

$$
\begin{align*}
& q_{1}(t+2 \tau)=\left(V_{\text {in }}(t+2 \tau)-0\right) C_{1} \tag{16}\\
& q_{2}(t+2 \tau)=\left(V_{\text {out }}(t+2 \tau)-0\right) C_{2} \\
& q_{3}(t+2 \tau)=\left(0-V_{\text {in }}(t+2 \tau)\right) C_{3}
\end{align*}
$$

Equations for the charge conservation:
1)The capacitors can not discharge through the opamp, so the total charge on the capacitors att the end of clock cycle 1 is equal to the total charge on the capacitors during the whole clock cycle 2 :

$$
\begin{equation*}
-q_{1}(t)-q_{2}(t)-q_{3}(t)=-q_{1}(t+\tau)-q_{2}(t+\tau)-q_{3}(t+\tau) \tag{17}
\end{equation*}
$$

2) Since no charge can be given by opamp the total charge on C_{1} and C_{2} must be the same at $t+2 \tau$ as at $t+\tau$:

$$
\begin{equation*}
-q_{2}(t+\tau)-q_{3}(t+\tau)=-q_{2}(t+2 \tau)-q_{3}(t+2 \tau) \tag{18}
\end{equation*}
$$

Equations (14) and (15) together with equation(17) give:

$$
\begin{equation*}
\left.V_{\text {in }}(t) C_{1}+V_{\text {out }}(t) C_{2}-V_{\text {in }}(t)\right) C_{3}=V_{\text {in }}(t+\tau) C_{1}+V_{\text {out }}(t+\tau) C_{2} \tag{19}
\end{equation*}
$$

Equations (15) and (16) together with equation(18) give:

$$
\begin{equation*}
V_{\text {in }}(t+\tau) C_{1}+V_{\text {out }}(t+\tau) C_{2}=V_{\text {in }}(t+2 \tau) C_{1}+V_{\text {out }}(t+2 \tau) C_{2} \tag{20}
\end{equation*}
$$

Equations (19) and (20) yields:

$$
\begin{equation*}
\left.V_{\text {in }}(t) C_{1}+V_{\text {out }}(t) C_{2}-V_{\text {in }}(t)\right) C_{3}=V_{\text {in }}(t+2 \tau) C_{1}+V_{\text {out }}(t+2 \tau) C_{2} \tag{21}
\end{equation*}
$$

Setting $2 \tau=T$ gives the differens equation:

$$
\begin{equation*}
C_{1} V_{\text {in }}(t)+C_{2} V_{\text {out }}(t)-C_{3} V_{\text {in }}(t)=C_{1} V_{\text {in }}(t+T)+C_{2} V_{\text {out }}(t+T) \tag{22}
\end{equation*}
$$

Z-transforming (22) gives:

$$
\begin{equation*}
C_{1} V_{\text {in }}(z)+C_{2} V_{\text {out }}(z)-C_{3} V_{\text {in }}(z)=C_{1} z V_{\text {in }}(z)+C_{2} z V_{\text {out }}(z) \tag{23}
\end{equation*}
$$

Rewriting (23):

$$
V_{\text {out }}(z)=\frac{C_{1}-C_{3}-z C_{1}}{-C_{2}+z C_{2}} \cdot V_{\text {in }}
$$

Using that $C_{3}=2 C_{1}$ finally gives:

$$
\begin{equation*}
V_{\text {out }}(z)=-\frac{C_{1}(z+1)}{C_{2}(z-1)} \cdot V_{\text {in }} \tag{24}
\end{equation*}
$$

b) Switches, capacitors, and the operational amplifier introduce parasitic capacitors into the circuit as is shown in Figure 4.

Figure 4: SC-circuit with parasitics in clock phase 1.

- $C_{p a}$ is connected between the ideal input voltage source and ground where the input source can source/sink as much charge as is required. Hence, this parasitics do not change the transfer function.
- $C_{p b}$ is in parallel with C_{3} and thereby it will change the transfer function.
- $C_{p c}$ is connected between ground and virtual ground thereby not change the transfer function.
- $C_{p d}$ is always connected to the ideal output of the operational amplifier and ground and thereby will not be a part of the transfer function.

