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Continuous-time Filters

Description

This chapter contains the solutions for ATIK lessons on continuous-time filters. The relevant theory as well
related/identical exercises can be found in [1], [2]. The exercises are intended to stress the advantages of
active-filter circuits, methodology of translating a given filter specification into an opamp based circuit. The
exercises also draw attention to the sensitiviy of filter structures to element mismatches. Along with each
solution, the pertinent sections in the reference text books are indicated as an aid to the students.
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1 First-order filter

The related theory for this exercise is given in pp. 87-88 of [1]. Following are the advantages of active-filter
implementation

• Active filters can provide gain which passive structures are unable to do

• Higher-order filters can be realized by direct-cascading of lower order filters without any need for buffer-
ing. For cascading of passive filters, buffering is essential to provide isolation

• In active filters, poles and zeros can be placed independent of each other

• There are no restrictions on the pole or zero locations

• Ideal inverting integrator and differentiator can be realized only with active elements.

2 Bilinear transfer function

The related theory and numerical examples for this exercise are provided in pp 84-90 of [1]. The bilinear
transfer function is defined as

T (s) = K
s+ z1
s+ p1

(1)

Following can be said about the circuit diagrams (a)-(d) provided in the question

• Circuit (a) and (d) realize the same bilinear transfer function given by (1). But circuit (d) is more preferable
for implementing the given specification since DC biasing of the opamp is facilitated in circuit (d) by the
feedback resistor which connects the input and output terminals.In both the circuits, the pole and zero
can be set independently anywhere on the negative real axis.

• Circuits (b) and (c) realize second-order functions. The manner in which the capacitors are connected
determines the order of the transfer function realized.

• Transfer function of circuit (c) is given by (2).It has two negative real poles and zeros at origin and infinity.
Circuit (c) is a band-pass filter.

T (s) = − sC1R2

(sC1R1 + 1)(sC2R2 + 1)
(2)

• Transfer function of circuit (b) is given by (3). From (3), it is seen that the circuit has poles at s = 0
and s = ∞. The circuit provides infinite gain to the input at these two frequencies and hence is highly
nonlinear and thus useless from a theoretical perspective. The result of (3) is based on an unrealistic
device model and hence not valid.

T (s) = − (sC1R1 + 1)(sC2R2 + 1)

sC2R1
(3)

An active circuit realization of (1) is shown in Fig. 1. For the circuit in Fig. 1, the transfer function is given
by

T (s) = −C1

C2

s+G1/C1

s+G2/C2
(4)

from which we can identify z1 = G1/C1 = 1/C1R1, p1 = G2/C2 = 1/C2R2 and K = C1/C2. We are given

high-frequency gain = 20 dB and z1 = 1KHz, p1 = 10KHz. K = 10(20/20) = 10. The bilinear transfer function
for the given specification can be written as

T (s) = −10
s+ 2π · 1000Hz

s+ 2π · 10, 000Hz
(5)
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Figure 1: Active realization of bilinear transfer function

It is common practice to apply normalization the the element values and frequencies. The benefits and method
of normalization is found in pp. 11 of [1]. If the frequency parameter is scaled by ωs = 2π ·1000 rad/s, the result
is

T (s) = −10
sn + 1

sn + 10
(6)

where sn = s/ωs. Then we have normalized values given by 1/R1nC1n = 1, 1/R2nC2n = 10, C1n/C2n = 10.
Let C1 = 50 nF and recalling that the frequency is normalized by ωs = 2π · 1000 rad/s, we have

R1 =
1

2π · 1000 · 1 · 50 nF
= 318 Ω (7)

C2 = C1/10 = 5 nF (8)

R2 =
1

2π · 1000 · 10 · 5 nF
= 318 Ω (9)

We see that at the origin (DC), T (0) = −R2/R1 = −1 and at high frequencies T (∞) = −C1/C2 = −10.
The circuit in Fig. 1 is an inverting, high-pass filter.

