

Student's Instructions

The CMOS transistor operation regions, small signal parameters, and noise characteristics are found on the last page of this test.
Generally, do not just answer yes or no to a short question. You always have to answer with figures, formulas, etc., otherwise no or fewer points will be given.
Basically, there are few numerical answers to be given in this test.
You may write down your answers in Swedish or English.
NOTE: Exercise 6 is only for those that have taken the course before 2002, and have not handed in more than one assignment during the course.

Exercise

1.

Transistor formulas and noise

CMOS transistors
Current formulas and operating region
Cut-off:

$$
V_{G S}<V_{T} \quad I_{D} \approx 0
$$

Linear:

$$
V_{G S}-V_{T}>V_{D S}>0 \quad I_{D} \approx \frac{\mu_{0} C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(2\left(V_{G S}-V_{T}\right)-V_{D S}\right) \cdot V_{D S}
$$

Saturation:

$$
0<V_{G S}-V_{T}<V_{D S} \quad I_{D} \approx \frac{\mu_{0} C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(V_{G S}-V_{T}\right)^{2} \cdot\left(1+\lambda V_{D S}\right)
$$

Small-signal parameters

Linear region:

$$
g_{m} \approx \mu_{0} C_{o x} \cdot \frac{W}{L} \cdot V_{D S} \quad g_{d s} \approx \mu_{0} C_{o x} \cdot \frac{W}{L} \cdot\left(V_{G S}-V_{T}-V_{D S}\right)
$$

Saturation region:

$$
g_{m}=\frac{d I_{D}}{d V_{G S}} \approx \sqrt{2 \mu_{0} C_{o x} \frac{W}{L} I_{D}} \quad g_{d s}=\frac{d I_{D}}{d V_{D S}} \approx \lambda I_{D}
$$

Circuit noise

Thermal noise
The thermal noise spectral density at the gate of a CMOS transistor is

$$
\frac{\overline{v^{2}}}{\Delta f}=\frac{8 k T}{3} \cdot \frac{1}{g_{m}}
$$

Flicker noise
The flicker noise spectral density at the gate of a CMOS transistor is

$$
\frac{\overline{v^{2}}}{\Delta f}=\frac{K}{W L C_{o x} f}
$$

