
SOLUTIONS. Exam Aug 10, 2006

TSTE80 Analog and Discrete-time Integrated Circuits.

Excercise 1.

a) A PMOS transistor is saturated when VSD > Veff = VSG − Vtp.

Transistor M1: VSD1 = VDD − Vx = VSG1 i.e. VSD1 > VSG1 − Vtp1, so M1 works in

saturation.

Transistor M2: VSD2 = Vx − Vbias = VSG2 i.e. VSD2 > VSG2 − Vtp2, so M2 works in

saturation.

A NMOS transistor is saturated when VDS > Veff = VGS − Vtn.

Transistor M3: VDS3 = Vbias − 0 = VGS3 i.e. VDS3 > VGS3 − Vtn3, so M3 works in

saturation.
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Figure 1: A bias circuit.

b) First note that ID1 = ID2 = ID3 = ID

Transistor M1: VSB1 = 0 i.e. Vtp1 = Vt0p.

Enclosed page of formulas gives:

(

W

L

)

1

=
ID

1
2µ0pCoxpV 2

eff1(1 + λp(VSD1 − Veff1))
(1)

ID = 5 µ A, µ0pCoxp = 58.5 µ A/V2,

1



Veff1 = VSG1 − Vt0p = VDD − Vx − Vt0p = 3.3 − 0.6 − 0.62 = 2.08 V ,

λp = 0.05.

Further VSD1 = VSG1 gives VSD1 − Veff1 = Vt0p = 0.62 V.

Now equation (1) gives:
(

W

L

)

1

≈ 0.42 (2)

Transistor M2: VSB2 = VS2 − VB2 = Vx − VDD = −1.25 V.

Enclosed page of formulas gives:

Vtp2 = Vt0p + γ(
√

2φF − VSB2 −
√

2φF ) = 0.62 + 0.41(
√

2.07 −
√

0.82 = 0.8386 V (3)

(

W

L

)

2

=
ID

1
2µ0pCoxpV 2

eff2(1 + λp(VSD2 − Veff2))
(4)

ID = 5 µ A, µ0pCoxp = 58.5 µ A/V2,

Veff2 = VSG2 − Vtp2 = Vx − Vbias − Vtp2 = 2.05 − 0.6 − 0.8386 = 0.6114 V ,

λp = 0.05.

Further VSD2 = VSG2 gives VSD2 − Veff2 = Vtp2 = 0.8386 V.

Now equation (4) gives:
(

W

L

)

2

≈ 0.44 (5)

Transistor M3: VBS3 = 0 i.e Vtn3 = Vt0n = 0.47.

(

W

L

)

3

=
ID

1
2µ0nCoxnV 2

eff3(1 + λn(VDS3 − Veff3))
(6)

ID = 5 µ A, µ0nCoxn = 180 µ A/V2,

Veff3 = VGS3 − Vt0n = Vbias − 0 − Vtp2 = 0.6 − 0.47 = 0.13 V ,

λn = 0.03.

Further VDS3 = VGS3 gives VDS3 − Veff3 = Vt0n = 0.47 V.

Now equation (6) gives:
(

W

L

)

3

≈ 3.24 (7)

Answer:
(

W
L

)

1
≈ 0.42,

(

W
L

)

2
≈ 0.44 and

(

W
L

)

3
≈ 3.24
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Exercise 2.
Figure 2 gives the complete small signal equivalent circuit (SSEC):

Notice that:

• Vgs1 = Vg1 − Vs1 = Vin

• Vgs2 = Vg2 − Vs2 = Vin

• Vgs3 = 0 − Vs3 = −Vx

• Vgs4 = 0 − Vs4 = −Vy
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Figure 2: Small signal equivalent circuit.

Determine rin

KCL gives:

Iin = gm3(−Vx) + (Vin − Vx)gds3 (8)

Iin = Vingm1 + Vxgds1 (9)

Equations (8) and (9) give the input resistance:

rin =
Vin

Iin

=
gds1 + gds3 + gm1

gm1(gds3 + gm3) + gds1gds3
(10)

Determine rout (OBS! Put Vin to zero when calculating rout)

KCL gives:

Iout = gm4(−Vy) + (Vout − Vy)gds4 (11)

Iout = Vingm2 + Vygds2 (12)

Putting Vin = 0 gives the output resistans:

rout =
Vout

Iout

=
gds2 + gds4 + gm4

gds2gds4
(13)
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Exercise 3.

a) This exercise is solved using the charge redistribution analysis. First, the reference

direction of the charge is chosen. Next, the charge of the capacitors are computed for

time t, t + τ , and t + 2τ .































 
























 

C1 C1

C2 C2

C3 C3

Vin Vin

Vout Vout

− −

+ +

+
+

+ +

+
+

+
+

++

+
+

−
−

−−

−
−

−
−

− −

−
−

Clock phase 1 Clock phase 2

Figure 3: A switched-capacitor circuit in clock phase 1 and clock phase 2.

