SOLUTIONS. Exam Aug 10, 2006

TSTES80 Analog and Discrete-time Integrated Circuits.

Excercise 1.

a) A PMOS transistor is saturated when Vsp > Vepy = Veg — V.

Transistor M1: Vspi = Vpp — Vo = Vsg1 1.e. Vspr > Vsgi — Vipi, so M1 works in

saturation.

Transistor M2: Vgpo
saturation.

A NMOS transistor is saturated when Vpg > Ve = Vigs — Vip.

Ve — Viias = Vsga 1.e. Vgpo > Vgao — thg, so M2 works in

Transistor M3: Vpgs = Vias — 0 = Vags i.e. Vpgs > Vags — Vins, so M3 works in

saturation.
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Figure 1: A bias circuit.

b) First note that Ip, = Ipy = Ips = Ip

Transistor M1: Vgpy = 01i.e. Vip1 = Vigp.

Enclosed page of formulas gives:

E—
L/, %MOI)CO’L'PVlefl(l + Xp(Vsp1 — Vegyi))

Ip =5 uA, popCosp = 58.5 1 AIV?,

(1)



Verri =Vsar — Viop = Vop — Vo — Viop = 3.3 0.6 — 0.62 =2.08V,
A, = 0.05.
Further VSDl = V5G1 gives VSDl — Veffl = VtOp =0.62V.

w
(1) ~on ®

Now equation (1) gives:

Transistor M2: Vsgs = Vga — Vo =V, — Vpp = —1.25 V.

Enclosed page of formulas gives:

Vipz = Viop + 7(\/20F — Vspa — /2¢r) = 0.62 + 0.41(v/2.07 — V0.82 = 0.8386 V  (3)

<W> - I @
L)y 510pCorpVipo(1+Np(Vspa — Veysa))

Ip =5 A, 110pCosp = 58.5 j1 A/IVZ,
Verrr = Vsaz — Vipz = Ve — Vaias — Vipz = 2.05 — 0.6 — 0.8386 = 0.6114 V
Ay = 0.05.
Further Vsps = Vsaa gives Vaps — Vegra = Vipe = 0.8386 V.
Now equation (4) gives:
(W) ~ 0.44 5)
2

L

Transistor M3: Vgg3z = 01i.e Vi3 = Vig, = 0.47.

<W> - I ®)
L 3 %/’LOnCoanfffg(l + An(‘/DS?) - ‘/eff?)))

Ip =5 A, p10nCopn = 180 1 A/V?,
Verrs = Vass — Vion = Viias =0 — Vipa = 0.6 = 0.47 =013V,

An = 0.03.
Further Vpgs = Viggs gives Vpss — Verss = Vion = 047 V.
Now equation (6) gives:
(‘2’)3 ~3.24 %)

Answer: (1), ~ 042, (*f), ~0.44 and (), ~ 3.24




Exercise 2.

Figure 2 gives the complete small signal equivalent circuit (SSEC):
Notice that:

o Vi1 =V —Va =YV,
o Via=Vp Vo=V
o Viss=0-Viz ==V,
o Vysu=0—-Vyu=-V,

Iin D3 G3 G4 D4 Iout
o——@ < olo —9 <O

+ +
Im3(—=Vz) 6’) 9ds3 § Ima(—=Vy) @l) Jds4 §
V;'n S3 G1 G2 S4 Vout
V:e———0 o0 ——9V,
D1 + D2
9m1Vin @) 9ds1 § Vi Gm2Vin @) 9ds2 §
(o L ) L —i— o > ® ’e)

Figure 2: Small signal equivalent circuit.

Determine r;,
KCL gives:

Iin, = gm,S(_V:c) + (‘/in - ‘/w)gds3
Iin = Vingmi + Vagast
Equations (8) and (9) give the input resistance:

V;,' _ 9ds1 + 9ds3 + Im1
i 9m1(9ds3 + 9m3) + 9ds19ds3

Tin =

Determine r,,; (OBS! Put V;,, to zero when calculating r,,;)
KCL gives:

Iout = gm4(_Vy) + (Vout - Vy)gds4
Iowe = ‘/inng + VygdSZ

Putting V;,, = 0 gives the output resistans:

r o Vout o 9ds2 + 9dsa + 9Ima4
= =
o Iout 9ds29ds4

(C))
9

(10)

(11)
(12)

(13)



Exercise 3.

a) This exercise is solved using the charge redistribution analysis. First, the reference
direction of the charge is chosen. Next, the charge of the capacitors are computed for
time t, ¢t + 7, and ¢ + 27.
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Figure 3: A switched-capacitor circuit in clock phase 1 and clock phase 2.