3 Higher-order filters starting point

3.1 Effect of cascading

A cascade of passive RC-sections is shown in Fig. 2. Considering the effect of loading, we have

V3

V1
= T1(s)T2(s)

Zi2(s)

Zi2(s) + Zo2(s)
, (10)

where

T1(s) = T2(s) =
1

1 + sRC
(11)

Zi2(s) = R+
1

sC
(12)

Zo1(s) =
1

sC + 1
R

(13)

Thus the transfer function of the passive RC-cascade is given by

T (s) =
V3

V1
=

(

1

1 + sRC

)2 R+ 1
sC

(

R+ 1
sC

)

+
(

R
1+sCR

) =
1

(sRC)2 + 3sCR+ 1
(14)
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Figure 2: Cascade of passive RC-sections

Ideally i.e. for Zi2 = ∞ and Zo1 = 0, the transfer function of the cascade is

T1(s) = T2(s) =

(

1

1 + sRC

)2

=
1

(sRC)2 + 2sCR+ 1
(15)

From (15) and (14) we can conclude that the transfer function is significantly altered when loading effect is
considered. Thus passive filter sections are not suitable for cascading in order to realize higher-order filters
unless buffers (opamps) are utilized to isolate the sections. Active filter sections have the advantage that they
can be cascaded directly without the need for buffering.

3.2 Choice of poles

For the effect of loading to be negligible we need to ensure that Zi2 ≫ Zo1. Since we have two poles given by
R1C1 and R2C2,

R2 +
1

sC2
≫ 1

sC1 +
1
R1

(16)

4 Biquads

This exercise is same as Example 3.11 given in pp 107-109 of [1]. From the given break frequencies and the
20 dB/decade, we have p1 = 100 rad/s, p2 = 105 rad/s, z1 = 103 rad/s, z2 = 104 rad/s. The transfer function
for the second-order filter can be written as

T (s) = K
(s+ z1)(s+ z2)

(s+ p1)(s+ p2)
=

(s+ 103)(s+ 104)

(s+ 102)(s+ 105)
(17)

where K, the DC gain is 1, since T (0) = 0 dB. T (s) can be written as a product of bilinear functions as

T (s) = T1(s)T2(s) =
(s+ 103)

(s+ 102)
· (s+ 104)

(s+ 105)
(18)

For realizing the T1(s) and T2(s), we can use the inverting opamp circuit shown in Fig. 3. To realize the biquad,
we need to cascade two such structures.For the first section,

z1 =
1

R11C11
= 103 rad/s (19)

p1 =
1

R21C21
= 102 rad/s (20)

For the second section,

z2 =
1

R12C12
= 104 rad/s (21)

p2 =
1

R22C22
= 105 rad/s (22)

Let all capacitors be 0.01 µF . Then using (19)-(22), we can find the resistor values to be R11 = 100 kΩ,
R21 = 1 MΩ, R12 = 10 kΩ, R22 = 1 kΩ. The resulting circuit is shown in Fig. 4.
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Figure 3: Inverting opamp circuit

Figure 4: Biquad circuit realization

5 Tow-Thomas biquad

The theory and solution for this exercise are provided in pp 129-134 of [1].

5.1 Implement the Tow-Thomas filter circuit

We are provided with the block diagram to realize the transfer function, which should be used to implement
the ciruit with real components. We know that it is easy to realize an ideal, inverting integrator but not an ideal
non-inverting one. Since negative feedback is needed in all loops to ensure stability, it is not possible to use
two inverting integrators directly. In order to solve this difficulty, the block diagram provided in the question is
modified as shown in Fig. 5, where a non-inverting integrator is realized as a cascade of an inverting integrator
and an inverter. These are shown in Fig. 6 and Fig. 7 respectively. In addition to these circuits, we also need
a summer which can merge with the integrator as shown in Fig. 8. The module T1 shown in Fig. 8 realizes

Figure 5: Modified block digram using two inverting integrators and an inverter
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Figure 6: Inverting integrator

Figure 7: Inverter

Figure 8: Integrator-summer circuit
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Figure 9: Tow-Thomas biquad with normalized elements

Figure 10: Tow-Thomas biquad

VB = − 1

s+ 1
Q

(VL +HV1) (23)

From Fig. 5 we have −VL = − 1
sVB and VL = (−1)(−VL). The full circuit with normalized elements is shown in

Fig. 9. With the circuit elements labeled. the Tow-Thomas biquad is shown in Fig. 10.

