	No	Rev	Date	Repo/Course		Page
	0024	P4A	2012-02-29	ANTIK		5 of 165
	Title	ANTIK Exercises 2012				
	File	ANTIK_0024_LN_exerciseManualSolutions_P5A.odt				
Linköping University	Type	LN -	xercise manual - Solutions	Area	es: docs : antik	
INSTITUTE OF TECHNOLOGY	Created	J Jac	Wikner	Approved	J Jacob Wikner	
	Issued	J Jac	Wikner, jacwi50	Class	Public	

ANTIK Exercises 2012

General information

Welcome to the 2012 versions of the ATIK and ANIK courses. Jointly referred to as the ANTIK courses. This is your exercise manual for this year and more information is found at:

```
http://www.es.isy.liu.se/courses/A*IK/lessons.html
```

We are currently compiling most of our material in a more handy format and you now find the new generation of our exercises manual. Unfortunately this (this year) implies that some of the solutions are found in multiple other sources. We have however indicated where to find the solutions in the exercises of this document.

K -- Kompedium
J\&M - Johns \& Martin
S-Schaumann
The teaching assistant can guide you through how to find the answers to the questions.
\times As usual it is suggested to not print the whole document. Keep your laptop
next to you... save some trees.

Exercises

\qquad
Exercise section 1: Introduction.9
1.1. Definitions of voltages and currents 10
1.2. (Approximate) Device equations. 11
1.3. Circuit noise. 13
Exercise section 2: DC Analysis 15
2.1. DC analysis on a common-source gain stage with cascodes. 16
2.2. $D C$ analysis of a bias circuit. 17
2.3. DC analysis of a common-gate amplifier. 18
2.4. Simple gain stages with passive load. 19
Exercise section 3: AC analysis. 22
3.1. Derivation of small-signal parameters 1 23
3.2. Derivation of small-signal parameters 2 (K7). 24
3.3. Small-signal parameters (K8) 25
3.4. Common-gate amplifier with non ideal input source. 26
3.5. Common-gate amplifier input impedance (K3). 28
3.6. Amplifier stages with active load 29

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	6 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

3.7. Current mirrors 32
3.8. Gain stages with cascodes 36
Exercise section 4: Differential gain stages 40
4.1. A single-ended differential gain stage 41
4.2. Differential stage with passive load 43
Exercise section 5: OTAs and OPs 45
5.1. OP and OTA 46
5.2. Current mirror OTA 47
5.3. A simplified model of a two-stage operational transconductance amplifier 49
5.4. A two-stage OTA without compensation circuit 51
5.5. Feedback modes (K2) 53
5.6. Feedback factor (K4) 67
5.7. Compensation of a two-stage OTA. 68
5.8. A folded-cascode OTA 71
5.9. OP usage (K9). 74
5.10. GM usage (K10) 76
Exercise section 6: Noise in CMOS circuits 77
6.1. Noise in a multi-stage amplifier 78
6.2. Noise in CMOS circuits. 81
6.3. Noise in an amplifier 83
6.4. Noise in a common-source amplifier biased by a current mirror. 86
6.5. Opamp noise (K6) 88
Exercise section 7: Continuous-time Filters 89
7.1. First-order filter. 90
7.2. Bilinear transfer functions 91
7.3. Higher-order filters starting point (S5.3). 92
7.4. Biquads (S 5.4) 93
7.5. Tow-Thomas (S 5.6) 94
7.6. Sensitivity analysis (S 5.7). 95
7.7. Sallen Key 96
7.8. Butterworth LP-filter. 97
7.9. Chebychev LP filter. 98
7.10. Butterworth BS-filter. 99
7.11. A doubly resistive terminated ladder network 101
7.12. First-order GmC filter (Ex. 15.2 J\&M) 102
7.13. Second-order GmC filter (Ex. 15.3 J\&M) 103
7.14. Active filters (K11) 104
7.15. Active filters (K12) 106
7.16. Active filters (K13) 107
7.17. Active filters (K14) 108
7.18. Leapfrog filters (K15) 109
7.19. Leapfrog filters (K16) 117
7.20. Leapfrog filters (K17) 120
7.21. Leapfrog filters (K18) 121
7.22. Gyrators (K19) 122
7.23. Gm-C filters (K20) 123
7.24. Gm-C filter parasitics (K21) 124
7.25. Gm-C filters (K22) 125
Exercise section 8: Switched Capacitor circuits 126
8.1. Switched capacitor accumulator 1 127
8.2. Switched capacitor accumulator 2 129

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	7 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

8.3. Switched capacitor circuit 1 131
8.4. Switched capacitor circuit 2 133
8.5. Switched capacitor circuit 3 135
8.6. Switched capacitor circuit 4 137
8.7. Switched capacitor circuit 5 140
8.8. SC circuit (K25) 143
8.9. SC circuit (K26) 145
8.10. SC circuit (K27) 147
8.11. SC circuit (K28) 149
8.12. Clock feedthrough (K29) 150
8.13. Switch sharing (K30) 151
8.14. SC circuit (K37) 152
8.15. Signal switching (K39) 153
8.16. Sampled noise (K24). 154
Exercise section 9: SC filters 155
9.1. SC filter building blocks (K36). 156
9.2. Bilinear integrator (K38) 157
9.3. LDI transform (K31). 158
9.4. LDI transform (K32). 159
9.5. SC filter 1 160
9.6. Filter scaling (K23) 161
9.7. LDI SC filter (K33). 162
9.8. SC elliptic filter (K34) 163
9.9. SC filter (K35) 164
9.10. SC filter (K40) 165
Exercise section 10: Data converters, Fundamental 183
10.1. D/A swing (Q $11.1 \mathrm{~J} \mathrm{\& M}$) 184
10.2. SNR (Q $11.2 \mathrm{~J} \& M$) 185
Exercise section 11: Data converters, DAC 186
Exercise section 12: Data converters, ADC 187

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	8 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

Document history

Rev	Date	Comment	Issued/Created by
0.1	the old days.	Creation.	Anton Blad, Erik Säll, Robert Hägglund, K Ola Andersson, Niklas U Andersson, J Jacob Wikner, etc., etc.
..			Niklas U Andersson
P2A	$2012-01-13$	Hard-core copy-paste from previous manual (framemaker).	Prakash Harikumar
P3A	$2012-01-14$	Cleaned up a bit to make it a bit shorter.	J Jacob Wikner
P4A	$2012-01-26$	Added dummy section, Niklas added some missed answers	Pre
P5A	$2012-02-29$	Added some more answers.	J Jacob Wikner

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	9 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

EXERCISE SECTION 1: INTRODUCTION

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	10 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

1.1. Definitions of voltages and currents

As a quick reference, we have pasted the directions, and indicators to ports, currents, voltages, etc., for the NMOS and PMOS transistors in Figure 1.1.1.

Figure 1.1.1: Schematic symbols of (a) NMOS and
(b) PMOS transistors with voltages and currents indicated.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	11 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

1.2. (Approximate) Device equations

General

For convenience we use a couple of 'abbreviations' and shorter forms, as:

$$
\begin{align*}
& v_{e f f}=V_{G S}-V_{T} \text { (and } v_{e f f}=V_{S G}-V_{T} \text { for PMOS) is the effective gate voltage. } \tag{1}\\
& \alpha=\frac{\mu_{0} C_{o x}}{2} \cdot \frac{W}{L}, K=\mu_{0} C_{o x}, \beta=K \cdot \frac{W}{L}, S=\frac{W}{L} \tag{2}\\
& \lambda=\frac{1}{V_{\theta}} \text { is the channel length modulation. } \tag{3}
\end{align*}
$$

(Notice the deliberately "sloppy" notation with lower and upper cases.)

NMOS transistors

Cut-off region (subtreshold):

$$
\begin{align*}
& V_{G S}<V_{T} \text { or } v_{e f f}<0 \tag{4}\\
& I_{D} \approx 0 \tag{5}
\end{align*}
$$

x The current is considered to be more or less 0 for hand calculations. It should however be mentioned that nowadays one should not be too afraid to use the transistors in the sub-threshold region. As we get close to the threshold the gain of the transistor is comparatively

Linear region:

$$
\begin{align*}
& V_{G S} \geq V_{T}, \text { or } v_{e f f}>0 \tag{6}\\
& V_{D S}<V_{G S}-V_{T} \text {, or } V_{D S}<v_{\text {eff }} \\
& I_{D} \approx \frac{\mu_{0} \cdot C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(2\left(V_{G S}-V_{T}\right) \cdot V_{D S}-V_{D S}^{2}\right)=\alpha \cdot\left(2 v_{e f f} V_{D S}-V_{D S}^{2}\right) \tag{7}
\end{align*}
$$

Saturated region:

	No	Rev	Date	Repo/Course	Page
Link	Linging University	0024	P4A	2012-02-29	ANTIK

$$
\begin{align*}
& V_{G S} \geq V_{T}, \text { or } v_{e f f}>0 \tag{8}\\
& V_{D S} \geq V_{G S}-V_{T}, \text { or } V_{D S} \geq v_{\text {eff }} \\
& I_{D} \approx \frac{\mu_{0} \cdot C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(V_{G S}-V_{T}\right)^{2} \cdot\left(1+\frac{V_{D S}}{V_{\theta}}\right) \approx \alpha \cdot v_{e f f}^{2} \tag{9}
\end{align*}
$$

Threshold voltage:

$$
\begin{equation*}
V_{T} \approx V_{T, 0}+\gamma \cdot\left(\sqrt{2 \Phi_{F}-V_{B S}}-\sqrt{2 \Phi_{F}}\right) \tag{10}
\end{equation*}
$$

x The higher source-bulk voltage the higher the threshold voltage, i.e., bad.

PMOS transistors

Cut-off region (subtreshold):

$$
\begin{align*}
& V_{S G}<V_{T} \text { or } v_{e f f}<0 \tag{11}\\
& I_{D} \approx 0 \tag{12}
\end{align*}
$$

Linear region:

$$
\begin{align*}
& V_{S G} \geq V_{T} \text {, or } v_{\text {eff }}>0 \tag{13}\\
& V_{S D}<V_{S G}-V_{T} \text {, or } V_{S D}<v_{\text {eff }} \\
& I_{D} \approx \frac{\mu_{0} \cdot C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(2\left(V_{S G}-V_{T}\right) \cdot V_{S D}-V_{S D}^{2}\right)=\alpha \cdot\left(2 v_{\text {eff }} V_{S D}-V_{S D}^{2}\right) \tag{14}
\end{align*}
$$

Saturated region:

$$
\begin{align*}
& V_{S G} \geq V_{T}, \text { or } v_{e f f}>0 \\
& V_{S D} \geq V_{S G}-V_{T}, \text { or } V_{S D} \geq v_{\text {eff }} \tag{15}\\
& I_{D} \approx \frac{\mu_{0} \cdot C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(V_{S G}-V_{T}\right)^{2} \cdot\left(1+\frac{V_{S D}}{V_{\theta}}\right) \approx \alpha \cdot v_{e f f}^{2} \tag{16}
\end{align*}
$$

Threshold voltage:

$$
\begin{equation*}
V_{T} \approx V_{T, 0}+\gamma \cdot\left(\sqrt{2 \Phi_{F}-V_{S B}}-\sqrt{2 \Phi_{F}}\right) \tag{17}
\end{equation*}
$$

$\underset{\text { institute of techivoocr }}{\text { Link̈̈ping }}$

Rev	Date
P4A	2012-02-29
ANTIK Exercises 2012	

1.3. Circuit noise

Thermal noise

The thermal noise spectral density at the gate of a CMOS transistor is

$$
\begin{equation*}
v_{t}^{2}(f)=\frac{4 k T \cdot \gamma}{g_{m}} \tag{18}
\end{equation*}
$$

where γ traditionally was $2 / 3$, but nowadays it can be higher than 1 .

Flicker noise

The flicker noise spectral density at the gate of a CMOS transistor is

$$
\begin{equation*}
v_{f}^{2}(f)=\frac{K}{W L C_{o x} f} \tag{19}
\end{equation*}
$$

where K is a constant.
x Integrating the noise spectral density over a certain frequency band gives you the noise power. Notice that, in both cases, an infinite noise power is obtained if integrating over all frequencies.

Approximate parameters for a 0.35-micron process

In Table 1.1 we have compiled some "older" process parameters for hand calculations that are also used throughout the exercises.
x Notice that more modern processes will have quite different values, but it is also more difficult to perform the hand calculations in the same way.

Param.	Unit	NMOS	PMOS	Comment
μ_{0}	$\mathrm{~cm}^{2} / V s$	400	130	Charge mobility, "holes are slower than electrons".
$C_{o x}$	$n F / \mathrm{cm}^{2}$	450	450	
V_{θ}	V	33	20	$L=1 \mu \mathrm{~m}$
V_{θ}	V	100	50	$L=5 \mu m$
$V_{T, 0}$	V	0.47	0.62	The PMOS typically has higher threshold voltage ...
γ	\sqrt{V}	0.62	0.41	... but is less sensitive to bulk variations.
$2 \Phi_{F}$	V	0.86	0.82	

Table 1.1: Some typical values for handcalculations.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	14 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

EXERCISE SECTION 2: DC ANALYSIS

2.1. DC analysis on a common-source gain stage with cascodes

1. DC analysis on a common-source gain stage with cascodes.

We neglect the body effect and channel-length modulation in the DC calculations (AC analysis is performed in Ex. 9).
We define the effective gate-source voltage of an NMOS transistor as

$$
\begin{equation*}
V_{c f f, n}=V_{G S}-V_{T} \tag{1.1}
\end{equation*}
$$

and, similarly, the effective source-gate voltage of a PMOS transistor as
$V_{e f f, p}=V_{S G}-V_{T}$ (different V_{T} for NMOS and PMOS transistors!)
We have the simplified current equation for a saturated transistor

$$
\begin{equation*}
I_{D} \approx \alpha \cdot V_{e f f}^{2} \tag{1.2}
\end{equation*}
$$

Since the transistor sizes are equal for $M 1$ and $M 2$, and they have the same drain current, they will also have the same $V_{e f f}$. Similarly, $M 3$ and $M 4$ will have the same $V_{c f f}$.
For NMOS transistors ($M 1$ and $M 2$)

$$
\begin{equation*}
V_{c f f, n}=\sqrt{\frac{I_{D}}{\alpha}} \approx 0,105 \mathrm{~V} \tag{1.3}
\end{equation*}
$$

and for PMOS transistors

$$
\begin{equation*}
V_{e f f, p}=\sqrt{\frac{I_{D}}{\alpha}} \approx 0,185 \mathrm{~V} \tag{1.4}
\end{equation*}
$$

(α different for NMOS and PMOS transistors!)
Thus, $V_{i n, D C}=V_{\text {eff, } n}+V_{T}=0,105+0,47 \approx 0,58 \mathrm{~V} . V_{\text {bias, } 2}$ is not determined by the current alone, we also need to know $V_{D S}$ for $M 1$. We have

$$
\begin{equation*}
V_{b i a s, 2}=V_{D S, 1}+V_{G S, 2}=V_{D S, 1}+V_{c f f, n}+V_{T} \tag{1.5}
\end{equation*}
$$

To ensure that $M 1$ is properly saturated we choose

$$
\begin{equation*}
V_{D S, 1}=V_{e f f, n}+0,2 \mathrm{~V} \tag{1.6}
\end{equation*}
$$

and thus

$$
\begin{equation*}
V_{\text {biass }, 2}=2 \cdot V_{c f f, n}+V_{T}+0,2 \mathrm{~V} \approx 0.88 \mathrm{~V} \tag{1.7}
\end{equation*}
$$

We make a similar analysis for the PMOS part and find that

$$
\begin{equation*}
V_{b i a s, 4}=V_{D D}-\left(V_{c f f, p}+V_{T}\right)=3,3-(0,185+0,62) \approx 2,50 \mathrm{~V} \tag{1.8}
\end{equation*}
$$

To ensure that $M 4$ is properly saturated we set
$V_{S D, 4}=V_{\text {eff, } p}+0,2 \mathrm{~V}$ and find that
$V_{\text {bias, } 3}=V_{D D}-\left(2 \cdot V_{\text {eff; } p}+V_{T}+0,2\right) \approx 3,3-(2 \cdot 0,185+0,62+0,2)=2,11 \mathrm{~V}$
The output range is now given by the following relations

$$
\begin{equation*}
V_{\text {out }} \geq V_{D S, 1}+V_{\text {cff }, n}=2 \cdot V_{\text {eff }, n}+0,2 \approx 0,41 \mathrm{~V} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{o u f} \leq V_{D D}-\left(V_{S D, 4}+V_{c f f, p}\right)=V_{D D}-\left(2 \cdot V_{e f f, p}+0,2\right) \approx 2,73 \mathrm{~V} \tag{1.10}
\end{equation*}
$$

Repo/Course
ANTIK

2.2. DC analysis of a bias circuit

2. DC analysis on a bias circuit.

Here we assume that all transistors are operating in the saturation region and that the channellength modulation is neglected. Choose a suitable value of V_{x}, e.g., $V_{x}=2 V$. The maximum current through the circuit is

$$
\begin{equation*}
I_{D} \leq \frac{P_{d i s s}}{V_{D D}}=5 \mu A \tag{2.1}
\end{equation*}
$$

The current through all the transistors is equal and

$$
\begin{align*}
& I_{D}=\frac{K_{1}}{2} \frac{W_{1}}{L_{1}}\left(V_{D D}-V_{x}-V_{T 1}\right)^{2} \tag{2.2}\\
& I_{D}=\frac{K_{2}}{2} \frac{W_{2}}{L_{2}}\left(V_{x}-V_{\text {bias }}-V_{T 2}\right)^{2} \tag{2.3}\\
& I_{D}=\frac{K_{3}}{2} \frac{W_{3}}{L_{3}}\left(V_{\text {bias }}-V_{T 3}\right)^{2} . \tag{2.4}
\end{align*}
$$

Morcover,

$$
\begin{equation*}
V_{T 2}=V_{T 0}+\gamma\left(\sqrt{2 \Phi_{F}-V_{S B}}-\sqrt{2 \Phi_{F}}\right) \tag{2.5}
\end{equation*}
$$