For time t:
q1(t) = (Vin(t) − 0)C1

q2(t) = (Vout(t) − 0)C2

q3(t) = (0 − Vin(t))C3

(14)

For time t + τ :
q1(t + τ) = (Vin(t + τ) − 0)C1

q2(t + τ) = (Vout(t + τ) − 0)C2

q3(t + τ) = (0 − 0)C3

(15)

For time t + 2τ :
q1(t + 2τ) = (Vin(t + 2τ) − 0)C1

q2(t + 2τ) = (Vout(t + 2τ) − 0)C2

q3(t + 2τ) = (0 − Vin(t + 2τ))C3

(16)

Equations for the charge conservation:

1)The capacitors can not discharge through the opamp, so the total charge on the ca-

pacitors att the end of clock cycle 1 is equal to the total charge on the capacitors during

the whole clock cycle 2:

−q1(t) − q2(t) − q3(t) = −q1(t + τ) − q2(t + τ) − q3(t + τ) (17)

2) Since no charge can be given by opamp the total charge on C1 and C2 must be the

same at t + 2τ as at t + τ :

−q2(t + τ) − q3(t + τ) = −q2(t + 2τ) − q3(t + 2τ) (18)

Equations (14) and (15) together with equation(17) give:

Vin(t)C1 + Vout(t)C2 − Vin(t))C3 = Vin(t + τ)C1 + Vout(t + τ)C2 (19)

Equations (15) and (16) together with equation(18) give:

Vin(t + τ)C1 + Vout(t + τ)C2 = Vin(t + 2τ)C1 + Vout(t + 2τ)C2 (20)
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Equations (19) and (20) yields:

Vin(t)C1 + Vout(t)C2 − Vin(t))C3 = Vin(t + 2τ)C1 + Vout(t + 2τ)C2 (21)

Setting 2τ = T gives the differens equation:

C1Vin(t) + C2Vout(t) − C3Vin(t) = C1Vin(t + T ) + C2Vout(t + T ) (22)

Z-transforming (22) gives:

C1Vin(z) + C2Vout(z) − C3Vin(z) = C1zVin(z) + C2zVout(z) (23)

Rewriting (23):

Vout(z) =
C1 − C3 − zC1

−C2 + zC2
· Vin

Using that C3 = 2C1 finally gives:

Vout(z) = −C1(z + 1)

C2(z − 1)
· Vin (24)

b) Switches, capacitors, and the operational amplifier introduce parasitic capacitors into

the circuit as is shown in Figure 4.
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Figure 4: SC-circuit with parasitics in clock phase 1.

– Cpa is connected between the ideal input voltage source and ground where the

input source can source/sink as much charge as is required. Hence, this parasitics

do not change the transfer function.

– Cpb is in parallel with C3 and thereby it will change the transfer function.

– Cpc is connected between ground and virtual ground thereby not change the trans-

fer function.

– Cpd is always connected to the ideal output of the operational amplifier and ground

and thereby will not be a part of the transfer function.

Hence, the circuit is sensitive to capacitive parasitics when the transfer function is of

concern.
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Exercise 4.

a) Using KCL in node A and node B respectively in Figure 5 gives:

A: gmIVin + (gI + sCI)Vx + sCc(Vx − Vout) = 0 (25)

B: gmIIVx + (gII + sCII)Vout + sCc(Vout − Vx) = 0 (26)
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Figure 5: A small-signal model of a two-stage OTA.

Equation (26) gives:

Vx = −gII + sCII + sCc

gmII − sCc

(27)

Equation (27) inserted in (25) gives the transfer function:

H(s) =
Vout

Vin

=
gmI(gmII − sCc)

gIgII + s((CII + Cc)gI + (CI + Cc)gII + CcgmII) + s2(CICII + Cc(CI + CII))

(28)

b) Assuming that gmII >> gI , gmII >> gII , gmII >> gI , Cc >> CI , CII >> CI and that

CII and Cc is of the same order, equation (28) gives:

H(s) =
Vout

Vin

=
gmI(gmII − sCc)

gIgII + sCcgmII + s2CcCII

(29)

s = 0 in equation (29) gives the DC gain:

A0 =
gmIgmII

gIgII

(30)

The nominator i equation (29) gives one zero z1 at

z1 =
gmII

Cc

(31)

To determine the poles look at the denominator N(s) of equation (29):

N(s) = gIgII + sCcgmII + s2CcCII = CcCII(
gIgII

CcCII

+ s
gmII

CII

+ s2) (32)

With the poles p1 and p2 the denominator can be written as:

CcCII(s − p1)(s − p2) = CcCII(p1p2 − (p1 + p2)s + s2) (33)
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As |p2| >> |p1| equation (33) can be approximated as:

CcCII(p1p2 − (p1 + p2)s + s2) ≈ CcCII(p1p2 − p2s + s2) (34)

Identification between equations (32) and (34):

p2 = −gmII

CII

(35)

p1p2 =
gIgII

CcCII

⇒ p1 = − gIgII

gmIICc

(36)

As |p2| >> |p1| the unity-gain frequency ωu is approximately given by ωu ≈ A0|p1| i.e.