5.2 Derive low-pass and band-pass transfer functions

Analysis of Fig. 10, provides the following relations,

VB = − 1

sC1 + 1/R1

(

VL

R2
+

V1

R3

)

(24)

−VL = − 1

sC2

VB

R4
(25)

VL = −R5

R5
(−VL) (26)
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From (24)-(26), we have,

VL = (−1) · − 1

sC2

VB

R4
=

1

sC2R4
· − 1

sC1 + 1/R1

(

VL

R2
+

V1

R3

)

(27)

Re-arranging the terms in (27) we get the low-pass transfer function TL(s),

TL(s) =
VL

V1
= − R1R2/R3

s2R1C1R2C2R4 + sR2C2R4 +R1
(28)

Dividing numerator and denominator of (28) by R1C1R2C2R4, we get the final form of the low-pass transfer
function as

TL(s) = − 1/(R3R4C1C2)

s2 + s/(R1C1) + 1/(R2R4C1C2)
(29)

To derive the band-pass transfer function we divide numerator and denominator of (25) by V1,

−VL

V1
= − 1

sC2

VB

R4V1
= − 1

sC2R4

VB

V1
(30)

which gives

−TL(s) = − 1

sC2R4
TB(s) (31)

The band-pass transfer function can then found using (31) and (29) as

TB(s) = (−sC2R4) · −TL(s) = − (R1/R3) · s/(R1C1)

s2 + s/(R1C1) + 1/(R2R4C1C2)
(32)

5.3 Derive ω2

0
, Q, H for the low-pass case

In order to derive expressions for ω2,Q,H we compare (29) with the standard low-pass transfer function given
by (33)

TL(s) =
±Hω2

0

s2 + (ω0/Q)s+ ω2
0

(33)

We have to determine six circuit elements (R1 −R4, C1, C2) but have only three parameters (ω0, H , Q).Hence
we arbitrarily select three of the components and then examine the consequences on the remaining three.
Since frequency scaling is used, ω0 = 1 and we intend to use magnitude scaling. Choose C1 = C2 = 1,
R4 = 1. Comparing (29) and (33) we have ω2

0 = 1/R2, Q = R1/
√
R2 and H = R2/R3. Since ω0 = 1, we find

that R2 = 1,R1 = Q, R3 = 1/H .

5.4 Circuit tuning

An important property of this biquad circuit is that it can be orthogonally tuned, i.e.

• R2 can be adjusted to a specified value of ω0

• R1 can then be adjusted to give specified Q value without changing ω0

• Finally R3 can be adjusted to give desired value of H (circuit gain) without affecting either ω0 or Q.

6 Sensitivity analysis

The description of sensitivity is provided in Chapter 12 of [1]. For this exercise, the sensitivty analysis of the
inverting amplifier is provided in Example 12.1 (pp. 457-458) of [1] while that of the passive low-pass RLC
circuit is provided in Example 12.2 (pp. 460-461) of [1].
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Figure 11: Passive RLC circuit

6.1 Passive RLC low-pass circuit

The passive RLC low-pass circuit is shown in Fig. 11 The transfer function of the circuit in Fig. 11 is

T (s) =
V2

V1
=

1/sC

R+ sL+ 1/sC
=

1

s2LC + sCR + 1
(34)

Comparing (34) with the standard low-pass transfer function given in (33) results in

ω0 =
1√
LC

= L−
1

2C−
1

2 (35)

Q = R−1L
1

2C−
1

2 (36)

We have
Y = kxa ⇒ SY

x = a (37)

Utilizing (35), (36) and (37), we can find the sensitivity of ω0 and Q to R, L and C. We get Sω0

L = −1/2,

Sω0

C = −1/2 and Sω0

R = 0. Similarly SQ
L = 1/2, SQ

C = −1/2 and SQ
R = −1. Thus it is clear that

• A +1% change in L results in a −0.5% change in ω0 and a +0.5% change in Q

• A +1% change in C results in a −0.5% change in ω0 and a −0.5% change in Q

• A +1% change in R results in no change in ω0 and a −0.1% change in Q

These sensitivities are considered low. The circuit is an example of a LC ladder filter. LC ladder filters tend to
have very low sensitivities. The total changes are computed as

dω0

ω0
= Sω0

L

dL

L
+ Sω0

C

dC

C
+ Sω0

R

dR

R
= −1

2

(

dL

L
+

dC

C

)