Eq. (2.1) and Eq. (2.4) gives

$$
\begin{equation*}
\frac{W_{3}}{L_{3}}=\frac{2 I_{D}}{K_{3}\left(V_{\text {bias }}-V_{T 3}\right)^{2}} \approx 3,3 . \tag{2.6}
\end{equation*}
$$

Eq. (2.1) and Eq. (2.2) gives

$$
\begin{equation*}
\frac{W_{1}}{L_{1}}=\frac{2 I_{D}}{K_{1}\left(V_{D D}-V_{x}-V_{T 1}\right)^{2}} \approx 0,37 . \tag{2.7}
\end{equation*}
$$

Eq. (2.5) yields

$$
\begin{equation*}
V_{T 2}=0,846 \mathrm{~V}, \tag{2.8}
\end{equation*}
$$

and from Eq. (2.1) and Eq. (2.3) we obtain

$$
\begin{equation*}
\frac{W_{2}}{L_{2}}=\frac{2 I_{D}}{K_{2}\left(V_{x}-V_{\text {bias }}-V_{T 2}\right)^{2}} \approx 0,56 . \tag{2.9}
\end{equation*}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	17 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

2.3. DC analysis of a common-gate amplifier

3. DC analysis on a common-gate amplifier.
a) The transistor M_{1} is in the cut-off regime as long as $V_{b 1}-V_{T 1}<V_{1}$ no (very small) current will flow through transistor M_{1} so the output voltage will be equal to $V_{d d}$.
When the input voltage is lower than, but close to, $V_{b 1}-V_{T 1}$ the transistor will be saturated since $V_{D S}=V_{o u t}-V_{1}>V_{b 1}-V_{1}-V_{T}>0$, and $V_{o u t}$ is close to $V_{d d} \geq V_{b 1}$. The input voltage for which the transistor M_{1} enters the linear region is depending on the value of $V_{b 1}$, and can be computed as follows.
b) The current through transistor M_{1} in saturation is

$$
\begin{equation*}
I_{D 1}=\alpha\left(V_{b 1}-V_{1}-V_{T 1}\right)^{2}\left(1+\lambda\left(V_{o u t}-V_{1}\right)\right) \tag{3.1}
\end{equation*}
$$

In saturation the current through transistor M_{1} must equal $I_{\text {bias }}$.

$$
\begin{equation*}
I_{b i a s}=\alpha\left(V_{b 1}-V_{1}-V_{T 1}\right)^{2}\left(1+\lambda\left(V_{\text {out }}-V_{1}\right)\right) \tag{3.2}
\end{equation*}
$$

Solving for $V_{\text {out }}-V_{1}$ gives the following expression.

$$
\begin{equation*}
V_{\text {out }}-V_{1}=\frac{1}{\lambda} \frac{I_{\text {bias }}}{\alpha\left(V_{b 1}-V_{1}-V_{T 1}\right)}-\frac{1}{\lambda} \tag{3.3}
\end{equation*}
$$

The transistor operates in the saturation region when $V_{\text {out }}-V_{1}=V_{b 1}-V_{1}-V_{T 1}$. Inserting Eq. (3.3) into previous equation and solving for V_{1} gives the input voltage where the transition between the saturation and linear operation appears.

2.4. Simple gain stages with passive load

5. Simple gain stages with resistive load.

First considering the common-source stage.
a) The ESSS is shown in Figure 30. Where $R=1 / G$.

Figure 30: The ESSS of a common-source gain stage with resistive load.
b) The transfer function can be computed by using nodal analysis in the output node.

$$
\begin{equation*}
g_{m 1} V_{i n}+V_{o u t}\left(g_{d s 1}+G\right)=0 \tag{5.1}
\end{equation*}
$$

The transfer function is

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m 1}}{g_{d s 1}+G} \tag{5.2}
\end{equation*}
$$

The output resistance can be computed by adding a voltage source V_{x} between the output node and ground. Then compute the current delivered by that voltage source when the input source/sources is zero ($V_{\text {in }}$ equals zero).

$$
\begin{equation*}
\left.\frac{V_{x}}{I_{x}}\right|_{V_{\mathrm{fa}}=0}=\frac{1}{g_{d s 1}+G}=R \| \frac{1}{g_{d s 1}} \tag{5.3}
\end{equation*}
$$

c) The transistor M_{1} is in the cut-off regime when $V_{i n}$ is below V_{T}, yielding the output voltage equal to $V_{D D}$. Increasing the input voltage will give the $V_{d s 1}>V_{g x 1}-V_{T 1}>0$ and the transistor will operate in the saturation region and the output voltage will decrease quadratically with the input voltage. Increasing the voltage further will result in a transistor operating in the linear region and the output voltage will then decrease linearly with the input voltage.
d) Obviously, $V_{i n}>V_{T}$. In the saturation region it holds that

$$
\begin{equation*}
V_{o u t} \approx V_{D D}-R \alpha\left(V_{\text {in }}-V_{T}\right)^{2} \tag{5.4}
\end{equation*}
$$

For saturation it is required that

$$
\begin{equation*}
V_{\text {out }} \geq V_{\text {in }}-V_{T} \tag{5.5}
\end{equation*}
$$

Combining Eq. (5.4) and Eq. (5.5) yields

$$
\begin{equation*}
\left(V_{i n}-V_{T}\right)^{2}+\frac{\left(V_{i n}-V_{T}\right)}{R \alpha}-\frac{V_{D D}}{R \alpha} \leq 0 . \tag{5.6}
\end{equation*}
$$

The maximum input voltage is computed with equality in Eq. (5.6), hence

$$
\begin{equation*}
V_{i n, m a x}=V_{T}-\frac{1}{2 R \alpha}+\sqrt{\frac{1}{4 R^{2} \alpha^{2}}+\frac{V_{D D}}{R \alpha}} \tag{5.7}
\end{equation*}
$$

(The solution $\ldots-\sqrt{\ldots}$ is obviously false, since it yields $V_{\text {in, max }}<V_{T}$)
a) The ESSS of the common drain, common gate, and CMOS inverter is shown in Figure 31.

Figure 31: The ESSS for the a) common drain and b) common gate
b) Using nodal analysis at the output node gives the following DC gain and output resistance.

	CS	CD	CG
DC gain	$-\frac{g_{m 1}}{g_{d s 1}+G}$	$\frac{g_{m 1}}{g_{m 1}+g_{d s 1}+G}$	$\frac{g_{m 1}}{g_{d s 1}+G}$
Output resist- ance	$\frac{1}{g_{d s 1}+G}$	$\frac{1}{g_{m 1}+g_{d s 1}+G}$	$\frac{1}{g_{d s 1}+G}$

c) Common-drain amplifier: The transistor M_{1} is cut off until $V_{\text {in }}<V_{\text {out }}+V_{T}$. Then will it be in the saturation region.

Common-gate amplifier: The transistor will be in the linear or saturation region when the input voltage is low. An increased voltage will result that the transistor will be cut off.
d)
e) The ESSS of the common-drain circuit with the bulk effect is shown in Figure 32.

Figure 32: The ESSS of the common-drain circuit including the bulk effect.

The transfer function is given by

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{m 1}}{g_{m 1}+g_{m b s 1}+g_{d s 1}+G_{i n}} \tag{5.8}
\end{equation*}
$$

The ESSS of the common-gate amplifier when the bulk effect is considered is shown in

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	20 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

Figure 33.

Figure 33: The ESSS of a common-gate amplifier when the bulk effect is considered.

The transfer function is

$$
\begin{equation*}
\frac{V_{o u t}}{V_{i n}}=\frac{g_{d s 1}+g_{m 1}+g_{m b s 1}}{g_{d s 1}+G_{i n}} \tag{5.9}
\end{equation*}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	21 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

EXERCISE SECTION 3: AC ANALYSIS

3.1. Derivation of small-signal parameters 1

4. Derivation of small-signal parameters.
a) In the linear region we have the following expression for the current I_{D}.

$$
\begin{equation*}
I_{D} \approx \mu_{0} \cdot C_{o x} \cdot \frac{W}{L} \cdot\left(\left(V_{G S}-V_{T}\right) \cdot V_{D S}-\frac{V_{D S}^{2}}{2}\right) \tag{4.1}
\end{equation*}
$$

Further we have

$$
\begin{align*}
& g_{m}=\frac{d I_{D}}{d V_{G S}}=\mu_{0} \cdot C_{o x} \cdot \frac{W}{L} \cdot V_{D S} \tag{4.2}\\
& g_{d s}=\frac{d I_{D}}{d V_{D S}}=\mu_{0} \cdot C_{o x} \cdot \frac{W}{L} \cdot\left(V_{G S}-V_{T}-V_{D S}\right) \tag{4.3}
\end{align*}
$$

I_{D} is affected by the bulk-source voltage through variations in the threshold voltage, i.e.

$$
\begin{equation*}
g_{m b s}=\frac{d I_{D}}{d V_{B S}}=\frac{\partial I_{D}}{\partial V_{T}} \cdot \frac{\partial V_{T}}{\partial V_{B S}}=-g_{m} \cdot \frac{\partial V_{T}}{\partial V_{B S}} \tag{4.4}
\end{equation*}
$$

We have the following relation for the threshold voltage

$$
\begin{equation*}
V_{T} \approx V_{T, 0}+\gamma\left(\sqrt{2 \Phi_{F}-V_{B S}}-\sqrt{2 \Phi_{F}}\right) \tag{4.5}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\frac{\partial V_{T}}{\partial V_{B S}}=\frac{\gamma}{2 \cdot \sqrt{2 \Phi_{F}-V_{B S}}} \tag{4.6}
\end{equation*}
$$

and thus

$$
\begin{equation*}
g_{m b s}=\frac{\gamma}{2 \cdot \sqrt{2 \Phi_{F}-V_{B S}}} \cdot g_{m} \tag{4.7}
\end{equation*}
$$

This relation is also valid in the saturated region.
b) In the saturated region we have the following expression for I_{D}

$$
\begin{equation*}
I_{D} \approx \frac{\mu_{0} \cdot C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(V_{G S}-V_{T}\right)^{2} \cdot\left(1+\lambda \cdot V_{D S}\right) \tag{4.8}
\end{equation*}
$$

Thus

$$
\begin{align*}
& g_{m}=\frac{d I_{D}}{d V_{G S}} \approx \mu_{0} \cdot C_{o x} \cdot \frac{W}{L} \cdot\left(V_{G S}-V_{T}\right)=\sqrt{\left(\mu_{0} \cdot C_{o x} \cdot \frac{W}{L} \cdot\left(V_{G S}-V_{T}\right)\right)^{2}} \\
& \approx \sqrt{2 \cdot \mu_{0} \cdot C_{o x} \cdot \frac{W}{L} \cdot I_{D}} \tag{4.9}
\end{align*}
$$

and

$$
g_{d s}=\frac{d I_{D}}{d V_{D S}}=\frac{\mu_{0} \cdot C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(V_{G S}-V_{T}\right)^{2} \cdot \lambda \approx \lambda \cdot I_{D}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	23 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

3.2. Derivation of small-signal parameters 2 (K7)

TBD Solution to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	24 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

3.3. Small-signal parameters (K8)

TBD Solution to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	25 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

3.4. Common-gate amplifier with non ideal input source

6. Common-gate amplifier with non ideal input source.

The small-signal equivalent is shown in Figure 34 where $R_{i n}=1 / G_{i n}$.

Figure 34: ESSS for the common-gate amplifier valid for low frequencies.

Using nodal analysis in the nodes V_{1} and $V_{\text {out }}$ gives the following equations

$$
\begin{align*}
& -g_{m 1} V_{1}+\left(V_{o u t}-V_{1}\right) g_{d s 1}+\left(V_{i n}-V_{1}\right) G_{i n}=0 \tag{6.1}\\
& -g_{m 1} V_{1}+\left(V_{o u t}-V_{1}\right) g_{d s 1}+V_{o u t}\left(g_{d s 2}+s C_{L}\right)=0 \tag{6.2}
\end{align*}
$$

Solving for V_{1} in Eq. (6.1) and inserting it into Eq. (6.2) results in

$$
\begin{gather*}
\frac{V_{o u t}}{V_{i n}}=\frac{G_{i n}\left(g_{m 1}+g_{d s 1}\right)}{g_{d s 1} G_{i n}+g_{d s 2}\left(G_{i n}+g_{m 1}+g_{d s 1}\right)+s C_{L}\left(g_{m 1}+G_{i n}+g_{d s 1}\right)} \approx \\
\frac{G_{i n} g_{m 1}}{g_{d s 1} G_{i n}+g_{d s 2}\left(G_{i n}+g_{m 1}\right)+s C_{L}\left(g_{m 1}+G_{i n}\right)} \tag{6.3}
\end{gather*}
$$

where $g_{m 1}>g_{d s 1}$ is assumed.
The DC gain is computed by setting $s=0$ and the location of the first pole is computed from Eq. (6.3) by comparing with the transfer function

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{0}}{1+\frac{s}{p_{1}}} \tag{6.4}
\end{equation*}
$$

The DC gain and the first pole can then be expressed as

$$
\begin{equation*}
A_{0} \approx \frac{G_{i n} g_{m 1}}{g_{d s 2}\left(g_{m 1}+G_{i n}\right)+g_{d s 1} G_{i n}} \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
p_{1}=\frac{g_{d s 2}\left(g_{m 1}+G_{i n}\right)+g_{d s 1} G_{i n}}{\left(g_{m 1}+G_{i n}\right) C_{L}} \tag{6.6}
\end{equation*}
$$

b) $C_{g s 1}$ is connected from node V_{1} to ground. The nodal analysis in node V_{1} and $V_{\text {out }}$ gives:

$$
\begin{align*}
& -g_{m 1} V_{1}+\left(V_{\text {out }}-V_{1}\right) g_{d s 1}+\left(V_{\text {in }}-V_{1}\right) G_{\text {in }}-V_{1} s C_{g s 1}=0 \tag{6.7}\\
& g_{m 1} V_{1}+\left(V_{\text {out }}-V_{1}\right) g_{d s 1}+V_{\text {out }}\left(g_{d s 2}+s C_{L}\right)=0 \tag{6.8}
\end{align*}
$$

Solving for V_{1} in Eq. (6.8)

$$
\begin{equation*}
\frac{V_{1}}{V_{\text {out }}}=\frac{g_{d s 1}+g_{d s 2}+s C_{L}}{g_{m 1}+g_{d s 1}} \tag{6.9}
\end{equation*}
$$

Inserting into Eq. (6.7) gives

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{G_{i n}\left(g_{m 1}+g_{d s 1}\right)}{a+b s+c s^{2}} \tag{6.10}
\end{equation*}
$$

where

$$
\begin{align*}
& a=g_{d s 1} G_{i n}+g_{d s 2}\left(G_{i n}+g_{m 1}+g_{d s 1}\right) \tag{6.11}\\
& b=C_{g s 1}\left(g_{d s 1}+g_{d s 2}\right)+C_{L}\left(g_{d s 1}+G_{i n}+g_{m 1}\right) \tag{6.12}\\
& c=C_{g s 1} C_{L} \tag{6.13}
\end{align*}
$$

The load capacitance is often much larger than the parasitic capacitances. This results in that the load capacitor will be give rise to the dominant pole and the parasitic capacitances will contribute to the pole located much higher in frequency. When it is a large difference between the capacitances, the poles will be well separated. For well separated poles the following approximation holds.

$$
\begin{equation*}
\left(1+\frac{s}{p_{1}}\right)\left(1+\frac{s}{p_{2}}\right)=1+s\left(\frac{1}{p_{1}}+\frac{1}{p_{2}}\right)+\frac{s^{2}}{p_{1} p_{2}} \approx 1+\frac{s}{p_{1}}+\frac{s^{2}}{p_{1} p_{2}} \tag{6.14}
\end{equation*}
$$

Comparing Eq. (6.14) and Eq. (6.10) gives the following poles.

$$
\begin{align*}
& p_{1} \approx \frac{a}{b}=\frac{g_{d s 1} G_{i n}+g_{d s 2}\left(G_{i n}+g_{m 1}+g_{d s 1}\right)}{C_{g s 1}\left(g_{d s 1}+g_{d s 2}\right)+C_{L}\left(g_{d s 1}+G_{i n}+g_{m 1}\right)} \approx \tag{6.15}\\
& \frac{g_{d s 1} G_{i n}+g_{d s 2}\left(G_{i n}+g_{m 1}\right)}{C_{L}\left(G_{i n}+g_{m 1}\right)} \\
& p_{2} \approx \frac{a}{c p_{1}}=\frac{b}{c} \approx \frac{g_{d s 1}+G_{i n}+g_{m 1}}{C_{g s 1}} \tag{6.16}
\end{align*}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	27 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

3.5. Common-gate amplifier input impedance (K3)

Exercise K3
Small Signal Model:

When using y - or z-parameters to derive the input impedance, either the output current or the output voltage should be set to zero. When analysing circuits where the input resistance depends on the load impedance (the CG stage is such a circuit) it is more convenient to include the load in the analysis and leaving the output open. This has be done in the above small signal model and gives the following nodal equations:

$$
\begin{aligned}
& \left(\begin{array}{l}
I_{i n}=V_{i n} g_{m}+\left(V_{i n}-V_{o u t}\right) g_{d s}+g_{s} V_{i n} \\
V_{i n} g_{m}+\left(V_{i n}-V_{\text {out }}\right) g_{d s}+g_{s} V_{i n}=V_{\text {out }} G_{\text {out }}
\end{array} \Rightarrow r_{i n}=\frac{V_{i n}}{I_{i n}}=\right. \\
& =\frac{\left(1+\frac{g_{d s}}{G_{\text {out }}}\right)}{g_{d s}+g_{s}+g_{m}} \approx \frac{1}{g_{m}}\left(1+\frac{R_{\text {out }}}{r_{d s}}\right)
\end{aligned}
$$

3.6. Amplifier stages with active load

7. Amplifier stages with active load.
a) The ESSS of the four amplifier stages is shown in Figure 35.

c)

Figure 35: The ESSS of the amplifiers with active load. a) Common source, b) common drain, c) common gate, and d) CMOS inverter

The bulk effect is neglected.
b and c) To calculate the DC gain and the dominating pole only the capacitance C_{L} needs to be considered.