ωu ≈ A0|p1| =
gmIgmII

gIgII

· gIgII

gmIICc

=
gmI

Cc

(37)

Answer:

A0 =
gmIgmII

gIgII

, z1 =
gmII

Cc

, p1 = − gIgII

gmIICc

, p2 = −gmII

CII

, ωu ≈ gmI

Cc

(38)

Exercise 5.

a) Figure 6a gives a small-signal equivalent circuit, including noie-sources.

  







 





 

 





 



 

gm1Vin
gm2Vxg1 Vx g2

1
sCgs2

1
sCL

R2
n1

R2
n1

R2
n2

R2
n2

H1 H2

Vin
Vout

+
++

−− −

a)

b)

Figure 6: a) A small-signal equivalent. b) Equivalent circuit for determing output noise spectral

density

As the noise sources are uncorrelated the output noise spectral density can be computed

as Figure 5b) discribes, i.e. by the following formula

Rout(ω) = |H1(ω)|2|H2(ω)|2Rn1(ω) + |H2(ω)|2Rn2(ω) (39)

where H1(ω) is the transfer function for the first stage and H2(ω) the transfer function

for the second stage.
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From Figure 5a) H1(s) = Vx(s)/Vin(s) and Vx(s) = −gm1Vin(s) · 1
gds1+sCgs2

which yiels

H1(s) = − gm1

gds1 + sCgs2
⇒ H1(ω) = − gm1

gds1 + jωCgs2
(40)

In the same way H2(s) is calculated to:

H2(s) = − gm2

gds2 + sCL

⇒ H2(ω) = − gm2

gds2 + jωCL

(41)

Equations (39)-(41) gives following spectral density of the output noise (here we also

utilize that gm1 = gm2 = gm and gds1 = gds2 = gds):

Rout(ω) = Rn1(ω)
g2

m

g2
ds + ω2C2

gs2

· g2
m

g2
ds + ω2C2

L

+ Rn2(ω)
g2

m

g2
ds + ω2C2

L

(42)

Using that Rn1(ω) = Rn2(ω) = 8kT
3

1
gm

(from enclosed page of formulas) equation (42)

gives:

Rout(ω) =
8kT

3
· 1

gm

· g2
m

g2
ds + ω2C2

L

(

g2
m

g2
ds + ω2C2

gs2

+ 1

)

(43)

Which gives the answer:

Rout(ω) =
8kT

3
· gm

g2
ds + ω2C2

L

(

g2
m

g2
ds + ω2C2

gs2

+ 1

)

(44)

b) Equation (43) gives the amplitude spectrum of the circuit:

|H(ω)| =

(

g2
m

g2
ds + ω2C2

L

(

g2
m

g2
ds + ω2C2

gs2

+ 1

))
1

2

(45)

Eqn.(45) shows that we have a lowpass-filter with maximum at ω = 0 and that

|H(0)| =

(

g2
m

g2
ds

(

g2
m

g2
ds

+ 1

))
1

2

(46)

The 3 dB cut-off frequency ω0 determins of the relation |H(ω0)| = 1
√

2
· |H(ω)|max i.e.

|H(ω0)| = 1
√

2
· |H(0)| in our example. For convenience in this example we can rewrite

this condition as:

|H(ω0)|2 =
1

2
· |H(0)|2 (47)

Eqns. (45)-(47) give:

g2
m

g2
ds + ω2

0C2
L

(

g2
m

g2
ds + ω2

0C2
gs2

+ 1

)

=
1

2
· g2

m

g2
ds

(

g2
m

g2
ds

+ 1

)

(48)

Rewriting eqn. (48) gives:

1

1 +
(

ω0CL

gds

)2









g2
m

g2
ds

(

1 +
(

ω0Cgs2

gds

)2
) + 1









=
1

2
·
(

g2
m

g2
ds

+ 1

)

(49)
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As CL >> Cgs2 we put Cgs2 to zero which gives the approximation:

1

1 +
(

ω0CL

gds

)2 ≈ 1

2
(50)

Eqn. (5) gives the 3 dB cut-off frequency:

ω0 ≈ gds

CL

⇒ f3dB ≈ gds

2πCL

(51)

The noise-bandwidth concept gives that:

Pout,noise ≈ Rout · |H(ω0)|2 ·
π

2
· f3dB =

8kT

3

1

gm

· g2
m

g2
ds

(

g2
m

g2
ds

+ 1

)

· π

2
· gds

2πCL

(52)

Which gives the answer:

Pout,noise ≈ 2kT

3
· gm

gds

(

g2
m

g2
ds

+ 1

)

· 1

CL

(53)

c) As gm ∼
√

ID and gds ∼ ID and ID = Ibias in this example we have:

Pout,noise ∼ 1√
Ibias

(

1

Ibias

+ 1

)

(54)

Obviously Pout,noise will decrese if Ibias is increased.

The DC gain is

|H(0)| =

(

g2
m

g2
ds

(

g2
m

g2
ds

+ 1

))
1

2

I.e.

|H(0)|2 ∼ 1

Ibias

(

1

Ibias

+ 1

)

(55)

Which shows that also the DC gain will decrease if Ibias is increased.
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