For time ¢:
q(t) = (Vin(t) = 0)C4
q2(t) = (Vout (t) — 0)Cy (14)
q3(t) = (0 = Vin(1))C3
For time ¢ + 7:
Gt +7) = (Via(t +7) = 0)C
Gt +7) = (Vour(t +7) = 0)C2 (15)
g3(t+7)=(0-0)Cs
For time ¢ + 27:
@1(t +27) = (Vi (t + 27) — 0)Cy
QQ(t + 27’) = (Vout(t + 27') — O)CQ (16)
q3(t+27) = (0 — Vi (t 4+ 27))C5

Equations for the charge conservation:

1)The capacitors can not discharge through the opamp, so the total charge on the ca-
pacitors att the end of clock cycle 1 is equal to the total charge on the capacitors during
the whole clock cycle 2:

—q1(t) = @2(t) = q3(t) = —qu(t +7) — @2t +7) — q3(t + 1) (17)

2) Since no charge can be given by opamp the total charge on C; and Cs must be the
same att+ 27 asatt+ 7:

—@(t+7) =gzt +7) = —q2(t +27) — q3(t + 27) (18)
Equations (14) and (15) together with equation(17) give:
‘/in (t)cl + Vout (t)c2 - ‘/zn (t))CS = Vvln(t + T)Cl + Vout (t + T)CQ (19)

Equations (15) and (16) together with equation(18) give:

Vin(t +7)C1 + Vour (t 4+ 7)Co = Vi (t + 27)C1 + Ve (t + 27)Co (20)



Equations (19) and (20) yields:

Vin(£)C1 + Vout (£)Co — Vi (8))C5 = Vi (t + 27)C1 + Ve (8 + 27)Co (21)
Setting 27 = T gives the differens equation:
C1Vin () + CoViout (t) — C3Vip(t) = C1Vip,(t + T) + CoVpue(t + 1) (22)
Z-transforming (22) gives:
C1Vin(2) + CoVour(2) — C3Vin(2) = C12Vin(2) + C22Vour(2) (23)
Rewriting (23):

o Cl — 03 — ZCl
Vout(z) — _02 + ZCQ m

Using that C3 = 2C finally gives:

Vo (2) = —;1) Vi (24)

b) Switches, capacitors, and the operational amplifier introduce parasitic capacitors into
the circuit as is shown in Figure 4.

Q

Figure 4: SC-circuit with parasitics in clock phase 1.

- C)p, is connected between the ideal input voltage source and ground where the
input source can source/sink as much charge as is required. Hence, this parasitics
do not change the transfer function.

- Cpp is in parallel with ('3 and thereby it will change the transfer function.

- (). is connected between ground and virtual ground thereby not change the trans-
fer function.

- C)q is always connected to the ideal output of the operational amplifier and ground
and thereby will not be a part of the transfer function.

Hence, the circuit is sensitive to capacitive parasitics when the transfer function is of
concern.



Exercise 4.

a) Using KCL in node A and node B respectively in Figure 5 gives:

A: gm[‘/zn + (gI + SCI)VCZ‘ + SCC(VCZ‘ - Vout) =0
B: gnLIIVz + (gll + SCII)Vout + SCC(Vout - Vz) =0
1
A | sCe B
+0—e o +
+ 1
Vin Im1Vin g1 § sé, Ve gmtVa grr Sén _ Vout
_C A — o —
L
Figure 5: A small-signal model of a two-stage OTA.
Equation (26) gives:
Voo gt sCrr + sC.

gmir — sCe
Equation (27) inserted in (25) gives the transfer function:

Vout _ gm](ngI - SC(')

H(S) =

(25)
(26)

27

Vi 91911 +s((Cr1 + Ce)gr + (Cr 4+ Ce)grr + Cegmir) + s2(C1Crp + Ce(Cr + Chyp))

(28)

b) Assuming that g1 >> g1, gmir >> gi1, gmir >> g1, Cc >> Cr, Cip >> Cp and that

Crr and C. is of the same order, equation (28) gives:

Vout _ gnLI(gmll - SCC)

Hs) = =
*) Vi 91911 + 5Cegmir + s2°C.Crr

s = 0 in equation (29) gives the DC gain:
AO _ ImigmII
91911
The nominator i equation (29) gives one zero z; at

o gmiIrI
Ce

Z1

To determine the poles look at the denominator N (s) of equation (29):

gi1gir
C.Crr

ImII
Crr

N(s) = grgr1 + 3Cegmrr + $>°CecCrr = C.Cry( +s

With the poles p; and p» the denominator can be written as:

C.Crr(s —p1)(s — p2) = C.Orr(p1p2 — (p1 + p2)s + s%)

+ 5%)

(29)

(30)

(31)

(32)

(33)



As |p2| >> |p1] equation (33) can be approximated as:

CeCrr(pipz — (p1 + p2)s + s%) = CcCrr(pips — pas + %)

Identification between equations (32) and (34):

Py = 9mII
s = -
Crr
Pips 91911 91911
1 = =
OCCU gmiII Cc

(34)

(35)

(36)

As |ps| >> |p1]| the unity-gain frequency w, is approximately given by w,, ~ Ag|p:|i.e.

wy ~ Aglpy| = Imigmil 91911 _ Gmi
b grgrr - gmirCe  Ce
Answer:
Ay = ImigmIil 2 = gmil pL = 91911 , = _9mil o ImI
91911 C.’ gmi11Ce’ Cu’ " C.