Nodal analysis of the common-source amplifier

$$
\begin{equation*}
g_{m 1} V_{i n}+V_{o u t}\left(g_{d s 1}+g_{d s 2}+s C_{L}\right)=0 \tag{7.1}
\end{equation*}
$$

gives the transfer function

$$
\begin{equation*}
\frac{V_{o u t}}{V_{i n}}=\frac{g_{m 1}}{g_{d s 1}+g_{d s 2}+s C_{L}}=-\frac{g_{m 1}}{g_{d s 1}+g_{d s 2}} \frac{1}{1+\frac{s}{\frac{g_{d s 1}+g_{d s 2}}{C_{L}}}}=\frac{A_{0}}{1+\frac{s}{p_{1}}} \tag{7.2}
\end{equation*}
$$

where A_{0} is the DC gain and p_{1} is the dominating pole.
The output resistance is compute by adding a voltage source at the output, V_{x}, and compute the current delivered from the source when the input source is zeroed. This gives $I_{x}=V_{x}\left(g_{d s 1}+g_{d s 2}\right)$ and the output resistance

Repo/Course
ANTIK

$$
\begin{equation*}
r_{\text {out }}=\frac{V_{x}}{I_{x}}=\frac{1}{g_{d s 1}+g_{d s 2}} \tag{7.3}
\end{equation*}
$$

Nodal analysis for the common-drain amplifier

$$
\begin{equation*}
-g_{m 1}\left(V_{i n}-V_{o u t}\right)+V_{o u t}\left(g_{d s 1}+g_{d s 2}+s C_{L}\right)=0 \tag{7.4}
\end{equation*}
$$

gives the transfer function

$$
\begin{equation*}
\frac{V_{o u t}}{V_{\text {in }}}=\frac{g_{m 1}}{g_{m 1}+g_{d s 1}+g_{d s 2}} \frac{1}{1+\frac{s}{\frac{g_{m 1}+g_{d s 1}+g_{d s 2}}{C_{L}}}} \tag{7.5}
\end{equation*}
$$

The output current through the output source equals $I_{x}=V_{x}\left(g_{d s 1}+g_{d s 1}+g_{m 1}\right)$ and the output resistance

$$
\begin{equation*}
r_{o u t}=\frac{V_{x}}{I_{x}}=\frac{1}{g_{d s 1}+g_{d s 2}+g_{m 1}} \tag{7.6}
\end{equation*}
$$

The common-gate amplifier:

$$
\begin{equation*}
-g_{m 1} V_{i n}+\left(V_{o u t}-V_{i n}\right) g_{d s 1}+V_{o u f}\left(g_{d s 2}+s C_{L}\right)=0 \tag{7.7}
\end{equation*}
$$

gives the transfer function

$$
\begin{equation*}
\frac{V_{o u t}}{V_{i n}}=\frac{g_{m 1}+g_{d s 1}}{g_{d s 1}+g_{d s 2}} \frac{1}{1+\frac{s}{\frac{g_{d s 1}+g_{d s 2}}{C_{L}}}} \tag{7.8}
\end{equation*}
$$

The output current through the output source equals $I_{x}=V_{x}\left(g_{d s 1}+g_{d s 2}\right)$ an the output resistance

$$
\begin{equation*}
r_{\text {out }}=\frac{V_{x}}{I_{x}}=\frac{1}{g_{d s 1}+g_{d s 2}} \tag{7.9}
\end{equation*}
$$

The CMOS inverter

$$
\begin{equation*}
\left(g_{m 1}+g_{m 2}\right) V_{i n}+\left(g_{d s 1}+g_{d s 2}+s C_{L}\right) V_{o u t}=0 \tag{7.10}
\end{equation*}
$$

giving the transfer function

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m 1}+g_{m 2}}{g_{d s 1}+g_{d s 2} 1+\frac{1}{\frac{g_{d s 1}+g_{d s 2}}{C_{L}}}} \tag{7.11}
\end{equation*}
$$

The output resistance is given by

$$
\begin{equation*}
r_{\text {out }}=\frac{V_{x}}{I_{x}}=\frac{1}{g_{d s 1}+g_{d s 2}} \tag{7.12}
\end{equation*}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	30 of 165
	Title	ANTI	ses 2012		ID jacwi50

Summary:

	DC gain	Output resistance	Bandwidth
Common source	$-\frac{g_{m 1}}{g_{d s 1}+g_{d s 2}}$	$\frac{1}{g_{d s 1}+g_{d s 2}}$	$\frac{g_{d s 1}+g_{d s 2}}{C_{L}}$
Common drain	$\frac{g_{m 1}}{g_{m 1}+g_{d s 1}+g_{d s 2}}$	$\frac{1}{g_{m 1}+g_{d s 1}+g_{d s 2}}$	$\frac{g_{m 1}+g_{d s 1}+g_{d s 2}}{C_{L}}$
Common gate	$\frac{g_{m 1}+g_{d s 1}}{g_{d s 1}+g_{d s 2}}$	$\frac{1}{g_{d s 1}+g_{d s 2}}$	$\frac{g_{d s 1}+g_{d s 2}}{C_{L}}$
CMOS inverter	$-\frac{g_{m 1}+g_{m 2}}{g_{d s 1}+g_{d s 2}}$	$\frac{1}{g_{d s 1}+g_{d s 2}}$	$\frac{g_{d s 1}+g_{d s 2}}{C_{L}}$

In principle we can see that in a single stage amplifier the DC gain can approximately be expressed as $g_{m, i n} / g_{\text {out }}=g_{m, \text { in }} r_{\text {out }}$ and the bandwidth is $g_{\text {out }} / C_{L}=1 /\left(r_{\text {out }} C_{L}\right)$.
d) The highest gain is obtained in a CMOS inverter. The circuit with highest bandwidth is the common-drain amplifier.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	31 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

3.7. Current mirrors

8. Current mirrors.
a) The ESSS of the simple current mirror is shown in Figure 36a.

a)

b)

Figure 36: a) The ESSS for the simple current mirror. b) Simplified ESSS for the simple current mirror.

The input resistance is computed by adding a input voltage source to $V_{i n}$ and computing the current delivered by the source. The output should be terminated by the resistive load $R_{\text {load }}$.

$$
\begin{equation*}
I_{i n}=g_{m 1} V_{i n}+V_{i n} g_{d s 1}=V_{i n}\left(g_{d s 1}+g_{m 1}\right) \tag{8.1}
\end{equation*}
$$

We see that if a transistor has a connection between its drain and gate, called diode-connected, the small-signal model will be a resistor with the value $g_{m 1}+g_{d s 1}$ as shown in Figure 36 b . The input resistance is

$$
\begin{equation*}
r_{i n}=\frac{V_{i n}}{I_{i n}}=\frac{1}{g_{m 1}+g_{d s 1}} \tag{8.2}
\end{equation*}
$$

The output resistance is computed by adding a voltage source at the output and computing the current it delivers. This will give the output resistance equal to

$$
\begin{equation*}
r_{\text {out }}=\left.\frac{V_{\text {out }}}{I_{\text {out }}}\right|_{I_{L_{A}=0}}=\frac{1}{g_{d s 2}} \tag{8.3}
\end{equation*}
$$

The ESSS of the cascode current mirror is shown in Figure 37.

Figure 37: The ESSS of a cascode current mirror.

The input current is given by $I_{i n}=\left(V_{i n}-V_{x}\right)\left(g_{m 3}+g_{d s 3}\right)=V_{x}\left(g_{m 1}+g_{d s 1}\right)$. The node voltage V_{x} can be eliminated from the equations and the output resistance is given by

$$
\begin{equation*}
r_{i n}=\frac{V_{i n}}{I_{i n}}=\frac{g_{m 1}+g_{d s 1}+g_{m 3}+g_{d s 3}}{\left(g_{m 1}+g_{d s 1}\right)\left(g_{m 3}+g_{d s 3}\right)} \approx \frac{g_{m 1}+g_{m 3}}{g_{m 1} g_{m 3}}=\frac{1}{g_{m 1}}+\frac{1}{g_{m 3}} \tag{8.4}
\end{equation*}
$$

The output current is given by

$$
\begin{equation*}
I_{o u t}=g_{m 4}\left(-V_{y}\right)+g_{d s 4}\left(V_{o u t}-V_{y}\right)=g_{m 2} 0+g_{d s 2} V_{y} \tag{8.5}
\end{equation*}
$$

since $I_{i n}=0$ and thereby is $V_{x}=0$. The output resistance is given by

$$
\begin{equation*}
r_{\text {out }}=\frac{V_{\text {out }}}{I_{\text {out }}}=\frac{g_{d s 2}+g_{d s 4}+g_{m 4}}{g_{d s 2} g_{d s 4}} \approx \frac{g_{m 4}}{g_{d \leq 2} g_{d s 4}} \tag{8.6}
\end{equation*}
$$

The ESSS of the wide-swing current mirror is shown in Figure 38.

Figure 38: The ESSS of a wide-swing current mirror.

The input current equals $I_{i n}=g_{m 3}\left(-V_{x}\right)+\left(V_{i n}-V_{x}\right) g_{d s 3}=V_{i n} g_{m 1}+V_{x} g_{d s 1}$. The input resistance is

$$
\begin{equation*}
r_{i n}=\frac{V_{i n}}{I_{i n}}=\frac{g_{d s 1}+g_{d s 3}+g_{m 3}}{g_{m 1}\left(g_{d s 3}+g_{m 3}\right)+g_{d s 1} g_{d s 3}} \approx \frac{g_{m 3}}{g_{m 1}\left(g_{d s 3}+g_{m 3}\right)}=\frac{1}{g_{m 1}} \tag{8.7}
\end{equation*}
$$

The output current is given by

$$
\begin{equation*}
I_{o u t}=g_{m 4}\left(-V_{y}\right)+g_{d s 4}\left(V_{o u t}-V_{y}\right)=g_{m 2} 0+g_{d s 2} V_{y} \tag{8.8}
\end{equation*}
$$

The output resistance is

$$
\begin{equation*}
r_{\text {out }}=\frac{V_{\text {out }}}{I_{\text {out }}}=\frac{g_{d s 2}+g_{d s 4}+g_{m 4}}{g_{d s 2} g_{d s 4}} \approx \frac{g_{m 4}}{g_{d s 2} g_{d s 4}} \tag{8.9}
\end{equation*}
$$

b) The lowest possible $V_{d s}$ of a transistor in the saturation region, $V_{d s s a t}$, is $V_{d s s a t}=V_{g s}-V_{T}$. The $V_{d s s a t}$ is expressed as a function of the drain current in a transistor in the following way.

$$
\begin{equation*}
I_{D}=\alpha\left(V_{g s}-V_{T}\right)^{2}=\alpha V_{d s s a t}^{2} \tag{8.10}
\end{equation*}
$$

Solving for $V_{d s s a t}$ gives

$$
\begin{equation*}
V_{d s s a t}=\sqrt{\frac{I_{D}}{\alpha}} \tag{8.11}
\end{equation*}
$$

The minimum gate source voltage for a transistor that is operating in the saturation region is

$$
\begin{equation*}
V_{g s m i n}=V_{d s s a t}+V_{T}=\sqrt{\frac{I_{D}}{\alpha}}+V_{T} \tag{8.12}
\end{equation*}
$$

The minimum voltage is derived by deternining the minimum voltage required to ensure that all transistors are operating in the saturation region for each possible way from ground to the node of interest, not passing directly between the gate to the drain.
The lowest possible input/output voltage of the simple current mirror is

$$
\begin{align*}
& V_{\text {inmin }}=\max \left\{V_{g s m i n 1}, V_{d s s a t 1}\right\}=V_{g s m i n 1}=\sqrt{\frac{I_{\text {in }}}{\alpha_{1}}}+V_{T 1} \tag{8.13}\\
& V_{\text {outmin }}=V_{d s s a t 2}=\sqrt{\frac{I_{\text {out }}}{\alpha_{2}}} \tag{8.14}
\end{align*}
$$

The lowest possible input/output voltage for the cascode current mirror is

$$
\begin{gather*}
V_{\text {inmin }}=V_{g s m i n 1}+V_{g s m i n 3}=\sqrt{\frac{I_{i n}}{\alpha_{1}}}+V_{T 1}+\sqrt{\frac{I_{i n}}{\alpha_{3}}}+V_{T 3} \tag{8.15}\\
V_{\text {oufmin }}=\max \left\{V_{d s s a f 2}+V_{d s s a r 4}, V_{g s m i n 1}+V_{g s m i n 3}-V_{g s m i n 4}+V_{d s s a r 4}\right\}= \\
\sqrt{\frac{I_{i n}}{\alpha_{1}}}+V_{T 1}+\sqrt{\frac{I_{i n}}{\alpha_{3}}}+V_{T 3}-\sqrt{\frac{I_{o u t}}{\alpha_{4}}}-V_{T 4}+\sqrt{\frac{I_{o u t}}{\alpha_{4}}}= \tag{8.16}\\
\sqrt{\frac{I_{i n}}{\alpha_{1}}}+V_{T 1}+\sqrt{\frac{I_{i n}}{\alpha_{3}}}+V_{T 3}-V_{T 4}
\end{gather*}
$$

The lowest possible input/output/bias voltage for the wide-swing current mirror is.

$$
\begin{align*}
& V_{\text {inmin }}=\max \left\{V_{g s m i n 1}, V_{d s s a t 1}+V_{d s s a t 3}\right\}=\sqrt{\frac{I_{\text {in }}}{\alpha_{1}}}+V_{T 1} \tag{8.17}\\
& V_{\text {outmin }}=\max \left\{V_{d s s a t 2}+V_{d s s a t 4}, V_{d s s a t 1}+V_{g s m i n 3}-V_{g s m i n 4}+V_{d s s a t 4}\right\}= \\
& \sqrt{\frac{I_{i n}}{\alpha_{1}}}+\sqrt{\frac{I_{i n}}{\alpha_{3}}}+V_{T 3}-V_{T 4} \tag{8.18}\\
& V_{\text {biasmin }}=\max \left\{V_{d s s a t 1}+V_{g s m i n 3}, V_{d s s a t 2}+V_{g s m i n 4}\right\}= \\
& \max \left\{\sqrt{\frac{I_{\text {in }}}{\alpha_{1}}}+\sqrt{\frac{I_{\text {in }}}{\alpha_{3}}}+V_{T 3}, \sqrt{\frac{I_{o u t}}{\alpha_{2}}}+\sqrt{\frac{I_{\text {out }}}{\alpha_{3}}}+V_{T 4}\right\} \tag{8.19}
\end{align*}
$$

Repo/Course
ANTIK

Summary:

	Simple	Cascode	Wide-Swing
Input imped- ance	$\frac{1}{g_{m 1}+g_{d s 1}}$	$\frac{1}{g_{m 1}}+\frac{1}{g_{m 3}}$	$\frac{1}{g_{m 1}}$
Output imped- ance	$\frac{1}{g_{d s 2}}$	$\frac{g_{m 4}}{g_{d s 2} g_{d s 4}}$	$\frac{g_{m 4}}{g_{d s 2} g_{d s 4}}$
Lowest input voltage	$\sqrt{\frac{I_{i n}}{\alpha_{1}}}+V_{T 1}$	$\sqrt{\frac{I_{i n}}{\alpha_{1}}}+V_{T 1}+\sqrt{\frac{I_{i n}}{\alpha_{3}}}+V_{T 3}$	$\sqrt{\frac{I_{i n}}{\alpha_{1}}}+V_{T 1}$
Lowest output voltage	$\sqrt{\frac{I_{\text {our }}}{\alpha_{2}}}$	$\sqrt{\frac{I_{i n}}{\alpha_{1}}}+V_{T 1}+\sqrt{\frac{I_{i n}}{\alpha_{3}}}+V_{T 3}-V_{T 4}$	$\sqrt{\frac{I_{i n}}{\alpha_{1}}+\sqrt{\frac{I_{i n}}{\alpha_{3}}}+V_{T 3}-V_{T 4}}$
Lowest bias voltage	-	-	See above

c) The current mirror that is most ideal is the wide swing and cascode current mirror since they have the lowest input resistance and the highest output resistance. But by looking at the possible input/output voltage the wide-swing current mirror is best. If the chip area is of concern then the simplest current mirror is the one to choose. Depending on the application each of these current mirrors can be the best choice.

3.8. Gain stages with cascodes

9. Gain stages with cascodes.
a) A gain-boosted common-source amplifier.
b) We first compute the output impedance of a cascode as shown in Figure 39a with the ESSS

a)

b)

Figure 39: a) A cascode transistor. b) The ESSS of the circuit.
as shown in Figure 39b. The current $I_{\text {out }}$ is

$$
\begin{equation*}
I_{o u t}=V_{y} g_{d s 4}=-g_{m 3} V_{y}-g_{d s 3}\left(V_{y}-V_{o u t}\right) \tag{9.1}
\end{equation*}
$$

The output resistance is

$$
\begin{equation*}
r_{\text {out }}=\frac{V_{\text {out }}}{I_{\text {out }}}=\frac{g_{m 3}+g_{d s 3}+g_{d s 4}}{g_{d s 3} g_{d s 4}} \approx \frac{g_{m 3}}{g_{d s 3} g_{d s 4}}=\frac{A_{3}}{g_{d s 4}} \tag{9.2}
\end{equation*}
$$

where A_{3} is the gain of the transistor M_{3}. The two transistors above can be replaced by a resistor with the values of $A_{3} / g_{d s 4}$ when we are computing the small-signal characteristics. The simplified ESSS of the amplifier is shown in Figure 40. The DC gain can be computed

a)

b)

Figure 40: a) Equivalent low frequency folded cascode amplifier. b) ESSS of the simplified amplifier using the following equations.

$$
\begin{gather*}
g_{m 1} V_{\text {in }}+V_{x} g_{d s 1}+g_{m 2} V_{x}+\left(V_{x}-V_{\text {out }}\right) g_{d s 2}=0 \tag{9.3}\\
\left(-g_{m 2}\right) V_{x}+\left(V_{\text {out }}-V_{x}\right) g_{d s 2}+V_{\text {out }} G=0 \tag{9.4}
\end{gather*}
$$

Solving for $V_{\text {out }}$ gives the following DC gain.

