Written Test TSTE80, Analog and Discrete-time Integrated Circuits

Date:	January 12, 2006	
Time:	8-12	
Place:	TER2	
Max.no of points:	70; 40 from written test, 15 for project, 15 from assignments	
Grades:	30 for 3, 42 for 4, and 56 for 5.	
Allowed material:	All types of calcuclators except laptops. All types of official tables and handbooks. Textbooks: Johns & Martin: Analog Integrated Circuit Design. Razavi: Design of Analog CMOS Integrated Circuits. Sedra&Smith: Microelectronic Circuits. Dictionaries.	
Examiner:	Sune Söderkvist	
Responsible teacher:	Sune Söderkvist Tel.: 281355.	
Corrrect (?) solutions:	Solutions and results will be displayed in House B, entrance 25-27, ground floor.	

Students instructions

- The CMOS transistor operation regions, small-signal parameters, and noise characteristics are found on the last page of this exam.
- Generally, do not just answer yes or no to a short question. You always have to answer with figures, formulas etc., otherwise no or fewer points will be given.
- You may write down your answers in Swedish or English.

Good Luck!

1. Large-signal analysis

For the amplifier in **Figure 1**, $0 \le V_{in} \le 1.5$ V and $V_{DD} = 3$ V. The transistors have following parameter values:

	N-channel	P-channel
$V_{T,0}$	0.5 V	0.6 V
$\mu_0 C_{ox}$	20 nA/V^2	6 nA/V^2
λ	$0.03 \ V^{-1}$	$0.05 \ V^{-1}$
γ	$0.5 \ V^{1/2}$	$0.3 \mathrm{V}^{1/2}$
ϕ_F	0.4 V	0.4 V

- a) Let $V_{bias1} = 2.5$ V and $V_{bias2} = 2$ V and determine the output swing, i.e. $V_{out,min}$ and $V_{out,max}$, when both transistors are operating in the saturation region. (3p)
- b) Determine W/L for both transistors if their drain currents shall be limited to $I_D \le 0.1$ μ A at the limit of saturation. $V_{bias1} = 2.5$ V and $V_{bias2} = 2$ V. (3p)
- c) Determine the limit values of V_{bias1} and V_{bias2} allowing both M1 and M2 to operate in the saturation region, independent of the variations of V_{in} . ($0 \le V_{in} \le 1.5 \text{ V}$) (2p)

Figure 1: Amplifier.

2. Small-signal analysis

Once again, look at the capacitive-loaded amplifier in **Figure 1**. Assume that the transistors small-signal parameters are g_{m1} , g_{mbs1} , g_{ds1} and g_{m2} , g_{mbs2} , g_{ds2} respectively.

- a) Sketch a small-signal equivalent circuit and determine an exact expression for the transfer function $H(s) = V_{out}(s)/V_{in}(s)$. The bulk effect can **not** be neglected. However, all capacitors but C_L can be neglected. Also, determine the DC gain. (4p)
- b) Determine an exact expression for the small-signal input impedance, $Z_{in}(s)$. (3p)
- c) Determine an exact expression for the small-signal output resistance, r_{out} . (1p)

3. Noise in CMOS circuits

The transistors M1 and M2 in the circuit shown in **Figure 2** generate thermal noise while the biasing voltage V_{b1} and the biasing currents I_{bias1} and I_{bias2} are assumed to be noise less. Both transistors are biased in saturation and are here modeled by the small-signal parameters g_m and g_{ds} .

- a) Derive the total output noise spectral density.
- (5p)
- b) Which transistor gives the largest contribution of the generated noise if the input referred noise spectral density is considered? (1p)
- c) Propose one approach to increase the maximum signal-to-noise ratio, SNR for the circuit shown in Figure 2 without changing the input signal power. Which design parameters should be changed to obtain this improvement? (2p)

Figure 2: A noisy analog circuit.

4. Switched Capacitor Circuit

A switched capacitor circuit in clock phase 1, i.e., time t, $t + 2\tau$, $t + 4\tau$, etc. is shown in **Figure 3**. Assume that the input signal is constant between clock phase 1 and 2, i.e., $V_{in}(t) = V_{in}(t + \tau)$.

- a) Express the output voltage, $V_{out}(z)$, as a function of the input voltage, $V_{in}(z)$, for clock phase 1 of the switched capacitor circuit shown in **Figure 3**. Assume that the operational amplifier is ideal. Motivate your answer carefully. (4p)
- b) Is the circuit insensitive to capacitive parasitics? Motivate your answer carefully. (1p)
- c) Express the output voltage, $V_{out}(z)$, as a function of the input voltage, $V_{in}(z)$ and offset voltage, V_{os} , for clock phase 1 of the switched capacitor circuit shown in **Figure 3**. Assume that the OTA suffers from an offset voltage, V_{os} . (3p)

Figure 3: An SC circuit in clock phase 1.

5. A mixture of questions

a) In an active RC filter we need to have an operational amplifier with the following performance

Performance measure	Value
A ₀	80 dB
f_u	$100 \mathrm{~MHz}$
C_L	5 pF
Slew rate	80 V/ μs
Output range	[0.5 - 2.8] V
Common-mode range	[0.1 - 2.0] V
V_{DD}	$3.3 \mathrm{V}$
Power consumption	$\leq 10 \ \mathrm{mW}$

How would you design the operational amplifier? Draw the block diagram of the operational amplifier and give a specification of each block in your design, like the one above and the name of the type of building block and the type of the input transistors. (3p)

- b) The same task as in a) but here we have an operational transconductance amplifier that will be used in an SC filter. (2p)
- c) In analog filters tuning circuits are commonly used. Explain why tuning is required in analog circuits. Also, explain the basic principle of tuning in analog active-RC filters.

(2p)

d) State benefits and drawbacks with fully differential circuit compared with their singleended counterpart. (1p)

Transistor formulas and noise

1 CMOS transistors

Current and threshold voltage formulas and operating regions for an NMOS transistor

Cut-off:	$V_{GS} < V_T$	$I_D \approx 0$
Linear:	$V_{GS} - V_T > V_{DS} > 0$	$I_D \approx \frac{\mu_0 C_{ox}}{2} \frac{W}{L} (2(V_{GS} - V_T) - V_{DS}) V_{DS}$
Saturation:	$0 < V_{GS} - V_T < V_{DS}$	$I_D \approx \frac{\mu_0 C_{ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$
All regions:	$V_T = V_{T,0} + \gamma(\sqrt{2\phi_F} -$	$\overline{V_{BS}} - \sqrt{2\phi_F}$

Small-signal parameters

2 Circuit noise

Thermal noise in CMOS transistors

The thermal noise spectral density at the gate of a CMOS transistor is

$$\frac{v^2}{\Delta f} = \frac{8kT}{3} \frac{1}{g_m}$$

Thermal noise in resistors

The thermal noise spectral density of a resistor is modeled as a parallel noise current source

$$\frac{\bar{i^2}}{\Delta f} = \frac{4kT}{R}$$

Flicker noise in CMOS transistors

The flicker noise spectral density at the gate of a CMOS transistor is

$$\frac{\overline{v^2}}{\Delta f} = \frac{K}{WLC_{ox}f}$$