
Correct (?) solutions to
Written Test

TSTE80,
Analog and Discrete-time Integrated Circuits

Date May 28, 2003

Time: 8 - 12

Max. no of points: 70;
40 from written test,
15 for project, and 15 for assignments.

Grades: 30 for 3, 42 for 4, and 56 for 5.

Allowed material: All types of calculators except Lap Tops. All types of
tables and handbooks. The textbook Johns & Martin:
Analog Integrated Circuit Design.

Examiner: Lars Wanhammar.

Responsible teacher: Robert Hägglund.
Tel.: 0705 - 48 56 88.

Correct (?) solutions: Solutions and results will be displayed in House B,
entrance 25 - 27, ground floor.
Good Luck!



TSTE 80, Analog and discrete-time integrated circuits 20030528
Solutions

1. Large-signal analysis
The circuit in the Figure is a commonly used structure when designing
analog circuits. In all following exercises assume that transistor M1 is
biased in saturation. Also assume that the W/L ratio of transistor M2 is X
times larger than that of transistor M1, i.e., .
a) Derive the output voltage as a function of the factor X, i.e., ,

when transistor M2 is saturated. Express the output voltages in terms
of the current  and tr2ansistor design parameters, but not voltages
other than the power supply voltage.

The ratio between the current when both transistors are operating in the
saturation region is

(1.1)

The output voltage is then given by

(1.2)

b) Derive the output voltage as a function of the factor X, i.e., ,
when transistor M2 is operating in the linear region. Express the output
voltages in terms of the current  and transistor design parameters,
but not voltages other than the power supply voltage.

In the linear region the current is given by

(1.3)

while .
The transistor  is still in saturation, hence, the current is given by

. (1.4)

Solving for  yields

Student’s Instructions

The CMOS transistor operation regions, small signal parameters, and noise characteris-
tics are found on the last page of this test.

Generally, do not just answer yes or no to a short question. You always have to answer
with figures, formulas, etc., otherwise no or fewer points will be given.

Basically, there are few numerical answers to be given in this test.

You may write down your answers in Swedish or English.
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. (1.5)

Further, . The Eq. (1.3) can be reformulated to

(1.6)

which is

where

This is simplified to

c) Determine for which value of X transistor M2 switches from operating
in the saturation region to the linear region.

The value X for which the circuit switches from operating in the saturation
region to the linear region is when its source-drain voltage equals the
source-gate voltage minus the threshold voltage, i.e.,

(1.7)

The source-drain voltage is given by

(1.8)

while the gate-source voltage depends on  according to

(1.9)

which yields

(1.10)

Hence,
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(1.11)

and

. (1.12)

Solving for the X factor

. (1.13)

d) Sketch the output voltage as a function of the X, i.e., , for
.

For small values of  there will be a small current through the transistor
and thereby small voltage drop over the resistor and, hence, the transistor
will be in the saturation region. The output voltage will follow Eq. (1.2) for
small values of . Increasing the value of yields that the transistor will
start to operate in the linear region (for  larger than Eq. (1.13)). The
output voltage will then increase in a slower fashion according to the
equations in (b). Hence, the output voltage will in principle look like
Figure 1.1.

2. Small-signal analysis
The circuit in the Figure is going to be implemented in a CMOS process. The
parasitic of interest is the gate-source capacitor. The feedback amplifier has
a gain of –A where  is positive and . Further, assume that

.
a) Derive the transfer function of the circuit shown in Figure. Do not

neglect the bulk effects.
The small-signal model of the amplifier is shown in
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Figure 1.1 The output voltage as a function of the X factor.
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0=
The transfer function can be derived by using for example nodal analysis in
the nodes  and .

From the lowermost equation we can solve for

(2.1)

Inserting this into the other equation yields

which is simplified to

.

The transfer function is given by

b) Derive expressions for the DC gain, first pole, second pole, possible
zeros, and the unity-gain frequency in terms of , , , , , and

. Neglect the influence of the bulk effect.
The DC gain is after some approximations

Figure 2.1 Small-signal model of the gain-boosted folded-cascode amplifier.
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. (2.2)

The poles are found by some small approximation which holds if the poles
are separated which is the case here. The denominator of a two pole system
is

Using this approximation and identifying this with the transfer function
yields

while the second pole is given by

.

The unity-gain frequency is approximately given by

.

c) How is the phase margin effected if the bias current is increased, i.e.,
how is the phase effected at the unity-gain frequency of the circuit?