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{i n}} & =\frac{g_{m 1}\left(g_{m 2}+g_{d s 2}\right)}{g_{d s 1} g_{d s 2}+G\left(g_{d s 1}+g_{d s 2}+g_{m 2}\right)} \approx \\
& \frac{g_{m 1}}{\frac{g_{d s 1} g_{d s 2}}{g_{m 2}}+G}=\frac{g_{m 1}}{\frac{g_{d s 1} g_{d s 2}}{g_{m 2}}+\frac{g_{d s 3} g_{d s 4}}{g_{m 3}}} \tag{9.5}
\end{align*}
$$

The DC gain can be expressed as $g_{m 1} / g_{\text {out }}$ where the output conductance is the sum of the conductances seen from the output to ground and from the output to the positive supply voltage (the parallel connection of the two output resistances seen up and down from the output). The cascode transistors are used to enhance the output resistance by the gain of the cascode transistors, i.e. $g_{m 2} / g_{d s 2}$ and $g_{m 3} / g_{d s 3}$ respectively.

The DC gain of the gain-boosted amplifier can be calculated in the same way as the cascode transistors. The upper part of the transistor together with its small-signal equivalent is shown in Figure 41

Figure 41: A part of the gain-boosted cascode transistor.

We start to calculate the DC gain of the common-source amplifier to

$$
\begin{equation*}
\frac{V_{z}}{V_{x}}=\frac{g_{m 6}}{g_{d s 5}+g_{d s 6}}=A_{c s} \tag{9.6}
\end{equation*}
$$

Continuing to derive the output resistance by setting up the current delivered by the output source.

$$
\begin{equation*}
I_{o u t}=-g_{m 3}\left(V_{x}-V_{z}\right)+\left(V_{o u t}-V_{x}\right) g_{d s 3}=V_{x} g_{d s 4} \tag{9.7}
\end{equation*}
$$

Solving for $V_{\text {ouf }}$ and eliminating V_{x} gives

$$
\begin{align*}
r_{\text {out }}= & \frac{V_{\text {out }}}{I_{\text {out }}}=\frac{g_{d s 3}+g_{d s 3}+g_{m 3}-A_{c s} g_{m 3}}{g_{d s 3} g_{d s 4}} \approx \tag{9.8}\\
& \frac{A_{c s} g_{m 3}}{g_{d s} 3 g_{d s 4}}=\frac{g_{m 5}}{g_{d s 5}+g_{d s 6}} \frac{g_{d s 3} 3}{g_{d s} g_{d s}}
\end{align*}
$$

The output impedance is increased by the gain of the common-source amplifier, $A_{c s}$.
The same type of computation as the one above will give the output DC gain of the whole circuit. The simplified small-signal schematic for the gain-boosted amplifier is shown in

Figure 42: A simplified ESSS of the gain-boosted amplifier.
Figure 42.
The output resistance

$$
\begin{equation*}
r_{o w t, u p}=\frac{g_{m 5}}{g_{d s 5}+g_{d s 6}} \frac{g_{m 3}}{g_{d s} 3 g_{d s 4}} \tag{9.9}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{\text {out }, \text { down }}=\frac{g_{m \mathrm{~B}}}{g_{d s \mathrm{~B}}+g_{d s 7}} \frac{g_{m 2}}{g_{d s 2} g_{d s 1}} \tag{9.10}
\end{equation*}
$$

The DC gain is given by

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}} \approx \frac{g_{m 1}}{g_{\text {out }}} \approx \frac{g_{m 1}}{\frac{1}{r_{\text {out }, \text { up }}}+\frac{1}{r_{\text {out }, \text { down }}}} \tag{9.11}
\end{equation*}
$$

c) The parasitic capacitance in the signal path for the amplifier with cascodes is much lower since we do not have the $C_{g s} g$ in the signal path compared with the amplifier using gain boosting.

The bandwidth is $g_{\text {out }} / C_{L}$ for a single stage amplifier. The output conductance of the gain boosted amplifier is much less than the one width cascodes. Hence, the bandwidth of the gain boosted amplifier is much lower than the amplifier with cascodes.

Summary:

	DC gain	First pole (bandwidth)
Common source	$\frac{g_{m 1}}{g_{d s 1}+g_{d s 2}}$	$\frac{g_{d s 1}+g_{d s 2}}{C_{L}}$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	38 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

Common source with cascodes	$-\frac{g_{m 1}}{\frac{g_{d s 1} g_{d s 2}}{g_{m 2}}+\frac{g_{d s 3} g_{d s 4}}{g_{m 3}}}$	$\frac{\frac{g_{d s 1} g_{d s 2}}{g_{m 2}}+\frac{g_{d s 3} g_{d s 4}}{g_{m 3}}}{C_{L}}$
Gain-boosted common-source amplifier	$-\frac{g_{m 1}}{g_{\text {out }}}$	$\frac{g_{\text {out }}}{C_{L}}$

where $g_{o u t}=\frac{g_{d s 1} g_{d s 2}}{g_{m 2}} \frac{g_{d s 8}+g_{d s 7}}{g_{m} 8}+\frac{g_{d s 3} g_{d s 4}}{g_{m 3}} \frac{g_{d s 5}+g_{d s 6}}{g_{m 5}}$.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	39 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

EXERCISE SECTION 4: DIFFERENTIAL GAIN STAGES

4.1. A single-ended differential gain stage

10. A single-ended differential gain stage.
a) The OR (output range) is the possible swing at the output so that all transistors are operating in the saturation region.

$$
\begin{align*}
& V_{\text {out }, \text { max }}=V_{d d}-V_{\text {sdsar } 4}=V_{d d}-\sqrt{\frac{I_{D 4}}{\alpha_{4}}}=V_{d d}-\sqrt{\frac{I_{D 5}}{2 \alpha_{4}}} \tag{10.1}\\
& V_{\text {out, min }}=V_{d s s a t 5}+V_{d s s a t 2}=\sqrt{\frac{I_{D 5}}{\alpha_{5}}}+\sqrt{\frac{I_{D 2}}{\alpha_{2}}}=\sqrt{\frac{I_{D 5}}{\alpha_{5}}}+\sqrt{\frac{I_{D 5}}{2 \alpha_{2}}} \tag{10.2}
\end{align*}
$$

The output range is also dependent on the input voltage which results that

$$
\begin{equation*}
V_{o u f, \min }=V_{i n}-V_{g s 2}+V_{d s 2}=V_{i n}-V_{T 2} \tag{10.3}
\end{equation*}
$$

which results in a minimum output voltage for all transistors operating in the saturation region equal to

$$
\begin{equation*}
V_{\text {out }, \min }=\max \left\{\sqrt{\frac{I_{D 5}}{\alpha_{5}}}+\sqrt{\frac{I_{D 5}}{2 \alpha_{2}}}, V_{i n}-V_{T 2}\right\} \tag{10.4}
\end{equation*}
$$

The common-mode range is the possible input swing.

$$
\begin{gather*}
V_{i n, \min }=V_{d s s a t 5}+V_{g s 1}=\sqrt{\frac{I_{D 5}}{\alpha_{5}}}+\sqrt{\frac{I_{D 5}}{2 \alpha_{1}}}+V_{T 1} \tag{10.5}\\
V_{i n, m a x}=V_{D D}-V_{g s 3}-V_{d s s a f 1}+V_{g s 1}= \\
V_{D D}-\sqrt{\frac{I_{D 3}}{\alpha_{3}}}-V_{T 3}+V_{T 1}=V_{D D}-\sqrt{\frac{I_{D 5}}{2 \alpha_{3}}}-V_{T 3}+V_{T 1} \tag{10.6}
\end{gather*}
$$

The ESSS of the differential gain stage is shown in Figure 43.

Figure 43: The ESSS of a single-ended differential gain stage.

It is assumed that transistors M_{1} and M_{2} are equally sized, as well as transistors M_{3} and M_{4}. If the currents in both branches of the differential gain stage are equal, then $g_{m 1} \approx g_{m 2}$, $g_{d s 1} \approx g_{d s 2}, g_{m 3} \approx g_{m 4}$, and $g_{d s 3} \approx g_{d s 4}$. The following expressions hold for the circuit in Figure 43:

$$
\begin{align*}
& \left(g_{m 3}+g_{d s 3}\right) V_{x}+g_{m 1}\left(V_{n}-V_{y}\right)+g_{d s 1}\left(V_{x}-V_{y}\right)=0 \tag{10.7}\\
& g_{m 1}\left(V_{n}-V_{y}\right)+g_{d s 1}\left(V_{x}-V_{y}\right)+g_{m 1}\left(V_{p}-V_{y}\right)+g_{d s 1}\left(V_{o u t}-V_{y}\right)=0 \tag{10.8}
\end{align*}
$$

and

$$
\begin{equation*}
g_{m 1}\left(V_{p}-V_{y}\right)+g_{d s 1}\left(V_{o u t}-V_{y}\right)+g_{m 3} V_{x}+V_{o u t}\left(s C_{L}+g_{d s 3}\right)=0 \tag{10.9}
\end{equation*}
$$

Solving for $V_{\text {out }}$ yields

$$
\begin{equation*}
V_{o u t}=\frac{\left(g_{d s 3}+2 g_{m 3}\right) g_{m 1}\left(V_{p}-V_{n}\right)}{2\left(g_{d s 1}+g_{d s 3}\right)\left(g_{d s 3}+g_{m 3}\right)+s C_{L}\left(g_{d s 1}+2\left(g_{d s 3}+g_{m 3}\right)\right)} \tag{10.10}
\end{equation*}
$$

Assuming that $g_{m 3}>g_{d s 3}, g_{d s 1}$ and dividing both the numerator and denominator of Eq. (10.10) with $2 g_{m 3}$ yields

$$
\begin{equation*}
V_{o u t} \approx \frac{g_{m 1}\left(V_{p}-V_{n}\right)}{g_{d s 1}+g_{d s 3}+s C_{L}} \tag{10.11}
\end{equation*}
$$

To compute the output resistance, $r_{\text {out }}$, we connect an AC voltage source, $V_{\text {out }}$, to the output node and set $V_{p}=V_{n}=0$ (and, of course, neglect C_{L}). The current delivered by $V_{o u f}$ is denoted $I_{\text {out }}$. The following equations hold:

$$
\begin{align*}
& I_{o u t}-g_{m 3} V_{x}-g_{d s 3} V_{o u t}+g_{m 1} V_{y}-g_{d s 1}\left(V_{o u t}-V_{y}\right)=0, \tag{10.12}\\
& -2 g_{m 1} V_{y}+g_{d s 1}\left(V_{x}-2 V_{y}+V_{o u t}\right)=0 \tag{10.13}
\end{align*}
$$

and

$$
\begin{equation*}
-g_{m 1} V_{y}+g_{d s 1}\left(V_{x}-V_{y}\right)+\left(g_{m 3}+g_{d s}\right) V_{x}=0 \tag{10.14}
\end{equation*}
$$

Solving for $I_{\text {out }}$ yields

$$
\begin{equation*}
I_{\text {out }}=\frac{2\left(g_{d s 1}+g_{d s 3}\right)\left(g_{d s 3}+g_{m 3}\right)}{g_{d s 1}+2\left(g_{d s 3}+g_{m 3}\right)} V_{\text {out }} \approx\left(g_{d s 1}+g_{d s 3}\right) V_{\text {out }}, \tag{10.15}
\end{equation*}
$$

under the assumption that $g_{d s 1}$ 《 $2\left(g_{m 3}+g_{d s 3}\right)$. Hence, the output resistance is

$$
\begin{equation*}
r_{\text {out }}=\frac{V_{\text {out }}}{I_{\text {out }}} \approx \frac{1}{g_{d s 1}+g_{d s 3}} \tag{10.16}
\end{equation*}
$$

and the output impedance is

$$
\begin{equation*}
z_{\text {out }} \approx \frac{1}{g_{d s 1}+g_{d s 3}+s C_{L}} \tag{10.17}
\end{equation*}
$$

b) The maximum current that can be delivered to the load capacitor is $I_{\text {bias }}$. Hence,

$$
\begin{equation*}
S R \approx \frac{I_{b i a s}}{C_{L}} \tag{10.18}
\end{equation*}
$$

4.2. Differential stage with passive load

11. Differential stage with passive load.

Here we would like to derive the differential and common-mode gain. The small-signal schemes are a little bit different.
a) The circuit is fully differential and thereby it is sufficient to compute the differential gain for half the circuit shown in Figure 44a. The differential gain is then

signals
Figure 44: The ESSS of a differential gain stage for computing a) the differential gain (half circuit) and b) the gain from the common-mode input to the common-mode output voltage.

$$
\begin{equation*}
A_{\text {diff }}=\frac{V_{\text {outp }}-V_{\text {outn }}}{V_{p}-V_{n}}=-\frac{V_{\text {outn }}}{V_{p}}=\frac{g_{m 1}}{g_{d s 1}+G_{L}} \tag{11.1}
\end{equation*}
$$

The second equality comes from the fact that $V_{\text {outp }}=-V_{\text {outn }}$ and $V_{p}=-V_{n}$ and we have a fully differential gain stage. Nearly the same computation as in Exercise 10.
b) The gain from the common-mode input voltage to the common-mode output voltage is computed using nodal analysis in the ESSS shown in Figure 44b. The nodal analysis is performed in nodes $V_{\text {outn }}, V_{\text {outp }}$ and gnd.

$$
\begin{align*}
& V_{\text {outn }} G_{L}+\left(V_{\text {outn }}-V_{c}\right) g_{d s 1}+g_{m 1}\left(V_{p}-V_{c}\right)=0 \tag{11.2}\\
& V_{\text {outp }} G_{L}+\left(V_{\text {outp }}-V_{c}\right) g_{d s 2}+g_{m 2}\left(V_{n}-V_{c}\right)=0 \tag{11.3}\\
& V_{\text {outn }} G_{L}+V_{\text {outp }} G_{L}+V_{c} g_{d s 3}=0 \tag{11.4}
\end{align*}
$$

Solving for V_{c} in Eq. (11.4) gives

$$
\begin{equation*}
V_{c}=\frac{G_{L}}{g_{d s 3}}\left(V_{\text {outp }}+V_{\text {outn }}\right) \tag{11.5}
\end{equation*}
$$

Adding the Eq. (11.2) and Eq. (11.3) gives

$$
\begin{gather*}
\left(V_{\text {outp }}+V_{\text {outn }}\right) G_{L}+V_{\text {outp }} g_{d s 2}+V_{\text {outn }} g_{d s 1}+V_{p} g_{m 1}+V_{n} g_{m 2}= \tag{11.6}\\
\left(g_{d s 1}+g_{d s 2}+g_{m 1}+g_{m 2}\right) V_{c}
\end{gather*}
$$

The design is fully symmetrical (i.e. transistor M_{1} is equal to M_{2} yielding the same transconductances, g_{m}, and output conductances, $g_{d s}$). The Eq. (11.6) is then simplified to

$$
\begin{equation*}
\left(V_{\text {outp }}+V_{\text {outn }}\right)\left(g_{d s}+G_{L}\right)+\left(V_{p}+V_{n}\right) g_{m}=2\left(g_{d s}+g_{m}\right) V_{c} \tag{11.7}
\end{equation*}
$$

Combining Eq. (11.5) and Eq. (11.7) gives the gain

$$
\begin{equation*}
A_{c m, c m}=\frac{\frac{V_{\text {outp }}+V_{\text {outn }}}{2}}{\frac{V_{p}+V_{n}}{2}}=-\frac{g_{d s 3} g_{m}}{g_{d s 3}\left(g_{d s}+G_{L}\right)+2 G_{L}\left(g_{d s}+g_{m}\right)} \tag{11.8}
\end{equation*}
$$

c) The power supply rejection ration (PSRR) from the negative supply is defined as

$$
\begin{equation*}
P S R R_{n}=A_{\text {diff }}\left(\frac{\left(V_{\text {oufp }}-V_{\text {outn }}\right) / 2}{V_{\text {gnd }}}\right) \tag{11.9}
\end{equation*}
$$

The differential gain is already computed so it is just the differential output variations due to a noisy ground line that is of interest. The small-signal model is shown in Figure 45. The small-

Figure 45: The ESSS for computing the negative power supply noise gain to the differential output.
signal source is V_{n}. Nodal analysis in nodes V_{n}, V_{p}, and V_{c} gives the following equations.

$$
\begin{gather*}
V_{\text {outn }} G_{L}+\left(V_{\text {outn }}-V_{c}\right) g_{d s 1}+g_{m 1}\left(-V_{c}\right)=0 \tag{11.10}\\
V_{\text {outp }} G_{L}+\left(V_{\text {outp }}-V_{c}\right) g_{d s 2}+g_{m 2}\left(-V_{c}\right)=0 \tag{11.11}\\
-V_{c} g_{m 1}-V_{c} g_{m 2}+\left(V_{\text {outn }}-V_{c}\right) g_{d s 1}+\left(V_{\text {outp }}-V_{c}\right) g_{d s 2}+\left(V_{n}-V_{c}\right) g_{d s 3}+V_{n} g_{m 3}=0
\end{gather*}
$$

We take the difference between Eq. (11.10) and Eq. (11.11) and assuming that transistor M_{1} is matched to M_{2}.

$$
\begin{equation*}
\left(V_{\text {oufn }}-V_{\text {outp }}\right)\left(G_{L}+g_{d s}\right)=0 \tag{11.12}
\end{equation*}
$$

This yields that the gain from the negative supply to the differential output is zero and thereby the negative PSRR is infinite

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	44 of 165
Litle	ANTIK Exercises 2012		ID jacwi50		

EXERCISE SECTION 5: OTAS AND OPS

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	45 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

5.1. OP and OTA

An operational amplifier (OP) has ideally zero output impedance and is thus suitable for driving resistive loads, since in this way there is no voltage division between the output imepdance and the load resistance. Resistive loads are most often used off-chip, but also on chip in, e.g., active RC filters.