Hence, the circuit is sensitive to capacitive parasitics when the transfer function is of concern.

Exercise 4.

a) Using KCL in node \mathbf{A} and node \mathbf{B} respectively in Figure 5 gives:
$\begin{array}{lcl}\text { A: } & g_{m I} V_{\text {in }}+\left(g_{I}+s C_{I}\right) V_{x}+s C_{c}\left(V_{x}-V_{\text {out }}\right) & =0 \\ \text { B: } & g_{m I I} V_{x}+\left(g_{I I}+s C_{I I}\right) V_{\text {out }}+s C_{c}\left(V_{\text {out }}-V_{x}\right) & =0\end{array}$

Figure 5: A small-signal model of a two-stage OTA.
Equation (26) gives:

$$
\begin{equation*}
V_{x}=-\frac{g_{I I}+s C_{I I}+s C_{c}}{g_{m I I}-s C_{c}} \tag{27}
\end{equation*}
$$

Equation (27) inserted in (25) gives the transfer function:

$$
\xlongequal{H_{(s)}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{m I}\left(g_{m I I}-s C_{c}\right)}{g_{I} g_{I I}+s\left(\left(C_{I I}+C_{c}\right) g_{I}+\left(C_{I}+C_{c}\right) g_{I I}+C_{c} g_{m I I}\right)+s^{2}\left(C_{I} C_{I I}+C_{c}\left(C_{I}+C_{I I}\right)\right)}}
$$

b) Assuming that $g_{m I I} \gg g_{I}, g_{m I I} \gg g_{I I}, g_{m I I} \gg g_{I}, C_{c} \gg C_{I}, C_{I I} \gg C_{I}$ and that $C_{I I}$ and C_{c} is of the same order, equation (28) gives:

$$
\begin{align*}
& H_{(s)}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{m I}\left(g_{m I I}-s C_{c}\right)}{g_{I} g_{I I}+s C_{c} g_{m I I}+s^{2} C_{c} C_{I I}} \tag{29}
\end{align*}
$$

$s=0$ in equation (29) gives the DC gain:

$$
\begin{equation*}
A_{0}=\frac{g_{m I} g_{m I I}}{g_{I} g_{I I}} \tag{30}
\end{equation*}
$$

The nominator i equation (29) gives one zero z_{1} at

$$
\begin{equation*}
z_{1}=\frac{g_{m I I}}{C_{c}} \tag{31}
\end{equation*}
$$

To determine the poles look at the denominator $N(s)$ of equation (29):

$$
\begin{equation*}
N(s)=g_{I} g_{I I}+s C_{c} g_{m I I}+s^{2} C_{c} C_{I I}=C_{c} C_{I I}\left(\frac{g_{I} g_{I I}}{C_{c} C_{I I}}+s \frac{g_{m I I}}{C_{I I}}+s^{2}\right) \tag{32}
\end{equation*}
$$

With the poles p_{1} and p_{2} the denominator can be written as:

$$
\begin{equation*}
C_{c} C_{I I}\left(s-p_{1}\right)\left(s-p_{2}\right)=C_{c} C_{I I}\left(p_{1} p_{2}-\left(p_{1}+p_{2}\right) s+s^{2}\right) \tag{33}
\end{equation*}
$$

As $\left|p_{2}\right| \gg\left|p_{1}\right|$ equation (33) can be approximated as:

$$
\begin{equation*}
C_{c} C_{I I}\left(p_{1} p_{2}-\left(p_{1}+p_{2}\right) s+s^{2}\right) \approx C_{c} C_{I I}\left(p_{1} p_{2}-p_{2} s+s^{2}\right) \tag{34}
\end{equation*}
$$

Identification between equations (32) and (34):

$$
\begin{align*}
p_{2} & =-\frac{g_{m I I}}{C_{I I}} \tag{35}\\
p_{1} p_{2} & =\frac{g_{I} g_{I I}}{C_{c} C_{I I}} \Rightarrow p_{1}=-\frac{g_{I} g_{I I}}{g_{m I I} C_{c}} \tag{36}
\end{align*}
$$

As $\left|p_{2}\right| \gg\left|p_{1}\right|$ the unity-gain frequency ω_{u} is approximately given by $\omega_{u} \approx A_{0}\left|p_{1}\right|$ i.e.