Increasing the current  yields larger unity-gain frequency. The second
pole is not effected by the increase . Hence, increased unity-gain
frequency yields larger contribution to the phase which yields a lower phase
margin.
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3. Noise Analysis
An operational amplifier is used in a CMOS circuit. Assume that the
OPamp is ideal.
a) Derive the transfer function of the circuit shown in Figure.
Using nodal analysis in the node where all capacitors are connected, ,
and at the positive input node of the operational amplifier, . equals

 since the operational amplifier is ideal.

.

From the second equation we have that

inserting this into the first equation yields

Hence, the transfer function is then

which is simplified to

b) Derive the equivalent thermal output noise spectral density of the
circuit. Assume that the operational amplifier is noiseless. The resistors
generates thermal noise according to .

The noise sources can either be a voltage noise source or a current noise
source. In this case we use a current noise source (but in principle it is not
any difference to use a voltage noise source). The current noise source has
the spectral density equal to

. (3.1)

In order to compute the equivalent output noise spectral density generated
by the resistors we need to compute the transfer functions from the noise
sources to the output of the filter (circuit). Then the transfer functions are
computed the total equivalent output noise spectral density is given by

(3.2)

Setting up the same equation as for finding the transfer function but using
the current noise sources as the input signal and the input signal, , is
zeroed yields the following transfer functions
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(3.3)

and

. (3.4)

Hence, the equivalent output noise spectral density is

.

4. Switched-capacitor circuit analysis
A switched capacitor circuit in clock phase1 is shown in Figure. The input
signal is sampled according to . Express the output
voltage, , for clock phase 1 of the switched capacitor circuit shown in
Figure. Assume that the OTA is ideal.
This exercise is solved using charge redistribution analysis. The reference
directions are shown in Figure 4.1.

First we express the charges over all capacitors at times instances , ,
and .

,
,
,

.
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Figure 4.1 The switched-capacitor circuit with reference directions.
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At time
,

,
,

.
Charge conservation yields

(4.1)

and

(4.2)

and

. (4.3)

The transfer function is found using the above equations. is solved from
Eq. (4.3)

(4.4)

which yields that . Inserting the charges into Eq. (4.1) and Eq.
(4.2) yields

and

Eliminating  from the two above equations yields

which can be reformulated into

We know that the input signal is sampled at , ,  and so on,
hence, .

further, the sampling period is .

Performing Z-transformation yields
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.

This results in the following transfer function

(4.5)

which is an accumulator.

5. A mixture of questions
a) You have designed and fabricated a digital-to-analog converter with

62dB SNR, where the noise power is dominated by the quantization
noise. The application requires 86dB SNR. How can you increase the
SNR of the data converter?

Increasing the number of effective bits in a data converter is usually
performed using oversampling. This is possible if the input signal frequency
is small so that it is possible to clock the data converter with as high
sampling frequency as required. Oversampling has the benefits of
spreading the quantization noise power over larger frequency range than
for a nyquist range data converter. By applying a filter to filter out the
signal band of interest the quantization noise is lowered which results in
increased SNR, i.e., higher effective resolution is obtained. In order to
further increase the effective number of bits in the data converter we can
apply noise shaping to the converter. This means that the signal transfer
function is not effected while the quantization noise is attenuated in the
signal range of interest while it is amplified in the signal range which is not
of concern.

b) Derive expressions for the common-mode and the output ranges of the
circuit shown in Figure in terms of currents, and , and transistor
parameters.T he amplifier circuit is symmetric with respect to the
transistor sizes, i.e.,  and so on.

The minimum input voltage in order to assure that all transistors are
operating in the saturation region is

.

The maximum input voltage for saturated transistors is

.

The common-mode range is .
The minimum output voltage to assure saturated transistors is

and the maximum output voltage is
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Hence, the output range is .

c) A three terminal switch, Figure(a), is realized with two PMOS devices,
Figure(b), in an SC circuit. The gates of the transistors are connected to
the clocks  and , respectively. The waveforms for two different
types of 2-phase clocks are shown in Figure(c) and (d), where is solid
and is dashed. Which of these two 2-phase clocks ((c) or (d)) should be
used in order to guarantee a good operation of the SC circuit. Motivate
your answer carefully

(c) is the correct operation since otherwise both of the switches will be on at
the same time which is not the desired operation. Hence, we like to have
non-overlapping clocks in order to guarantee good operation.
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