The operational transconducatance amplifier (OTA), however has ideally infinite output impedance, and os thus suitable for driving capacitive loads, as is often the case in "onchip" situations, such as Gm-C filters or sample-and-hold circuits, or SC circuits.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	46 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

5.2. Current mirror OTA

13. Current mirror OTA.

We start by some useful relations

$$
\begin{equation*}
g_{m} \approx 2 \alpha V_{e f f} \approx \sqrt{4 \alpha I_{D}}=\sqrt{2 \mu C_{o x} \frac{W}{L} I_{D}} \tag{13.1}
\end{equation*}
$$

Which gives

$$
\begin{equation*}
W \approx \frac{g_{m}^{2} L}{2 \mu C_{o x} I_{D}} \tag{13.2}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
g_{d s} \approx \lambda I_{D} \tag{13.3}
\end{equation*}
$$

The total power dissipation is

$$
\begin{equation*}
P_{d i s s}=V_{d d} I_{t o t}=V_{d d} I_{b}\left(\frac{3}{2}+\frac{K}{2}\right) \tag{13.4}
\end{equation*}
$$

Where K is the current-mirror gain. Solving for I_{b} gives

$$
\begin{equation*}
I_{b}=\frac{2}{3+K} \frac{P_{d i s s}}{V_{d d}} \tag{13.5}
\end{equation*}
$$

From Johns\& Martin (pages 273 -)

$$
\begin{align*}
& S R=\frac{K I_{b}}{C_{L}}=2 \frac{P_{\text {diss }}}{C_{L} V_{d d}} \frac{K}{3+K} \tag{13.6}\\
& \omega_{u} \approx \frac{K g_{m 1}}{C_{L}} \Rightarrow g_{m 1} \approx \frac{C_{L}}{K} \omega_{u} \tag{13.7}\\
& A_{0}=K g_{m 1} r_{\text {out }} \Rightarrow r_{\text {out }}=\frac{A_{0}}{K g_{m 1}} \tag{13.8}
\end{align*}
$$

Solution:
We start with the slew-rate specification to determine the K value. Solving for K in Eq. (13.6) gives

$$
\begin{equation*}
K=\frac{3 S R}{\frac{2 P_{\text {diss }}}{V_{d d} C_{L}}-S R} \approx 2,36 \tag{13.9}
\end{equation*}
$$

When K is chosen we get $I_{b} \approx 170 \mu A$ and we determine W_{1} by combining Eq. (13.7) and Eq. (13.2) yielding

$$
\begin{equation*}
W_{1}=\frac{C_{L}^{2} \omega_{u}^{2} L}{2 \mu K^{2} C_{o x} I_{D 1}}=\frac{C_{L}^{2} \omega_{u}^{2} L}{K^{2} \mu C_{o x} I_{b}} \approx 58 \mu \mathrm{~m} \tag{13.10}
\end{equation*}
$$

From Eq. (13.8) we get the required output resistance $r_{\text {out }} \approx 3,18 \mathrm{M} \Omega$.

The output stage is a common-source amplifier with cascodes like the one in the Ex. 9. The output conductance is given by the parallel combination of the nmos and pmos resistances. Here we have chosen the size of the output resistances of the nmos and pmos transistors equal to $r_{p}=r_{n}=2 r_{\text {out }}$. The pmos resistance is given by

$$
\begin{equation*}
r_{p}=\frac{1}{g_{d s} 8} \frac{g_{m 10}}{g_{d s 10}}=\frac{g_{m p}}{g_{d s p}^{2}} \Rightarrow g_{m p}=r_{p} g_{d s p}^{2} \tag{13.11}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
r_{n}=\frac{1}{g_{d s 14}} \frac{g_{m 12}}{g_{d s 12}}=\frac{g_{m n}}{g_{d s n}^{2}} \Rightarrow g_{m n}=r_{n} g_{d s n}^{2} \tag{13.12}
\end{equation*}
$$

Here we have assumed that the size of transistors M_{8} is equal to M_{10} and M_{12} is equal to M_{14} and thereby they will have the same small-signal parameters.
The DC current through the output stage is given by $I_{D}=I_{b} K / 2$ and we know that $g_{d s}=\lambda I_{D}$. These two expression together with Eq. (13.11) and Eq. (13.12) gives

$$
\begin{align*}
& g_{m p}=2 r_{\text {out }}\left(\lambda_{p} I_{b} K / 2\right)^{2} \approx 1,5 m S \tag{13.13}\\
& g_{m n}=2 r_{\text {out }}\left(\lambda_{n} I_{b} K / 2\right)^{2} \approx 0,544 \mu S \tag{13.14}
\end{align*}
$$

Solving for the widths by using Eq. (13.1) gives

$$
\begin{align*}
& W_{8}=W_{10}=\frac{g_{m p}^{2} L}{2 \mu_{p} C_{o x} I_{D}} \approx 113 \mu m \tag{13.15}\\
& W_{12}=W_{14}=\frac{g_{m n}^{2} L}{2 \mu_{n} C_{o x} I_{D}} \approx 4,8 \mu m \tag{13.16}\\
& W_{3}=W_{4}=W_{5}=W_{6}=W_{7}=W_{9}=\frac{W_{g}}{K} \approx 48 \mu m \tag{13.17}\\
& W_{11}=W_{13}=\frac{W_{12}}{K} \approx 2 \mu m \tag{13.18}
\end{align*}
$$

\qquad

5.3. A simplified model of a two-stage operational transconductance amplifier

14. A simplified model of a two-stage operational transconductance amplifier.
a) A compensation circuit can for example consist of a capacitor, or a capacitor and a resistor. For a useful compensation circuit there can not be a DC path between the nodes of the compensation circuit. We use the approximation $g_{m} " g_{d s}$ and assume that M_{1} and M_{2} are equally sized, and that M_{3} and M_{4} are equally sized. Further, the bulk effect is neglected.

$$
\begin{align*}
& g_{I}=g_{d s 2}+g_{d s 4} \tag{14.1}\\
& g_{I I}=g_{d s 6}+g_{d s 7} \tag{14.2}\\
& g_{m I}=g_{m 1}=g_{m 2} \tag{14.3}\\
& g_{m I I}=g_{m 7} \tag{14.4}\\
& C_{I}=C_{g s 7}+C_{d s 4}+C_{d b 4}+C_{d s 2}+C_{d b 2}+C_{g b 7} \tag{14.5}\\
& C_{I I}=C_{L}+C_{d s 7}+C_{d b 7}+C_{d s 6}+C_{d b 6} \tag{14.6}
\end{align*}
$$

b) The small-signal properties are calculated using nodal analysis in the nodes V_{x} and $V_{\text {out }}$.

$$
\begin{align*}
& g_{m I} V_{\text {in }}+V_{x}\left(g_{I}+s C_{I}\right)+\left(V_{x}-V_{\text {out }}\right) s C_{c}=0 \tag{14.7}\\
& g_{m I I} V_{x}+V_{\text {out }}\left(g_{I I}+s C_{I I}\right)+\left(V_{\text {out }}-V_{x}\right) s C_{c}=0 \tag{14.8}
\end{align*}
$$

Solving for V_{x} in Eq. (14.8) and inserting it into Eq. (14.7) gives

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{m I}\left(g_{m I I}-s C_{c}\right)}{g_{I} g_{I I}+s\left(\left(C_{I I}+C_{c}\right) g_{I}+\left(C_{I}+C_{c}\right) g_{I I}+C_{c} g_{m I I}\right)+s^{2}\left(C_{I} C_{I I}+C_{c}\left(C_{I}+C_{I I}\right)\right)}
$$

We simplify the expression above by assuming that $g_{m I I}>g_{V}, g_{I I}$ and $C_{c}, C_{I I}$ " C_{I}, yielding

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}} \approx \frac{g_{m I}\left(g_{m I I}-s C_{c}\right)}{g_{I} g_{I I}+s C_{c} g_{m I I}+s^{2} C_{c} C_{I I}} \tag{14.9}
\end{equation*}
$$

Eq. (14.9) can be used to get the DC gain, poles and zero.

$$
\begin{align*}
& A_{0}=\frac{g_{m I} I \frac{g_{m I I}}{g_{I}}}{g_{I I}} \tag{14.10}\\
& p_{1} \approx \frac{g_{I} g_{I I}}{g_{m I I} C_{c}} \tag{14.11}\\
& p_{2} \approx \frac{g_{I I} g_{I I}}{C_{c} C_{I I}} \frac{1}{p_{1}}=\frac{g_{m I I}}{C_{I I}} \tag{14.12}\\
& z_{1}=-\frac{g_{m I I}}{C_{c}} \tag{14.13}
\end{align*}
$$

The zero is located in the right half plane (RHP).

The unity-gain frequency is approximately given by the expression $\omega_{n} \approx A_{0} p_{1}$ if the poles are well separated.

$$
\begin{equation*}
\omega_{u} \approx \frac{g_{m I}}{g_{I}} \frac{g_{m I I}}{g_{I I}} \frac{g_{I} g_{I I}}{g_{m I I} C_{c}}=\frac{g_{m I}}{C_{c}} \tag{14.14}
\end{equation*}
$$

Q.E.D.
c, d, and e) Recall that $g_{m} \propto \sqrt{W\left(I_{D} / L\right)}$ and $g_{d s} \propto I_{D} / L$. The DC gain, unity-gain frequency and the first pole can be expressed as

$$
\begin{align*}
& A_{0}=\frac{g_{m 2} g_{m 7}}{\left(g_{d s 2}+g_{d s 4}\right)\left(g_{d s 6}+g_{d s 7}\right)} \propto \frac{\sqrt{\frac{W_{2}}{2 L_{2}} I_{D 5}} \sqrt{\frac{W_{7}}{L_{7}} I_{D 6}}}{\left(\frac{1}{L_{2}}+\frac{1}{L_{4}}\right) \frac{I_{D 5}}{2}\left(\frac{1}{L_{6}}+\frac{1}{L_{7}}\right) I_{D 6}}= \tag{14.15}\\
& \frac{L_{4} \sqrt{2 W_{2} L_{2}}}{\left(L_{2}+L_{4}\right) \sqrt{I_{D 5}}} \frac{\left.L_{66} \sqrt{L_{7} L_{7}}+L_{7}\right) \sqrt{I_{D 6}}}{\sqrt{\frac{W_{7}}{L_{7}} I_{D 6} C_{c}}} \\
& \omega_{u} \approx \frac{g_{m I}}{C_{c}} \propto \sqrt{\frac{W_{2}}{2 L_{2}} I_{D 5}} \tag{14.16}\\
& p_{1} \approx \frac{\left(g_{d s 2}+g_{d s 4}\right)\left(g_{d s 6}+g_{d s 7}\right)}{g_{m 7} C_{c}} \propto \frac{\left(\frac{1}{L_{2}}+\frac{1}{L_{4}}\right) \frac{I_{D 5}}{2}\left(\frac{1}{L_{6}}+\frac{1}{L_{7}}\right) \frac{I_{D 6}}{2}}{\sqrt{W_{2}}}= \tag{14.17}\\
& \frac{1}{4}\left(\frac{1}{L_{2}}+\frac{1}{L_{4}}\right) \frac{\left(L_{6}+L_{7}\right)}{L_{6} \sqrt{W_{7} L_{7}} I_{D 5} \sqrt{I_{D 6}}} \tag{14.18}
\end{align*}
$$

	DC gain	unity-gain frequency	bandwidth
W_{2} increased	Increased	Increased	-
$I_{\text {bias }}$ increased	Decreased	Increased	Increased
W_{4} increased	-	-	-

5.4. A two-stage OTA without compensation circuit

15. A two-stage OTA without compensation circuit.

The ESSS of the two-stage amplifier is shown in Figure 46. The following assumption has been

Figure 46: The ESSS of an ordinary two-stage amplifier with no compensation.
used, $g_{m}{ }^{*} g_{d s}$ and no bulk effect.
Since there is no connection between the first stage and the second stage, i.e. no component between the node V_{x} and $V_{\text {ouf }}$, the transfer function can be computed directly by the following expression

$$
A(s)=\frac{V_{\text {out }}}{V_{i n}}=\frac{V_{\text {out }}}{V_{x}} \frac{V_{x}}{V_{i n}}=\frac{g_{m I I}}{g_{H I}+s C_{H I}} \frac{g_{m I}}{g_{I}+s C_{I}}
$$

where $\quad g_{m I I}=g_{m 7}, \quad g_{m I}=g_{m 1}=g_{m 2}, \quad g_{I I}=g_{d s 6}+g_{d s 7}, \quad g_{I}=g_{d s 2}+g_{d s 4}$, $C_{I}=C_{g s 7}$, and $C_{I I}=C_{L}$.

The DC gain is

$$
\begin{equation*}
A_{0}=\frac{g_{m 2} g_{m 7}}{\left(g_{d s 2}+g_{d s 4}\right)\left(g_{d s 6}+g_{d s 7}\right)} \propto \frac{L_{4} \sqrt{2 W_{2} L_{2}}}{\left(L_{2}+L_{4}\right) \sqrt{I_{D 5}}} \frac{L_{6 \sqrt{ }} \sqrt{W_{7} L_{7}}}{\left(L_{6}+L_{7}\right) \sqrt{I_{D 6}}} \tag{15.2}
\end{equation*}
$$

which gives that

$$
\begin{equation*}
A_{0} \propto \frac{1}{\sqrt{I_{D 5} I_{D 6}}} \tag{15.3}
\end{equation*}
$$

b) The dominant pole is located at

$$
\begin{equation*}
p_{1}=\frac{g_{d s 6}+g_{d s 7}}{C_{L}} \tag{15.4}
\end{equation*}
$$

if the load capacitor is assumed to be much larger than the capacitive parasitics. The non dominant pole is located at

$$
\begin{equation*}
p_{2}=\frac{g_{d s 2}+g_{d s 4}}{C_{g s 7}} \tag{15.5}
\end{equation*}
$$

c) The unity-gain frequency

$$
\begin{equation*}
\omega_{u} \approx A_{0} p_{1}=\frac{g_{m 2} g_{m 7}}{\left(g_{d s 2}+g_{d s 4}\right) C_{L}} \tag{15.6}
\end{equation*}
$$

The phase margin is defined as $\phi_{m}=\pi+\arg A\left(j \omega_{u}\right)$.

Repo/Course
ANTIK

$$
\begin{equation*}
\phi_{m}=\pi-\operatorname{atan} \frac{\omega_{u}}{p_{1}}-\operatorname{atan} \frac{\omega_{u}}{p_{2}} \tag{15.7}
\end{equation*}
$$

d) An ideal operational amplifier has zero output impedance. To decrease the output impedance we have to compute the output resistance of the amplifier. Adding a voltage source at the output and calculating the current delivered by the source according to the following

$$
\begin{equation*}
I_{o u t}=V_{o u t}\left(g_{d s 6}+g_{d s 7}\right) \tag{15.8}
\end{equation*}
$$

The output resistance is, thus,

$$
\begin{equation*}
r_{\text {out }}=\frac{V_{\text {out }}}{I_{\text {out }}}=\frac{1}{g_{d s 6}+g_{d s 7}} \approx \frac{1}{\left(\frac{1}{L_{6}}+\frac{1}{L_{7}}\right) I_{D 6}} \tag{15.9}
\end{equation*}
$$

The output resistance is decreased if the current through the output stage is increased. Another way to decrease the output resistance is to add a buffer stage, for example a common-drain amplifier, at the output of the circuit.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	52 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

5.5. Feedback modes (K2)

Lesson 1 Analog Discrete-Time Integrated Circuits, TSTE80

Exercise K2
a) Small-signal model

It is seen in the figure that the feedback net is connected in parallel with the amplifier at both the input and the output. The type of feedback is thus shunt-shunt which means that the input and output impedance of the amplifier will be divided by $(1+T)$ where T is the loop-gain.

Replace the feedback net with y-parameter representation:

The upper circuit can be interpreted as an amplifier with:

$$
z_{\text {inA }}=R_{1}\left\|R_{2}, z_{\text {outA }}=z_{o}\right\| R_{2} \text { and } A=\frac{R_{2}}{R_{2}+z_{o}}(-a)\left(R_{1} \| R_{2}\right)
$$

where $v_{o}=A i_{e}$.