(38)

dQ

Q
= SQ

L

dL

L
+ SQ

C

dC

C
+ SQ

R

dR

R
=

1

2

(

dL

L
− dC

C

)

− dR

R
(39)

We have ω0 = 1/
√
LC and Q = 1

R

√

L
C . If both L and C increase, their effects on ω0 add because ω0 depends

on the product of the two elements. But the errors in L, C tend to cancel in Q which depends on a ratio of the
two components. An increase in R, i.e. larger losses results in a lower Q, but does not affect ω0.

6.2 Inverting amplifier

The schematic of an inverting amplifier is shown in Fig. 12. Summing the currents at node a and remembering
that the opamp input current i− is zero results in the equation,

V1 − Va

R1
+

V2 − Va

R2
= 0 (40)

Opamp imposes the condition that Vx = 0 − Va = −Va = V2/A. Here A denotes the finite open-loop DC gain
of the opamp.Thus −Va = V2/A. Substituting for Va in (40) we have,

V1 + V2/A

R1
+

V2 + V2/A

R2
= 0 (41)
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Figure 12: Inverting amplifier

From (41), we can derive the transfer function of the inverting amplifier as

T =
V2

V1
=

−R2

R1

1

(1 +R2/R1)/A
= − G0

1 + (1 +G0)/A
(42)

where G0 = R2/R1 is the amplifier’s low-frequency gain in closed-loop. The sensitivity of T with respect to R1

is

ST
R1

=
∂T/T

∂R1/R1
=

R1

T

∂T

∂R1
(43)

Substituting for T from (42) in (43) gives

ST
R1

=
R1

T

∂

∂R1

(

−R2

R1 + (R1 +R2)/A

)

=
−R1

T

−R2(1 + 1/A)

(R1 + (R1 +R2)/A)
2 (44)

If we evaluate (44) at A = ∞ (ideal opamp), we get

ST
R1 (A=∞)

=
−R1

−G0
· −R2

R2
1

= −1 (45)

Similarly, the sensitivity of T with respect to R2 is given by

ST
R2

=
R2

T

∂T

∂R2
(46)

Substituting for T from (42) in (46) and performing the differentiation gives

ST
R2

= −
(R1 + (R1 +R2)/A− R2

A
(

R1 + (R1+R2

A )
2
) (47)

If we evaluate (47) at A = ∞ (ideal opamp), we get

ST
R2 (A=∞)

=
R2

T
· −R1

R2
1

=
R2

−R2/R1

−1

R1
= 1 (48)

These results show that a 1% change in the resistors R1 or R2 causes respectively a −1% and 1% change
in G0. Since accurate and stable resistors are available, this value of sensitivity is acceptable. To evaluate
sensitivity to the opamp gain A we compute

ST
A =

A

T

∂T

∂A
=

A

T

∂

∂A

(

−G0

1 + (1 +G0)/A

)

=
(1 +G0)

(A+ 1 +G0)
(49)

Since A ≫ (1 +G0) in the frequency range of interest, the sensitivity in (49) is approximately

ST
A =

1

A
(1 +G0) (50)
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For large values of A, (50) is a very small number. It demonstrates that the closed-loop gain of the amplifier is

≈ G0 = R2

R1

, independent of A as long as the opamp DC gain A is large. However, if R2 is removed (R2 = ∞)

so that there is no feedback, the sensitivity given in (49) becomes

ST
A(R2=∞) =

(1 +G0)

(A+ 1 +G0)
=

R1 +R2

(A+ 1)R1 +R2
≈ 1 (51)

From (51), it is evident that in the absence of feedback, changes in A directly translate to changes in G0

(R2/R1). Whereas sensitivities of the order of unity are acceptable for passive components, such values are
normally too large for opamp gains, because the active parameters in a circuit must be expected to vary widely.