$$
\begin{equation*}
\omega_{u} \approx A_{0}\left|p_{1}\right|=\frac{g_{m I} g_{m I I}}{g_{I} g_{I I}} \cdot \frac{g_{I} g_{I I}}{g_{m I I} C_{c}}=\frac{g_{m I}}{C_{c}} \tag{37}
\end{equation*}
$$

Answer:

$$
\begin{equation*}
\xlongequal{A_{0}=\frac{g_{m I} g_{m I I}}{g_{I} g_{I I}}, z_{1}=\frac{g_{m I I}}{C_{c}}, p_{1}=-\frac{g_{I} g_{I I}}{g_{m I I} C_{c}}, p_{2}=-\frac{g_{m I I}}{C_{I I}}, \omega_{u} \approx \frac{g_{m I}}{C_{c}}} \tag{38}
\end{equation*}
$$

Exercise 5.

a) Figure 6a gives a small-signal equivalent circuit, including noie-sources.

Figure 6: a) A small-signal equivalent. b) Equivalent circuit for determing output noise spectral density

As the noise sources are uncorrelated the output noise spectral density can be computed as Figure 5b) discribes, i.e. by the following formula

$$
\begin{equation*}
R_{\text {out }}(\omega)=\left|H_{1}(\omega)\right|^{2}\left|H_{2}(\omega)\right|^{2} R_{n 1}(\omega)+\left|H_{2}(\omega)\right|^{2} R_{n 2}(\omega) \tag{39}
\end{equation*}
$$

where $H_{1}(\omega)$ is the transfer function for the first stage and $H_{2}(\omega)$ the transfer function for the second stage.

From Figure 5a) $H_{1}(s)=V_{x}(s) / V_{i n}(s)$ and $V_{x}(s)=-g_{m 1} V_{i n}(s) \cdot \frac{1}{g_{d s 1}+s C_{g s 2}}$ which yiels

$$
\begin{equation*}
H_{1}(s)=-\frac{g_{m 1}}{g_{d s 1}+s C_{g s 2}} \Rightarrow H_{1}(\omega)=-\frac{g_{m 1}}{g_{d s 1}+j \omega C_{g s 2}} \tag{40}
\end{equation*}
$$

In the same way $H_{2}(s)$ is calculated to:

$$
\begin{equation*}
H_{2}(s)=-\frac{g_{m 2}}{g_{d s 2}+s C_{L}} \Rightarrow H_{2}(\omega)=-\frac{g_{m 2}}{g_{d s 2}+j \omega C_{L}} \tag{41}
\end{equation*}
$$

Equations (39)-(41) gives following spectral density of the output noise (here we also utilize that $g_{m 1}=g_{m 2}=g_{m}$ and $g_{d s 1}=g_{d s 2}=g_{d s}$):

$$
\begin{equation*}
R_{o u t}(\omega)=R_{n 1}(\omega) \frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{g s 2}^{2}} \cdot \frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}}+R_{n 2}(\omega) \frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}} \tag{42}
\end{equation*}
$$

Using that $R_{n 1}(\omega)=R_{n 2}(\omega)=\frac{8 k T}{3} \frac{1}{g_{m}}$ (from enclosed page of formulas) equation (42) gives:

$$
\begin{equation*}
R_{\text {out }}(\omega)=\frac{8 k T}{3} \cdot \frac{1}{g_{m}} \cdot \frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{g s 2}^{2}}+1\right) \tag{43}
\end{equation*}
$$

Which gives the answer:

$$
\begin{equation*}
\underline{\underline{R_{o u t}}(\omega)=\frac{8 k T}{3} \cdot \frac{g_{m}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{g s 2}^{2}}+1\right)} \tag{44}
\end{equation*}
$$

b) Equation (43) gives the amplitude spectrum of the circuit:

$$
\begin{equation*}
|H(\omega)|=\left(\frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{L}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}+\omega^{2} C_{g s 2}^{2}}+1\right)\right)^{\frac{1}{2}} \tag{45}
\end{equation*}
$$