The system level model for the circuit above is shown below

30

Repo/Course
ANTIK

The loop gain is determined by:

$$
T=A f=\frac{R_{2}}{R_{2}+z_{o}}(-a)\left(R_{1} \| R_{2}\right) \cdot\left(-\frac{1}{R_{2}}\right)
$$

The input and output impedance of the feedback system is given by:

$$
z_{i n}=\frac{z_{i n A}}{1+T}=\frac{R_{1} \| R_{2}}{1+T}, z_{\text {out }}=\frac{z_{\text {out } A}}{1+T}=\frac{R_{2} \| z_{o}}{1+T}
$$

The transfer function is given by:

$$
\frac{v_{o}}{i_{e}}=\frac{A}{1+A f}=\frac{1}{1 / A+f} \approx \frac{1}{f}=-R_{2}
$$

b) By replacing the feedback net with its h-parameter representation (see lb)) the following small-signal model can be used:

where $z_{\text {inA }}=\infty, z_{\text {outA }}=z_{o} \|\left(R_{1}+R_{2}\right), A=\frac{R_{1}+R_{2}}{R_{1}+R_{2}+z_{o}} a$ and $v_{o}=A v_{i n A}$
The loop gain is given by $T=A f=\left(\frac{R_{1}+R_{2}}{R_{1}+R_{2}+z_{o}} a\right) \frac{R_{2}}{R_{1}+R_{2}}$
The type of feedback is series-shunt and therefore the total input and output impedance are given by

$$
z_{i n}=z_{\text {inA }}(1+T)=\infty \text { and } \frac{z_{\text {outA }}}{1+T}=\frac{z_{o} \|\left(R_{1}+R_{2}\right)}{1+T}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	54 of 165
STIUTE OF TECHNOL	Title	ANTI	ses 2012		ID jacwi50

$$
\begin{aligned}
& \text { The transfer function is given by } \\
& \qquad \frac{v_{o}}{v_{i n}}=\frac{A}{1+A f} \approx \frac{1}{f}=\frac{R_{1}+R_{2}}{R_{2}}
\end{aligned}
$$

	No	Rev	Date	Repo/Course	Page
Link	Linköping University	0024	P4A	2012-02-29	ANTIK
INSTITOTE OF TECHNotocy	Title	ANTIK Exercises 2012		ID jacwi50	

5.6. Feedback factor (K4)

Exercise K4

Calculated the loop gain: Break the feedback loop

Break the loop here
Loop gain:

$$
T(s)=A(s) \frac{1 /\left(s C_{1}\right)}{1 /\left(s C_{1}\right)+1 /\left(s C_{2}\right)}=\frac{C_{2}}{C_{1}+C_{2}} A(s)=\beta A(s)
$$

The feedback factor:

$$
\beta=\frac{C_{2}}{C_{1}+C_{2}}
$$

The closed loop system can be modelled as below (see lesson 1)

where $f=-s C_{2}$ and $Z_{i}=\frac{1}{s C_{1}+s C_{2}}$.
The closed loop transfer function is thus given by

$$
A_{C L}(s)=\frac{V_{\text {out }}}{V_{i n}}=s C_{1} \frac{Z_{i}(-A(s))}{1+Z_{i}(-A(s)) f}=s C_{1} \frac{Z_{i}}{\frac{1}{-A(s)}+Z_{i} f} \approx \frac{s C_{1}}{f}=-\frac{C_{1}}{C_{2}}
$$

The loop gain calculated from the system model:

$$
T(s)=Z_{i}(-A(s)) f=\frac{1}{s C_{1}+s C_{2}}\left(-s C_{2}\right)(-A(s))=\frac{C_{2}}{C_{1}+C_{2}} A(s) \Rightarrow \beta=\frac{C_{2}}{C_{1}+C_{2}}
$$

Conclusion: When calculating the loop gain we can break the loop to directly get the loop gain and feedback factor β, but the total transfer function is not given by $1 / \beta$ when using shuntshunt feedback.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	56 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

5.7. Compensation of a two-stage OTA

16. Compensation of a two-stage OTA.
a) The resistor value can be choose so that the compensation zero is located at infinity, nulling resistor. The other way is to use the lead compensation method where the zero is placed slightly higher in frequency than the unity-gain frequency.
b) Starting with the Miller capacitor compensation:

The simplified ESSS is shown in Figure 47. The transfer function is calculated using nodal anal-

Figure 47: The ESSS of an ordinary two-stage amplifier with compensation.
ysis in the nodes V_{x} and $V_{\text {out }}$.

$$
\begin{align*}
& g_{m 1} V_{\text {in }}+V_{x}\left(g_{I}+s C_{I}\right)+\left(V_{x}-V_{\text {out }}\right) s C_{c}=0 \tag{16.1}\\
& g_{m I I} V_{x}+V_{\text {out }}\left(g_{I I}+s C_{I I}\right)+\left(V_{\text {out }}-V_{x}\right) s C_{c}=0 \tag{16.2}
\end{align*}
$$

Solving for V_{x} in Eq. (16.2) and inserting it into Eq. (16.1) gives

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{g_{m I}\left(g_{m I I}-s C_{c}\right)}{g_{I} g_{I I}+s\left(\left(C_{I I}+C_{c}\right) g_{I}+\left(C_{I}+C_{c}\right) g_{I I}+C_{c} g_{m I I}\right)+s^{2}\left(C_{I} C_{I I}+C_{c}\left(C_{I}+C_{I I}\right)\right)}
$$

Some simplification can be in place. $g_{m} \geqslant g, C_{c} \geqslant C_{I}, C_{c} \approx C_{I I}$.

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}} \approx \frac{g_{m I}\left(g_{m I I}-s C_{c}\right)}{g_{I} g_{I I}+s C_{c} g_{m I I}+s^{2} C_{c} C_{I I}} \tag{16.3}
\end{equation*}
$$

The above equation can be used to get the DC gain, poles and zero.

$$
\begin{align*}
& A_{0}=\frac{g_{m I}}{g_{I}} \frac{g_{m I I}}{g_{I I}} \tag{16.4}\\
& p_{1} \approx \frac{g_{I} g_{I I}}{g_{m I I} C_{c}} \tag{16.5}\\
& p_{2} \approx \frac{g_{I} g_{I I}}{C_{c} C_{I I}} \frac{1}{p_{1}}=\frac{g_{m I I}}{C_{I I}} \tag{16.6}\\
& z_{1}=-\frac{g_{m I I}}{C_{c}} \tag{16.7}
\end{align*}
$$

The zero is located in the right hand plane (RHP).
The unity-gain frequency is approximately give by the expression $\omega_{u} \approx A_{0} p_{1}$ if the poles are well separated.

$$
\begin{equation*}
\omega_{u} \approx \frac{g_{m I} I}{g_{I}} \frac{g_{m I I}}{g_{I I}} \frac{g_{I} g_{I I}}{g_{m I I} C_{c}}=\frac{g_{m I}}{C_{c}} \tag{16.8}
\end{equation*}
$$

The resistor and capacitor (lead) compensation is shown in Figure 48. Nodal analysis in the

Figure 48: The ESSS of a two-stage amplifier compensated with a resistor and a capacitor.
nodes V_{x}, V_{c} and $V_{\text {ouf }}$ gives the following equations.

$$
\begin{align*}
& g_{m I} V_{i n}+V_{x}\left(g_{I}+s C_{I}\right)+\left(V_{x}-V_{c}\right) G_{c}=0 \tag{16.9}\\
& \left(V_{x}-V_{c}\right) G_{c}+\left(V_{o u t}-V_{c}\right) s C_{c}=0 \tag{16.10}\\
& g_{m I I} V_{x}+V_{o u t}\left(g_{I I}+s C_{I I}\right)+\left(V_{o u t}-V_{c}\right) s C_{c}=0 \tag{16.11}
\end{align*}
$$

Solving this system of equations gives

$$
\begin{equation*}
\frac{V_{o u t}}{V_{i n}}=\frac{g_{m I}\left(G_{c} g_{m I I}+C_{c}\left(-G_{c}+g_{m I I}\right)\right) s}{a+b s+c s^{2}+d s^{3}} \tag{16.12}
\end{equation*}
$$

where

$$
\begin{align*}
a & =g_{I} g_{I I} G_{c} \tag{16.13}\\
b & =\left(C_{I I} g_{I}+C_{I} g_{I I}\right) G_{c}+C_{c}\left(g_{I} g_{I I}+G_{c}\left(g_{I}+g_{I I}+g_{m I I}\right)\right) \tag{16.14}\\
c & =C_{I} C_{I I} G_{c}+C_{c}\left(C_{I I} g_{I}+C_{I} g_{I I}+\left(C_{I}+C_{I I}\right) G_{c}\right) \tag{16.15}\\
d & =C_{I} C_{I I} C_{c} \tag{16.16}
\end{align*}
$$

The above expressions can be simplified by $C_{I} \ll C_{I I}, C_{I} « C_{c}, g « g_{m}$, and $g « G_{c}$

$$
\begin{align*}
& b \approx C_{I I} g_{I} G_{c}+C_{c} G_{c} g_{m I I} \tag{16.17}\\
& c \approx C_{c} C_{I I} G_{c} \tag{16.18}
\end{align*}
$$

The DC gain is

$$
\begin{equation*}
A_{0}=\frac{g_{m I} g_{m I I} G_{c}}{g_{I} g_{I I} G_{c}}=\frac{g_{m I} g_{m I I}}{g_{I} g_{I I}} \tag{16.19}
\end{equation*}
$$

The first pole is well separated from the other ones.

$$
\begin{equation*}
p_{1} \approx \frac{a}{b} \approx \frac{g_{I} g_{I I} G_{c}}{C_{I I} g_{I} G_{c}+C_{c} G_{c} g_{m I I}}=\frac{g_{I} g_{I I}}{C_{I I} g_{I}+C_{c} g_{m I I}} \approx \frac{g_{I} g_{I I}}{C_{c} g_{m I I}} \tag{16.20}
\end{equation*}
$$

The zero is located at

$$
\begin{equation*}
z_{1}=\frac{G_{c} g_{m I I}}{C_{c}\left(-G_{c}+g_{m I I}\right)}=\frac{1}{C_{c}\left(\frac{1}{g_{m I I}}-\frac{1}{G_{c}}\right)} \tag{16.21}
\end{equation*}
$$

The unity-gain frequency is

$$
\begin{equation*}
\omega_{u} \approx A_{0} p_{1} \approx \frac{g_{m I}}{C_{c}} \tag{16.22}
\end{equation*}
$$

When the compensation circuit is inserted the first pole will decrease in frequency at the same time as the DC gain is not changed. This will result in a decreased unity-gain frequency and a more stable amplifier.
c) To increase the phase margin of the system we need to place the compensation zero of the circuit at a frequency higher than the unity-gain frequency. $\left|z_{1}\right|>\omega_{u}$ gives

$$
\begin{equation*}
\frac{1}{C_{c}\left(\frac{1}{g_{m I I}}-\frac{1}{G_{c}}\right)}>\frac{g_{m I}}{C_{c}} \tag{16.23}
\end{equation*}
$$

which can be rearranged according to

$$
\begin{equation*}
R_{c}>\frac{1}{g_{m I}}+\frac{1}{g_{m I I}} \tag{16.24}
\end{equation*}
$$

If $R_{c}>1 / g_{m / I}$ then we will have a zero in the left hand plane.

5.8. A folded-cascode OTA

17. A folded-cascode OTA.

For symmetrical fully differential circuits with only a differential input signal, the node at the source of M_{5} is small-signal ground. Further, the circuit is a fully differential gain stage and thereby it is sufficient to compute the small-signal transfer function of half the circuit.

The equivalent small-signal model is shown in Figure 49.

Figure 49: ESSS for the folded-cascode amplifier.
Performing nodal analysis in the nodes V_{x}, V_{y}, and $V_{\text {out }}$ results in the following equations

$$
\begin{gather*}
g_{m 1} V_{i n}+V_{x} g_{d s 1}+V_{x} g_{d s 1}+g_{m 7} V_{x}+\left(V_{x}-V_{o u t}\right) g_{d s 7}=0 \\
g_{m \mathrm{~B}} V_{y}+\left(V_{y}-V_{o u t}\right) g_{d s \mathrm{~B}}+V_{y} g_{d s 10}=0 \tag{17.1}\\
g_{m 7} V_{x}+\left(V_{x}-V_{o u t}\right) g_{d s 7}-V_{o u t} s C_{L}+g_{m \mathrm{~s}} V_{y}+\left(V_{y}-V_{o u t}\right) g_{d s \mathrm{~s}}=0
\end{gather*}
$$

Solving for $V_{\text {out }}$ in the system of equations gives
dividing by the two expressions within the parenthesis in the numerator and assuming that $g_{m}>g_{d s}$ gives the following expression

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-g_{m 1}}{\frac{\left(g_{d s 1}+g_{d s 3}\right) g_{d s 7}}{g_{m 7}}+\frac{g_{d s \mathrm{~B}} g_{d s 10}}{g_{m \mathrm{~B}}}+s C_{L}} \tag{17.3}
\end{equation*}
$$

The DC gain is extracted from Eq. (17.3).

$$
\begin{equation*}
A_{0}=\frac{-g_{m 1}}{\frac{\left(g_{d s 1}+g_{d s 3}\right) g_{d s 7}}{g_{m 7}}+\frac{g_{d s 8} g_{d s 10}}{g_{m \mathrm{~B}}}}=\frac{-g_{m 1}}{g_{o u t}} \tag{17.4}
\end{equation*}
$$

and the first pole is given by

$$
\begin{equation*}
p_{1}=\frac{g_{\text {out }}}{C_{L}} \tag{17.5}
\end{equation*}
$$

b) The phase margin is increased if the ratio between the second pole and the unity-gain frequency is increased. The unity-gain frequency can be expressed as

$$
\begin{equation*}
\omega_{u} \approx A_{o p} p_{1} \approx \frac{g_{m 1}}{C_{L}} \approx \frac{\sqrt{2 \mu_{n} C_{o x} \frac{W_{1}}{L_{1}} I_{d i f f}}}{C_{L}} \tag{17.6}
\end{equation*}
$$

where $I_{\text {diff }}$ is the current through transistor M_{1}. The second pole is given in the exercise to be

$$
\begin{equation*}
p_{2} \approx \frac{g_{m 7}}{C_{x}} \approx \frac{g_{m 7}}{C_{g s 7}} \approx \frac{\sqrt{2 \mu_{p} C_{o x} \frac{W_{7}}{L_{7}} I_{c a s c}}}{\frac{2}{3} C_{o x} W_{7} L_{7}}=\frac{\sqrt{2 \mu_{p}}}{\frac{2}{3} \sqrt{C_{o x}}} \frac{\sqrt{I_{c a s c}}}{L_{7} \sqrt{W_{7} L_{7}}} \tag{17.7}
\end{equation*}
$$

where $I_{\text {casc }}$ is the current through transistors M_{7}, M_{8} and M_{10}. The expression for the ratio between the second pole and the unity-gain frequency is given by

$$
\begin{equation*}
\frac{p_{2}}{\omega_{u}} \approx \frac{\frac{\sqrt{2 \mu_{p}}}{2} \sqrt{\frac{\sqrt{I_{c a s c}}}{C_{o x}}}}{\frac{\sqrt{2 \mu_{n} C_{o x} \frac{W_{1}}{W_{7} L_{7}}}}{C_{\text {diff }}}}=\frac{3}{2} \sqrt{\frac{\mu_{p}}{\mu_{n}} \frac{\sqrt{L_{1}} C_{L}}{C_{o x} L_{7} \sqrt{W_{7} L_{7} W_{1}}} \sqrt{\frac{I_{\text {casc }}}{I_{d i f f}}}} \tag{17.8}
\end{equation*}
$$

Further, the DC gain can be expressed as

$$
\begin{gather*}
A_{0} \approx \frac{-g_{m 1}}{\frac{\left(g_{d s 1}+g_{d s 3}\right) g_{d s 7}}{g_{m 1}+}+\frac{g_{d s 8} g_{d s 10}}{g_{m 8}}} \approx \\
\frac{\sqrt{2 \mu_{n} C_{o x} \frac{W_{1}}{L_{1}} I_{d i f f}}}{\frac{\left(\lambda_{1} I_{d i f f}+\lambda_{3}\left(I_{d i f f}+I_{\text {casc }}\right) \lambda_{7} I_{c a s c}\right.}{\sqrt{2 \mu_{p} C_{o x} \frac{W_{7}}{L_{7}} I_{c a s c}}}+\frac{\lambda_{\mathrm{s}} \lambda_{10} I_{c a s c}^{2}}{\sqrt{2 \mu_{n} C_{o x} \frac{W_{8}}{L_{8}} I_{c a s c}}}} \approx \tag{17.9}\\
\sqrt{\frac{\sqrt{\frac{W_{1}}{L_{1}} I_{d i f f}}}{\sqrt{2 \mu_{n} C_{o x}}}}= \\
\frac{\left(\frac{1}{\left.L_{1} I_{d i f f}+\frac{1}{L_{3}}\left(I_{d i f f}+I_{\text {casc }}\right)\right) \sqrt{I_{c a s c}}}\right.}{\sqrt{W_{7} L_{7}}}+\frac{I_{\text {casc }}^{3 / 2}}{\sqrt{2 \mu_{n} C_{o x}} \sqrt{W_{8} L_{8} L_{10}}}
\end{gather*}
$$

No	Rev	Date	Repo/Course	Page
0024	P4A	2012-02-29	ANTIK	61 of 165
Title	ANTIK Exercises 2012		ID jacwi50	

TSTE80 ATIC \& TSEI30 ANTIK

From Eq. (17.8) and Eq. (17.9) the solution can be computed.

The phase margin can be increased if the area is limited by for example:

- Increasing $I_{\text {casc }}$ the drawbacks will be higher power consumption and lower DC gain.

The phase margin can be increased if the power is critical by for example:

- Increasing C_{L}, the drawbacks is decreased slew rate and unity-gain frequency, but the DC gain will not be changed.
- Decrease W_{7}, the drawback is decreased DC gain, no changes to the unity-gain frequency or the slew rate.
The phase margin can be increased if the unity-gain frequency and the power consumption is critical for example by:
- Decrease W_{7}, the drawback is decreased DC gain, no changes to the unity-gain frequency or the slew rate.

Rev	Date
P4A	2012-02-29

Repo/Course
Page

5.9. OP usage (K9)

Exercises

Exercise K9

GIC - Generalized impedance converter.
The gic can be used to realize on-chip inductances. However, the circuit is area consuming and there are some other drawbacks.
Derive the K-matrix

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right]
$$

where

$$
A=\left.\frac{V_{1}}{V_{2}}\right|_{-I_{2}=0}, B=\left.\frac{V_{1}}{-I_{2}}\right|_{V_{2}=0}, C=\left.\frac{I_{1}}{V_{2}}\right|_{-I_{2}=0}, D=\left.\frac{I_{1}}{-I_{2}}\right|_{V_{2}=0}
$$

(If N links with K-matrix K_{i} are cascaded, the total system can be described by the matrix product $K_{\text {TOT }}=K_{1} K_{2} \ldots K_{N}$.)