6.3 Comparison of the two cases

By comparing the results of the sensitivity analyses of the inverting amplifier and the passive RLC low-pass
circuit, we arrive at the following conclusions

• Sensitivity of a circuit to active parameters such as opamp gain should be much lower than that for
passive components such as resistors, capacitors etc.

• Since accurate passive components can be made available, sensitivity requirements of a circuit for pas-
sive components are relaxed

• Circuit parameters which depend on product of component values are more adversely affected by com-
ponent tolerance than those circuit parameters which depend on the ratio of the components. This means
that filter structures which use capacitor-ratios (as in switched-capacitor circuits) provide more accurate
coefficients/filter-response compared to those using RC constants.

7 First-order Gm-C filter

This exercise is identical to Example 15.2 in pp 581-582 of [2]. A first-order filter with a zero at 40 MHz and a
pole at 20 MHz is given by

H(s) =
k(s+ 2π · 40 MHz)

(s+ 2π · 20 MHz)
(52)

Setting s = 0 in (52) gives H(0) = 2k. Since the DC gain is given as 0.5, we have 2k = 0.5 resulting in k = 0.25.
Substituting k = 0.25 in (52), we have

H(s) =
0.25s+ 2π · 10 MHz

(s+ 2π · 20 MHz)
(53)

The transfer function of a general first-order continuous-time filter is given by

H(s) =
k1s+ k0
s+ ω0

(54)

Comparing (53) with (54), we have k1 = 0.25, k0 = 2π · 107, ω0 = 4π · 107.

Cx =

(

k1
1− k1

)

CA =
0.25

0.75
· 2 pF = 0.667 pF (55)

Gm1 = k0(CA + Cx) = 2π · 107(2 pF + 0.667 pF ) = 0.168 mA/V (56)

Gm2 = ω0(CA + Cx) = 4π · 107(2 pF + 0.667 pF ) = 0.335 mA/V (57)
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8 Second-order Gm-C filter

The transfer function of a general second-order (biquad) continuous-time filter is given by

H(s) =
k2s

2 + k1s+ k0
s2 + sω0

Q + ω0
2

(58)

A second-order band-pass transfer function is given by

H(s) =
Gsω0

Q

s2 + sω0

Q + ω0
2

(59)

The gain at the centre frequency G = 1. We have ω0 = 2π · 20 MHz and Q = 5. By comparing (59) and (58)
we find

k1 = G
ω0

Q
= 2.513 · 107 rad/s (60)

Since k0 = 0 and k2 = 0, we have

k0 =
Gm2Gm4

CA(Cx + CB)
= 0 (61)

k2 =
Cx

Cx + CB
= 0 (62)

From (61) and (62), Cx = 0 and Gm4 = 0. Gm2 6= 0 since

ω0
2 =

Gm1Gm2

CA(Cx + CB)
6= 0 (63)

Gm2 = ω0(CB + Cx) = 2π · 20 MHz(2 pF + 0) = 0.2513mA/V (64)

Gm1 = ω0CA = 0.2513 mA/V (65)

For G = 1, k1 = ω0/Q, we have

Gm3 =
ω0(CB + Cx)

Q
= Gm5 = k1(CB + Cx) (66)

Thus,
Gm3 = Gm5 = k1(CB + Cx) = 2.513 · 107(2 pF + 0) = 50.27µA/V (67)

9 Active Filters

In order to derive the transfer function of the active filter circuit given in Fig.13. we form nodal equations at the
output of each stage of the filter.

At node V1 we have,

V1 =
−1

sC1

(

Vin

R4
+

Vout

R1

)

(68)

For nodes V2 and Vout we have,

V2 = −R8

(

V1

R7
+

Vout

R2
+

Vin

R5

)

(69)

Vout =
−1

sC2

(

Vin

R6
+

Vout

R3
+

V2

R9

)

(70)

Using (68)-(70), the nodes V1,V2 can be eliminated to give the transfer function Vout/Vin.
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Figure 13: Active filter circuit

This document is released by Electronics Systems, and the repository refers to Electronics Systems, Dep’t of E. E., Linköping University Print Date: 2013/02/24, 13:39