Eqn.(45) shows that we have a lowpass-filter with maximum at $\omega=0$ and that

$$
\begin{equation*}
|H(0)|=\left(\frac{g_{m}^{2}}{g_{d s}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right)\right)^{\frac{1}{2}} \tag{46}
\end{equation*}
$$

The 3 dB cut-off frequency ω_{0} determins of the relation $\left|H\left(\omega_{0}\right)\right|=\frac{1}{\sqrt{2}} \cdot|H(\omega)|_{\max }$ i.e. $\left|H\left(\omega_{0}\right)\right|=\frac{1}{\sqrt{2}} \cdot|H(0)|$ in our example. For convenience in this example we can rewrite this condition as:

$$
\begin{equation*}
\left|H\left(\omega_{0}\right)\right|^{2}=\frac{1}{2} \cdot|H(0)|^{2} \tag{47}
\end{equation*}
$$

Eqns. (45)-(47) give:

$$
\begin{equation*}
\frac{g_{m}^{2}}{g_{d s}^{2}+\omega_{0}^{2} C_{L}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}+\omega_{0}^{2} C_{g s 2}^{2}}+1\right)=\frac{1}{2} \cdot \frac{g_{m}^{2}}{g_{d s}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right) \tag{48}
\end{equation*}
$$

Rewriting eqn. (48) gives:

$$
\begin{equation*}
\frac{1}{1+\left(\frac{\omega_{0} C_{L}}{g_{d s}}\right)^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}\left(1+\left(\frac{\omega_{0} C_{g s 2}}{g_{d s}}\right)^{2}\right)}+1\right)=\frac{1}{2} \cdot\left(\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right) \tag{49}
\end{equation*}
$$

As $C_{L} \gg C_{g s 2}$ we put $C_{g s 2}$ to zero which gives the approximation:

$$
\begin{equation*}
\frac{1}{1+\left(\frac{\omega_{0} C_{L}}{g_{d s}}\right)^{2}} \approx \frac{1}{2} \tag{50}
\end{equation*}
$$

Eqn. (5) gives the 3 dB cut-off frequency:

$$
\begin{equation*}
\omega_{0} \approx \frac{g_{d s}}{C_{L}} \Rightarrow f_{3 d B} \approx \frac{g_{d s}}{2 \pi C_{L}} \tag{51}
\end{equation*}
$$

The noise-bandwidth concept gives that:

$$
\begin{equation*}
P_{\text {out }, \text { noise }} \approx R_{\text {out }} \cdot\left|H\left(\omega_{0}\right)\right|^{2} \cdot \frac{\pi}{2} \cdot f_{3 d B}=\frac{8 k T}{3} \frac{1}{g_{m}} \cdot \frac{g_{m}^{2}}{g_{d s}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right) \cdot \frac{\pi}{2} \cdot \frac{g_{d s}}{2 \pi C_{L}} \tag{52}
\end{equation*}
$$

Which gives the answer:

$$
\begin{equation*}
\underline{\underline{P_{\text {out }, \text { noise }}} \approx \frac{2 k T}{3} \cdot \frac{g_{m}}{g_{d s}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right) \cdot \frac{1}{C_{L}}} \tag{53}
\end{equation*}
$$

c) As $g_{m} \sim \sqrt{I_{D}}$ and $g_{d s} \sim I_{D}$ and $I_{D}=I_{\text {bias }}$ in this example we have:

$$
\begin{equation*}
P_{\text {out }, \text { noise }} \sim \frac{1}{\sqrt{I_{\text {bias }}}}\left(\frac{1}{I_{\text {bias }}}+1\right) \tag{54}
\end{equation*}
$$

Obviously $P_{\text {out }, \text { noise }}$ will decrese if $I_{\text {bias }}$ is increased.
The DC gain is

$$
|H(0)|=\left(\frac{g_{m}^{2}}{g_{d s}^{2}}\left(\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right)\right)^{\frac{1}{2}}
$$

I.e.

$$
\begin{equation*}
|H(0)|^{2} \sim \frac{1}{I_{\text {bias }}}\left(\frac{1}{I_{b i a s}}+1\right) \tag{55}
\end{equation*}
$$

Which shows that also the DC gain will decrease if $I_{\text {bias }}$ is increased.