Assume that the OPamps are ideal. This implies that the voltage over the input must be zero. This forces the potential in V_{x} to be equal to V_{1} and V_{2}, and further $V_{1}=V_{2}$. With KCL, and denoting the currents through Z_{2} and Z_{3} with $I_{Z 2}$ and $I_{Z 3}$, respectively, we have:

$$
\begin{aligned}
& V_{1}-I_{1} Z_{1}-I_{Z 2} Z_{2}=V_{x}=V_{1} \text { which gives } I_{Z 2}=-I_{1} Z_{1} / Z_{2} \\
& V_{2}-I_{2} Z_{4}-I_{Z 3} Z_{3}=V_{x}=V_{2} \text { which gives } I_{Z 3}=-I_{2} Z_{4} / Z_{3}
\end{aligned}
$$

Due to the infinite input impedance, there can be no current flowing into the OPamps, and:

$$
I_{Z 2}=-I_{Z 3} \text { which gives }-I_{1} Z_{1} / Z_{2}=I_{2} Z_{4} / Z_{3} \text {, or } I_{1}=-I_{2} \frac{Z_{2} Z_{4}}{Z_{1} Z_{3}}
$$

From this we get

$$
A=1, B=0, C=0, D=\frac{Z_{2} Z_{4}}{Z_{1} Z_{3}}
$$

If an impedance, Z, is terminating port two, the relation between output current and voltage is given by

$$
V_{2}=-I_{2} Z
$$

Equations $V_{1}=V_{2}$ and $I_{1}=\frac{Z_{2} Z_{4}}{Z_{1} Z_{3}} \cdot \frac{V_{2}}{Z}$ give

$$
Z_{\text {in }}=\frac{V_{1}}{I_{1}}=\frac{V_{2}}{\frac{Z_{2} Z_{4}}{Z_{1} Z_{3}} \cdot \frac{V_{2}}{Z}}=Z \frac{Z_{1} Z_{3}}{Z_{2} Z_{4}}
$$

Suppose

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	63 of 165
TE OF	Title	ANTI	ses 2012		ID jacwi50

Lesson 6

$$
\begin{aligned}
& \qquad Z=Z_{1}=Z_{3}=Z_{2}=R \text { and } Z_{4}=\frac{1}{s C} \\
& \text { we have } \\
& \qquad Z_{\text {in }}=s C R^{2}=s L \\
& \text { which simulates an inductor. }
\end{aligned}
$$

Exercise Extra

Find a signal flow chart which describes a 4th order leapfrog filter. Or generally, an even order leapfrog filter.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	64 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

5.10. GM usage (K10)

Lesson $7 \quad$ Analog Discrete-Time Integrated Circuits, TSTE80

Exercise K10
The equations for the circuit are given by
$I_{2}=s C_{1} \cdot\left(V_{2}-V_{\text {out }}\right)$
$I_{x}=G_{m} \cdot V_{1}$
$I_{2}+I_{x}=s C_{2} \cdot V_{\text {out }}$

$V_{\text {out }}=\frac{1}{s C_{2}} \cdot\left(I_{2}+I_{x}\right)=\frac{C_{1}}{C_{2}}\left(V_{2}-V_{\text {out }}\right)+\frac{G_{m}}{s C_{2}} \cdot V_{1}$
$V_{\text {out }}=\frac{G_{m}}{s \alpha} V_{1}+\frac{C_{1}}{\alpha} V_{2}$ where $\alpha=C_{1}+C_{2}$
With this circuit we can perform an addition and an integration.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	65 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

EXERCISE SECTION 6: NOISE IN CMOS CIRCUITS

x If not stated otherwise, we use the process parameters given in Sec. (), the power supply voltage is $V_{D D}=3.3 \mathrm{~V}$, the transistor lengths are $L=1 \mathrm{um}$.
x If not stated otherwise, the bulks of the NMOS and PMOS transistors are connected to ground and positive supply, respectively.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	66 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

6.1. Noise in a multi-stage amplifier

18. Noise in a multi-stage amplifier.
a) In Figure 50(b) the small-signal equivalent for the circuit is shown. Further, the gain for each

(a)

(b)

(c)

Figure 50: (a) Multi-stage circuit, (b) small-signal equivalent and (c) superposition principle.
gain stage is computed to

$$
\begin{equation*}
A_{1}=\frac{-g_{m 1}}{g_{d s 1}+s C_{g s 2}} ; A_{2}=\frac{-g_{m 2}}{g_{d s 2}+s C_{g s 3}} \text { and } A_{3}=\frac{-g_{m 3}}{g_{d s 3}+s C_{L}} \tag{18.1}
\end{equation*}
$$

The total output noise is now given by superpositioning the different noise contributions according to

$$
\begin{equation*}
V_{N, \text { TOT }}^{2}=v_{n 1}^{2}\left|A_{1} A_{2} A_{3}\right|^{2}+v_{n 2}^{2}\left|A_{2} A_{3}\right|^{2}+v_{n 3}^{2}\left|A_{3}\right|^{2} \tag{18.2}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{n i}^{2}=\frac{8 k T}{3} \frac{1}{g_{m i}} \tag{18.3}
\end{equation*}
$$

By combining Eq. (18.1), Eq. (18.2) and Eq. (18.3) we get

$$
\begin{align*}
& V_{N, T O T}^{2}=\frac{8 k T}{3} \frac{1}{g_{m 1}\left|g_{d s 1}+j 2 \pi f C_{g s 2}\right|^{2}\left|g_{d s 2}+j 2 \pi / C_{g s 3}\right|^{2}\left|g_{d s 3}+j 2 \pi / C_{L}\right|^{2}}+ \\
& \quad+\frac{8 k T}{3} \frac{1}{g_{m 2}} \frac{g_{m 1}^{2} g_{m 2}^{2} g_{m 3}^{2}}{\left|g_{d s 2}+j 2 \pi f C_{g s 3}\right|^{2}\left|g_{d s 3}+j 2 \pi / C_{L}\right|^{2}}+\frac{8 k T}{3} \frac{1}{g_{m 3}\left|g_{d s 3}+j 2 \pi f C_{L}\right|^{2}} \frac{g_{m 3}^{2}}{g_{m}^{2}} \tag{18.4}
\end{align*}
$$

and with all $I_{b i a s}$ equal and all transistors equally sized \rightarrow equal $g_{m}, g_{d s}$, and $C_{g s}$ we get

$$
\begin{equation*}
V_{N, T O T}^{2}=\frac{8 k T}{3} \frac{g_{m}}{\left|g_{d s}+j 2 \pi / C_{L}\right|^{2}}\left(\frac{g_{m}^{4}}{\left|g_{d s}+j 2 \pi f C_{g s}\right|^{4}}+\frac{g_{m}^{2}}{\left|g_{d s}+j 2 \pi / C_{g s}\right|^{2}}+1\right) \tag{18.5}
\end{equation*}
$$

The equivalent output noise power is computed as the integral of the spectral density over the frequency spectrum. This is here approximated using the noise bandwidth concept. Hence, the output noise power is

$$
\begin{align*}
& P_{\text {out }}=V_{N, T O T}^{2} \frac{p_{1}}{4}=\frac{2 k T}{3} \frac{g_{m}}{g_{d s}^{2}}\left(\frac{g_{m}^{4}}{g_{d s}^{4}}+\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right) \frac{g_{d s}}{C_{L}}= \\
& \frac{2 k T}{3 C_{L}} \frac{g_{m}}{g_{d s}}\left(\frac{g_{m}^{4}}{g_{d s}^{4}}+\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right) \tag{18.6}
\end{align*}
$$

b) The total output noise scales with I_{D} as

$$
\begin{align*}
& V_{N, \text { TOT }}^{2} \sim \frac{g_{m}}{g_{d s}}\left(\frac{g_{m}^{4}}{g_{d s}^{4}}+\frac{g_{m}^{2}}{g_{d s}^{2}}+1\right) \sim \frac{1}{\sqrt{I_{D}}}\left(\frac{1}{I_{D}^{2}}+\frac{1}{I_{D}}+1\right) ;\left(g_{m} \approx 2 \sqrt{\alpha I_{D}},\right. \\
& \left.g_{d s} \approx \lambda I_{D}\right) \tag{18.7}
\end{align*}
$$

i.e., increasing I_{D} decreases the equivalent output noise power.

The DC gain of the circuit is given by

$$
\begin{equation*}
A_{T O T}=A_{1} A_{2} A_{3}=\frac{g_{m 1} g_{m 2} g_{m 3}}{g_{d s 1} g_{d s 2} g_{d s 3}} \sim\left(\frac{1}{I_{D}}\right)^{3 / 2} \tag{18.8}
\end{equation*}
$$

i.e., the DC gain will be lower for a larger I_{D}.

The bandwidth of the circuit is approximately given by the dominating pole because $C_{L} \geqslant C_{g s}$. This pole is computed from

$$
\begin{equation*}
A_{3}=\frac{g_{m 3}}{\left(g_{d s 3}+s C_{L}\right)}=\frac{g_{m 3} / g_{d s 3}}{\left(1+\frac{s C_{L}}{g_{d s 3}}\right)}, \tag{18.9}
\end{equation*}
$$

i.e., the pole is given by

$$
\begin{equation*}
p_{1}=\frac{g_{d s}}{C_{L}} \tag{18.10}
\end{equation*}
$$

	No	Rev	Date	Repo/Course	Page
LinkÖping University	0024	P4A	2012-02-29	ANTIK	68 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

Hence, the bandwidth scales as $p_{1} \sim \lambda I_{D} \gg$ larger bandwidth for a larger I_{D}.
c) From Eq. (18.2) we can see that A_{3} amplifies all noise sources, i.e., this stage should have the smallest gain. A_{1} on the other hand only amplifies the first noise source and should therefore have the largest gain.

6.2. Noise in CMOS circuits

19. Noise in CMOS circuits.
a) The equivalent small-signal model for the circuit is shown in Figure 51.

a)

b)

Figure 51: ESSS for the source-degenerated CS stage. a) Input to output. b) bias to output.

To compute the equivalent output noise power the transfer function from $V_{i n}$ to $V_{o u t}$ and from V_{b} to $V_{\text {ouf }}$ is computed. We start by setting up the equations required to compute the transfer function from the input to the output.

$$
\begin{align*}
& g_{m 1}\left(V_{\text {in }}-V_{x}\right)-g_{m b s 1} V_{x}+\left(V_{\text {out }}-V_{x}\right) g_{d s 1}-V_{x} g_{d s 2}=0 \\
& g_{m 1}\left(V_{\text {in }}-V_{x}\right)-g_{m b s 1} V_{x}+\left(V_{\text {out }}-V_{x}\right) g_{d s 1}+V_{\text {out }} C_{L}=0 \tag{19.2}
\end{align*}
$$

Solving for $V_{\text {out }}$ by eliminating V_{x} gives the following transfer function

$$
H_{1}=\frac{V_{o u t}}{V_{i n}}=\frac{g_{m 1}}{g_{d s 1}} \frac{1}{\frac{s}{C_{L}\left(g_{m 1}+g_{m b s 1}+g_{d s 1}+g_{d s 2}\right)}}
$$

The equations for the transfer function between V_{b} and $V_{\text {out }}$ is given by

$$
\begin{align*}
& g_{m 2} V_{n}+g_{d s 2} V_{x}+g_{m 1} V_{x}+g_{m b s 1} V_{x}+\left(V_{x}-V_{o u t}\right) g_{d s 1}=0 \tag{19.4}\\
& g_{m 1} V_{x}+g_{m b s 1} V_{x}+\left(V_{x}-V_{o u t}\right) g_{d s 1}-V_{o u t} s C_{L}=0 \tag{19.5}
\end{align*}
$$

Solving for $V_{\text {out }}$ by eliminating V_{x} results in

$$
H_{2}=\frac{V_{o u t}}{V_{b}}=\frac{\left(g_{m 1}+g_{m b s 1}+g_{d s 1}\right) g_{m 2}}{g_{d s 1} g_{d s 2}} \frac{1}{1+\frac{s}{\frac{g_{d s 1} g_{d s 2}}{C_{L}\left(g_{m 1}+g_{m b s 1}+g_{d s 1}+g_{d s 2}\right)}}}
$$

$$
\begin{equation*}
\approx \frac{\left(g_{m 1}+g_{m b s 1}\right) g_{m 2}}{g_{d s 1} g_{d s 2}} \frac{1}{1+\frac{s}{\frac{g_{d s 1} g_{d s 2}}{C_{L}\left(g_{m 1}+g_{m b s 1}+g_{d s 1}+g_{d s 2}\right)}}} \tag{19.6}
\end{equation*}
$$

The rms output noise is given by

$$
\begin{equation*}
V_{n o}^{2}=\int\left|H_{1}\right|^{2} V_{i n}^{2} d f+\int\left|H_{2}\right|^{2} V_{b}^{2} d f \tag{19.7}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{i n}^{2}=\frac{8 k T}{3} \frac{1}{g_{m 1}} \tag{19.8}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{b}^{2}=\frac{8 k T}{3} \frac{1}{g_{m 2}} \tag{19.9}
\end{equation*}
$$

The last two equations comes from the fact that the thermal noise power of a transistor is modelled as a gaussian white noise source.

The two integrals in Eq. (19.7) can be calculated using the concept of noise bandwidth which results in the following computation.

$$
\begin{align*}
& V_{n o}^{2}=\left(\frac{g_{m 1}}{g_{d s 1}}\right)^{2} \frac{p_{1}}{4} V_{i n}^{2}+\left(\frac{\left(g_{m 1}+g_{m b s 1}\right) g_{m 2}}{g_{d s 1} g_{d s 2}}\right)^{2} \frac{p_{1}}{4} V_{b}^{2} \tag{19.10}\\
& V_{n o}^{2}=\frac{2 k T}{3 C_{L}}\left(\frac{g_{m 1}}{g_{d s 1}} g_{d s 2}+\frac{\left(g_{m 1}+g_{m b s 1}\right)^{2} g_{m 2}}{g_{d s 1} g_{d s 2}}\right) \frac{1}{g_{m 1}+g_{m b s 1}+g_{d s 1}+g_{d s 2}} \approx \\
& \approx \frac{2 k T}{3 C_{L}}\left(\frac{g_{m 1}}{g_{d s 1}\left(g_{m 1}+g_{m b s 1}\right)^{2}} g_{d s 2}+\frac{\left(g_{m 1}+g_{m b s 1}\right) g_{m 2}}{g_{d s 1} g_{d s 2}}\right) \\
& \approx \frac{2 k T}{3 C_{L}}\left(\frac{g_{d s 2}}{g_{d s 1}}+\frac{g_{m 1} g_{m 2}}{g_{d s 1} g_{d s 2}}\right) \tag{19.11}
\end{align*}
$$

b) Relevant design parameters are for example the current through the circuit and the size of the transistor.
Rewriting the Eq. (19.11) with the design parameters yields

$$
\begin{equation*}
V_{n o}^{2}=\frac{2 k T}{3} \frac{1}{C_{L}}\left(\frac{L_{2}}{L_{1}}+\frac{\sqrt{2 \mu_{n} C_{o x} W_{1} L_{1}} \sqrt{2 \mu_{n} C_{o x} W_{2} L_{2}}}{I_{\text {bias }}}\right) \tag{19.12}
\end{equation*}
$$

The DC gain from the input to the output is given by

$$
\begin{equation*}
A_{0}=\frac{g_{m 1}}{g_{d s 1}} \approx \sqrt{\frac{2 \mu_{n} C_{o x} W_{1} L_{1}}{I_{b i a s}}} \tag{19.13}
\end{equation*}
$$

and the unity-gain frequency is given by

$$
\begin{equation*}
\omega_{u} \approx A_{0} p_{1} \approx \frac{g_{d s 2} g_{m 1}}{\left(g_{m 1}+g_{m b s 1}+g_{d s 1}+g_{d s 2}\right) C_{L}} \approx \frac{g_{d s 2}}{C_{L}} \approx \frac{I_{b i a s}}{L_{2} C_{L}} \tag{19.14}
\end{equation*}
$$

The equivalent output noise power can be reduced by:

- Increase the bias current -> Decreased DC gain, Increased unity-gain frequency, and Increased slew rate.
- Decreased $W_{2} \rightarrow$ No change to the DC gain, unity-gain frequency or slew rate.
- Decrease $L_{2} \rightarrow$ No change to the DC gain, increased unity-gain freq. and no change to the slew rate.

6.3. Noise in an amplifier

20. Noise in an amplifier.
a) The ESSS is shown in Figure 52.

Figure 52: The ESSS of the noisy circuit
We have to calculate the transfer function from the gate of transistor M1 to the output, $H 1$, from transistor M2 to the output, $H 2$, and from the $V_{\text {in }}$ to
the output, H.

$$
\begin{equation*}
H 1=\frac{g_{m 1} g_{m 2}}{g_{d s 1} g_{d s 2}+s\left(g_{d s 1} C_{L}+g_{d s 2} C_{g s 2}\right)+s^{2} C_{L} C_{g s 2}} \tag{20.1}
\end{equation*}
$$

According to exercise 2 the poles of the transfer function can be extracted directly.

$$
\begin{equation*}
p_{11} \approx \frac{g_{d s 2}}{C_{L}} \tag{20.2}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{12} \approx \frac{g_{d s 1}}{C_{g s 2}} \tag{20.3}
\end{equation*}
$$

Continuing with the transfer function from the gate of M2 to the output.

$$
\begin{equation*}
H 2=\frac{g_{m 2}}{g_{d s 2}+s C_{L}} \tag{20.4}
\end{equation*}
$$

The transfer function from $V_{i n}$ to the output is

$$
\begin{equation*}
H=\frac{\left(g_{m 1}+g_{d s 1}\right) g_{m 2}}{g_{d s 1} g_{d s 2}+s\left(g_{d s 1} C_{L}+g_{d s 2} C_{g s 2}\right)+s^{2} C_{L} C_{g s 2}} \tag{20.5}
\end{equation*}
$$

The spectral density of the output can be calculated as

$$
S_{\text {out }}(f)=\left|H_{1}(f)\right|^{2} V_{n 1}+\left|H_{2}(f)\right|^{2} V_{n 2}
$$

where

$$
\begin{equation*}
V_{n i}=\frac{8 k T}{3} \frac{1}{g_{m i}} \tag{20.7}
\end{equation*}
$$

The noise power at the output can now be calculated according to the equation below.

$$
\begin{equation*}
V_{o u t}^{2}=\int_{o u t}^{\infty} S_{o u}(f) d f \tag{20.8}
\end{equation*}
$$

If we do not like to perform the integration we can use the concept of noise bandwidth (see
chapter 4 in Johns\&Martin). The integral of a one pole system (or a system with well separated poles) is equivalent to the integral of a reetangle with the width of the dominant pole divided by four.

$$
\begin{equation*}
V_{\text {out }}^{2}=\frac{2 k T}{3} \frac{g_{m 2}}{g_{d s 2}} \frac{1}{C_{L}}\left(\frac{g_{m 1} g_{m 2}}{g_{d s 1}^{2}}+1\right) \tag{20.9}
\end{equation*}
$$

b) Derive the noise voltage that can be referred to the input.