Exercise 5.

a) Figure 6a gives a small-signal equivalent circuit, including noie-sources.

Ry R},
O +
+o{¥)-o %)
Vvin gm1Vm g1 § sClgSQ :: Vx gm2Vr W) 92§ Scle :: Vout
a) -
RZ, | RZ,
% |H1 ® H,
b)

(37)

(38)

Figure 6: a) A small-signal equivalent. b) Equivalent circuit for determing output noise spectral

density

As the noise sources are uncorrelated the output noise spectral density can be computed

as Figure 5b) discribes, i.e. by the following formula
Rout(w) = [Hi(w)?|Ha(w)|* Ryt (w) + | Ha(w)]? Rpa(w)

(39)

where H;(w) is the transfer function for the first stage and Hs(w) the transfer function

for the second stage.



b)

From Figure 5a) H,(s) = V,(s)/Vin(s) and V,.(s) = —gm1Vin(s) - ——~~— which yiels

gas1+sCgs2

gm1 Im1
Hi(s)=———F—=>Hw)=——""""—— (40)
1( ) 9ds1 + SCgSQ 1( ) gds1 +jwcgs2

In the same way H(s) is calculated to:

9gm2

gm2
gas2 +sCL, 2(w)

Hy(s) = — -
2( ) 9ds2 + JWCL

Equations (39)-(41) gives following spectral density of the output noise (here we also
utilize that Im1 = Im2 = Im and 9ds1 = Jds2 = gds):

9z, 9z,

ggs + w20g252 ggs + O.)2C%

g2
+ Rpo(w)5—"5—5 (42)

Rout (w) == Rnl(w) g2 + w202
ds L

Using that R, (w) = Rpa(w) = %TTﬁ (from enclosed page of formulas) equation (42)
gives:

S8ET 1 g2 g2
Ry, =— — L = 1 43
t(w) 3 Im 935 _|_w20% (g?is +w20382 + (43)

Which gives the answer:

8kT Im 92
Roy = ‘ o 1 44
t(w) 3 9(215 + WQC% <g§8 + W2Cg252 + (44)

Equation (43) gives the amplitude spectrum of the circuit:
2 2 2
Im Im
H = 1 45
el <g§s + 0] <gzs i, )) “
Eqn.(45) shows that we have a lowpass-filter with maximum at w = 0 and that
a2 (g2 3
o - (2 (% 1))
9as \Yds
The 3 dB cut-off frequency wy determins of the relation |H(wg)| = % | H(w)|maz 1-€.
|H (wo)| = % -|H(0)| in our example. For convenience in this example we can rewrite
this condition as: )
[H(wo)? = 5 [H(O)P? ()
Eqns. (45)-(47) give:
2 2 2 2
om om 1 gm (gm )
+1)| = =222 +1 (48)
Jas +wiCF (935 +wiChe ) 2 g3, \9as
Rewriting eqn. (48) gives:
1 2 1 2
Im +1]==- (g;” + 1) (49)
2 9ds

2 2
v () (g (1 (222))



As O, >> Cys0 we put C,o to zero which gives the approximation:

1

1
— = B (50)
L ()
Eqn. (5) gives the 3 dB cut-off frequency:
9ds 9ds
N = ~ T 51
wo N o f3aB 220, (51)
The noise-bandwidth concept gives that:
SET 1 g% (g2 T Gds
Pou noisczRou - |H 2 z = —— = 1 = 52
£, ¢ |H(wo)l 5 J34B 5 g o2 <g25 + 5 3nC, (52)
Which gives the answer:
2kT  gm <g2 > 1
Pou noise ~ : = + 1) — (53)
" 3 gas \ g2 CL
¢) As g, ~Ip and g4s ~ Ip and Ip = I};,s in this example we have:
1 1
Pou noise ~ —F/—— | 7/ + 1 (54)
b V Tpias (IbiaS )
Obviously P,yt noise Will decrese if I,;, is increased.
The DC gain is
1
2 2 b
|H(0)| = (2 (2 + 1)>
gds gds
ILe. . )
H(0)|? ~ 1 55
| (0)| Ibias <Ibias * ) ( )

Which shows that also the DC gain will decrease if I, is increased.