The input referred noise voltage can be obtain by dividing the output referred noise voltage by $\left|H_{1}\right|^{2}$.

$$
\begin{equation*}
S_{i n}(f)=S_{o w r}(f) /\left|H_{1}\right|^{2} \tag{20.10}
\end{equation*}
$$

This gives the answer

$$
\begin{equation*}
S_{i n}(f)=\frac{8 k T}{3} \frac{g_{d s 2}}{g_{m 1}}\left(1+{\left.\left.\frac{g_{d s 1}}{g_{m 1} g_{m 2}}\right), ~\right) ~(1)}_{2}\right. \tag{20.11}
\end{equation*}
$$

c) Propose one way to increase the maximum signal-to-noise ratio, SNR in the circuit. What will happen to the DC gain, unity-gain frequency, bandwidth and the phase margin of the circuit?
The gain, $\mathrm{p} 1, \mathrm{p} 2, \omega_{u}$ of the circuit are already derived. Assume that the input voltage source is white.

$$
\begin{align*}
& V_{i n}^{2}=S_{i n}(f)=\frac{2 k T}{3} \frac{1}{g_{m 1}}\left(1+\frac{g_{d s 1}^{2}}{g_{m 1} g_{m 2}}\right) \frac{g_{d s 2}}{C_{L}} \tag{20.12}\\
& \propto \frac{2 k T}{3} \frac{g_{d s 2}}{g_{m 1}} \frac{1}{C_{L}}\left(1+\frac{g_{d s 1}^{2}}{g_{m 1} g_{m 2}}\right) \tag{20.13}\\
& \propto \frac{I_{2}}{L_{2}} \sqrt{\frac{L_{1}}{W_{1} I_{1}}\left(1+\frac{I_{1}^{2}}{L_{1}^{2}} \sqrt{\frac{L_{1} L_{2} I_{1} I_{2}}{W_{1} W_{2}}}\right)} \tag{20.14}\\
& A_{0}= \frac{g_{m 1} g_{m 2}}{g_{d s 1} g_{d s 2}} \propto \sqrt{\frac{W_{1} L_{1} W_{2} L_{2}}{I_{b i a s 1} I_{b i a s 2}}} \tag{20.15}\\
& p 1=\frac{g_{d s 2}}{C_{L}} \propto \frac{I_{2}}{L_{2} C_{L}} \tag{20.16}\\
& p_{2} \approx \frac{g_{d s 1}}{C_{g s 2}} \propto \frac{I_{1}}{W_{2} L_{1} L_{2}} \tag{20.17}\\
& \omega_{\mathrm{u}} \approx A_{0} p_{1}=\frac{g_{m 1} g_{m 2}}{g_{d s 1} C_{L}} \propto \sqrt{\frac{W_{1} L_{1} W_{2} I_{b i a s 2}}{L_{2} I_{b i a s 1} C_{L}}} \tag{20.18}
\end{align*}
$$

The above five equations shows that will happen if a parameter is changed. Remember that

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	73 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

$1 » \frac{g_{d s 1}}{g_{m 1} g_{m 2}}$					
 Change	noise	A0	pl	unity-gain	phase margin
Increase W1	decreases	Increases	no change	increases	decreases
increase I1	decreases	decreases	no change	decreases	increases
Increase W2	decreases	increases	no change	increases	decreases
decrease I2	decreases	increases	decreases	decreases	increases

[^0]
6.4. Noise in a common-source amplifier biased by a current mirror

21. Noise in a common-source amplifier biased by a current mirror.
a) The spectral density function of for the resistor is given by

$$
\begin{equation*}
V_{R}^{2}(f)=4 k T R \tag{21.1}
\end{equation*}
$$

The ESSS is shown in Figure 53.

Figure 53: The ESSS of the noisy circuit.

We have to calculate the transfer function from the drain of transistor M1 to the output, H1, from transistor M2 to the output, H2, from transistor M3 to the output, H3, and from the resistor to the output, H4.

Consider a current source at in parallel with transistor M1 this will give a transfer function from that current source to the output according to

$$
\begin{equation*}
H 1=\frac{1}{g_{d s 1}+g_{d s 2}+s C_{L}} \tag{21.2}
\end{equation*}
$$

the pole is located in

$$
\begin{equation*}
p_{1}=\frac{g_{d s 1}+g_{d s 2}}{C_{L}} \tag{21.3}
\end{equation*}
$$

Continuing with the transfer function from the noise current source in transistor M2 to the output. This gives that $H 2=H 1$.

The transfer function from M3 to the output is given by

$$
\begin{equation*}
H_{3}=\frac{V_{\text {out }}}{V_{x}} \frac{V_{x}}{I_{n M 3}}=\frac{g_{m 2}}{g_{d s 1}+g_{d s 2}+s C_{L}} \frac{1}{g_{d s 3}+g_{m 3}+\frac{1}{R}} \tag{21.4}
\end{equation*}
$$

The transfer function from the resistor to the output is given by

$$
\begin{equation*}
H_{4}=\frac{V_{\text {out }} V_{x}}{V_{x}} \frac{g_{m 2}}{I_{R}}=-\frac{1}{g_{d s 1}+g_{d s 2}+s C_{L}} \frac{1}{g_{d s 3}+g_{m 3}+\frac{1}{R}} \tag{21.5}
\end{equation*}
$$

The spectral density function of the output can be calculated as

$$
\begin{equation*}
S_{\text {out }}(f)=\left|H_{1}(f)\right|^{2} I_{n 1}^{2}+\left|H_{2}(f)\right|^{2} I_{n 2}^{2}+\left|H_{3}(f)\right|^{2} I_{n 3}^{2}+\left|H_{4}(f)\right|^{2} I_{R}^{2} \tag{21.6}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n i}=\frac{8 k T}{3} g_{m i} \tag{21.7}
\end{equation*}
$$

The noise power at the output can now be calculated according to

$$
\begin{equation*}
V_{o u t}^{2}=\int_{\text {out }}^{\infty}(f) d f \tag{21.8}
\end{equation*}
$$

If we do not like to perform the integration we can use the concept of noise bandwidth (see chapter 4 in Johns\&Martin). The integral of a one pole system (or a system with well separated poles) is equivalent to the integral of a rectangle with the width of the dominant pole divided by four.

$$
\begin{equation*}
V_{o u t}^{2}=\frac{2 k T}{g_{d s 2}+g_{d s 1}} \frac{1}{C_{L}}\left(\frac{g_{m 1}}{3}+\frac{g_{m 2}}{3}+\frac{g_{m 2}^{2}}{\left(\frac{1}{R}+g_{m 3}+g_{d s 3}\right)^{2}}\left(\frac{g_{m 3}}{3}+\frac{1}{2 R}\right)\right) \tag{21.9}
\end{equation*}
$$

b)

- Increase the load capacitor. This will decrease the unity-gain frequency of the amplifier, but the gain will not change.
- Decrease the resistance R. This will increase the current through transistor M3 and thereby through all transistors. The output noise voltage is approximately proportional to the inverse of the square root of the current through transistor M1. $g_{m 3} \gg 1 / R$ is assumed. Increasing the current will decrease the DC gain of the circuit but increase the unity-gain frequency.
- Decrease the size of M1. Decreases the DC gain and the unity-gain frequency.
- Decrease the size of both M2 and M3 => approximately constant current. No change will happen to neither the DC gain nor the unity-gain frequency.
c) The ESSS is the same as in Figure 53. The transfer function H 1 and H 2 will not be affected, but H3 and H4 will be changed.

$$
\begin{align*}
& H_{3}=\frac{g_{m 2}}{g_{d s 1}+g_{d s 2}+s C_{L}} \frac{1}{\frac{1}{R}+g_{m 3}+g_{d s 3}+s C_{1}} \tag{21.10}\\
& H_{4}=\frac{g_{m 2}}{g_{d s 1}+g_{d s 2}+s C_{L}} \frac{1}{\frac{1}{R}+g_{m 3}+g_{d s 3}+s C_{1}} \tag{21.11}
\end{align*}
$$

The dominating pole of both H 3 and H 4 are approximately

$$
\begin{equation*}
p=\frac{\frac{1}{R}+g_{m 3}+g_{d s 3}}{C_{1}} \tag{21.12}
\end{equation*}
$$

Using the same way to calculate the output noise as in 3a) gives

$$
V_{o u t}^{2}=\frac{2 k T}{g_{d s 2}+g_{d s 1}}\left(\frac{1}{3 C_{L}}\left(g_{m 1}+g_{m 2}\right)+\frac{g_{m 2}^{2}}{g_{d s 2}+g_{d s 1}} \frac{1}{\frac{1}{R}+g_{m 3}+g_{d s 3}}\left(\frac{g_{m 3}}{3 C_{1}}+\frac{1}{2 R}\right)\right)
$$

6.5. Opamp noise (K6)

Exercise K6

1. Determine the transfer functions, $H_{i}=\frac{V_{o}}{V_{n i}}$, from all the noise sources in the amplifier (one for each transistor) to the output.
2. Calculate the total output noise by $S_{o, t o t}(f)=\sum_{1=1}^{7}\left|H_{i}\right| S_{i}(f)$
3. calculate the equivalent input noise by $S_{i, \text { tot }}(f)=\frac{S_{0, \text { tot }}(f)}{A_{\text {tot }}}$

The noise sources in the differential amplifier have the following transfer functions to the gate of M_{7} (the output of stage $1: V_{o 1}$).

$$
\begin{aligned}
& \left|\frac{V_{o 1}}{V_{n 1}}\right|=\left|\frac{V_{o 1}}{V_{n 2}}\right|=g_{m 1} R_{o u t 1},\left|\frac{V_{o 1}}{V_{n 3}}\right|=\left|\frac{V_{o 1}}{V_{n 4}}\right|=g_{m 3} R_{o u t 1} \text { and }\left|\frac{V_{o 1}}{V_{n 5}}\right|=\frac{g_{m 5}}{g_{m 3}} \\
& \text { where } R_{\text {out } 1}=r_{d s 4} \| r_{d s 2} \text { and } R_{o u t 2}=r_{d s 6} \| r_{d s 7^{\prime} .}
\end{aligned}
$$

To get the total transfer function to the output the noise voltages are amplified by the gain of stage 2 :

$$
\left|H_{1}\right|=\left|H_{2}\right|=g_{m 1} R_{\text {out } 1} \cdot g_{m 7} R_{\text {out } 2},\left|H_{3}\right|=\left|H_{4}\right|=g_{m 3} R_{\text {out } 1} \cdot g_{m 7} R_{\text {out } 2} \text { and }
$$

$$
\left|H_{S}\right|=g_{m 5} / g_{m 3} \cdot g_{m 7} R_{o u / 2}
$$

The transfer functions for the transistors in stage 2 are:
$\left|H_{6}\right|=g_{m 6} R_{\text {out } 2}$ and $\left|H_{7}\right|=g_{m 7} R_{\text {out } 2}$.
The total equivalent input noise spectral density is thus given by

$$
\begin{aligned}
\begin{aligned}
& S_{i, t o t}(f)= \sum_{1=1}^{7} \frac{\left|H_{i}\right| S_{i}(f)}{A_{t o t}}=S_{1}(f)+S_{2}(f)+\left(\frac{g_{m 3}}{g_{m 1}}\right)^{2}\left(S_{3}(f)+S_{4}(f)\right)+ \\
&+\left(\frac{g_{m 5}}{g_{m 3} A_{1}}\right)^{2} S_{5}(f)+\left(\frac{1}{A_{1}}\right)^{2} S_{7}(f)+\left(\frac{g_{m 6}}{g_{m 7} A_{1}}\right)^{2} S_{5}(f) \approx \\
& \approx 2 \cdot S_{1}(f)+\left(\frac{g_{m 3}}{g_{m 1}}\right)^{2} 2 \cdot S_{3}(f) \\
& \text { where } S_{i}(f)=4 k T_{3}^{2} \frac{1}{g_{m i}}+\frac{K}{(W / L)_{i} C_{o x} f}
\end{aligned} \text { }
\end{aligned}
$$

Conclusions:

- Noise contributions from $\mathrm{M}_{5}-\mathrm{M}_{7}$ are small
- Large area for the transistors $\Rightarrow>$ small $1 / \mathrm{f}$-noise
- $g_{m 1}>g_{m 3} \Rightarrow$ small contribution from $\mathrm{M}_{3}-\mathrm{M}_{4}$.
- Large $g_{m 1} \Rightarrow$ Small thermal noise in $\mathrm{M}_{1}-\mathrm{M}_{2}$.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	77 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

EXERCISE SECTION 7: CONTINUOUS-TIME FILTERS

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	78 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.1. First-order filter

Some important reasons for migrating to an active filter implementation are
> Poles and zeros can be placed anywhere in the real axis
> Poles and zeros can be placed independently
> The filter can be loaded without altering the transfer function.
> Integration and differentiation functions can be implemented
> Active filters can be designed to have a certain gain
> Cascading is possible to realize higher-order filters

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	79 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.2. Bilinear transfer functions

TBD Solution to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	80 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.3. Higher-order filters starting point (S 5.3)

TBD Refer pp. 104-107, 'Design of Analog Filters' , Schaumann and Valkenburg

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	81 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.4. Biquads (S 5.4)

TBD Refer Ex 3.11, pp. 107-109, 'Design of Analog Filters' , Schaumann and Valkenburg

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	82 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.5. Tow-Thomas (S 5.6)

TBD Refer pp. 129-134, 'Design of Analog Filters' , Schaumann and Valkenburg

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	83 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.6. Sensitivity analysis (S 5.7)

a) passive low pass RLC - Refer pp. 460-461, 'Design of Analog Filters' , Schaumann and Valkenburg
b) inverting amplifier - Refer pp. 457-458, 'Design of Analog Filters' , Schaumann and Valkenburg

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	84 of 165
Tintite	ANTIK Exercises 2012		ID jacwi50		

7.7. Sallen Key

TBD Solution to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	85 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.8. Butterworth LP-filter

2.9 - Continuous-time filters
22. Butterworth LP-filter.

From the specification we get that $A_{\operatorname{mgx}}=3 \mathrm{~dB}$ at $\omega_{c}=2 \pi \cdot 3,5 \cdot 10^{3} \approx 22 \mathrm{krad} / \mathrm{s}$ and that $A_{\text {min }}=25 \mathrm{~dB}$ at $\omega_{s}=2 \pi \cdot 10 \cdot 10^{3} \approx 63 \mathrm{krad} / \mathrm{s}$.
Nomogram and formulas gives us a filter order of $N=3$ (page 27 and 25).
According to the "Tabell och Formelsamlingen" at page 23 the in-resistance for the voltage supply is normalized to $1 / R_{i}$. This gives us the refection factor $r=R_{L} / R_{i}=600 / 1200=0,5$.
From the table at page $28(r=0,5)$ we get the normalized values:
$L_{1 n}=3,2612, C_{2 n}=0,7789, L_{3 n}=1,1811$
Which are de normalized according to $L=\frac{R_{0} L_{n}}{\omega_{0}}$ and $C=\frac{C_{n}}{\omega_{0} R_{0}}$ which finally gets us:
$L_{1}=88,9 m H, C_{2}=59 n F, L_{3}=49 m H$

Rev	Date
P4A	$2012-02-29$

Repo/Course

7.9. Chebychev LP filter

23. Chebychev LP filter.

The specification is given as:
$\omega_{c}=1000 \mathrm{rad} / \mathrm{s}, \omega_{s}=2000 \mathrm{rad} / \mathrm{s}, Z_{L}=1 k \Omega, Z_{i}=125 \Omega$.
A filter of Chebyshev I type shall be implemented, with lowest possible order that meets the specification above. The transfer curve is normalized giving us the maximal value $H_{0}=1$. By using that and the information given by the specification we get:

$$
\begin{equation*}
A_{\max }=20 \log 1,2 \approx 1,58 \mathrm{~dB} \text { and } A_{\min }=20 \log (1 / 0,1)=20 \mathrm{~dB} \tag{23.1}
\end{equation*}
$$

By using a nomogram we can derive the filter order but it can also be calculated as

$$
\begin{equation*}
N=\left\lceil\operatorname{acosh} \sqrt{\frac{10^{0,1 A_{\min }-1}}{10^{0,1 A_{\max }}-1}} / \operatorname{acosh}\left(\frac{\omega_{s}}{\omega_{c}}\right)\right\rceil \approx\lceil 2,58\rceil=3 \tag{23.2}
\end{equation*}
$$

We also know that we shall implement a current-mode filter and that $r=\left|Z_{i} / Z_{L}\right|=1 / 8$. The ripple can be derived to be approximately $1,6 \mathrm{~dB}$. This means that we shall use the closest lower value given by the table ($=1 \mathrm{~dB}$, page 36). We read the component values - and since we have a current mode filter and we have an odd filter order ($N=3$) the first component must be a capacitance (page 23).
$C_{1 n}=12,5563$
$L_{2 n}=0,1657$
$C_{3 n}=8,8038$

The values are de nommalized, which gives us:

$$
\begin{align*}
& C_{1}=\frac{C_{1 n}}{\omega_{0} Z_{L}}=\frac{12,5563}{1000 \cdot 1000}=12,5563 \mu F \tag{23.3}\\
& L_{2}=\frac{Z_{L} L_{2 n}}{\omega_{0}}=\frac{1000 \cdot 0,1657}{1000}=0,1657 \mathrm{H} \tag{23.4}\\
& C_{3}=\frac{C_{3 n}}{\omega_{0} Z_{L}}=8,8038 \mu \mathrm{~F} \tag{23.5}
\end{align*}
$$

	No	Rev	Date	Repo/Course	Page
LinkÖping University	0024	P4A	2012-02-29	ANTIK	87 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.10. Butterworth BS-filter

24. Butterworth BS-filter.

From the text we get the following specification.

$$
\left(\begin{array}{c}
\omega_{1}=1600[\mathrm{rad} / \mathrm{s}] \\
\omega_{2}=2000[\mathrm{rad} / \mathrm{s}] \\
\omega_{3}=800[\mathrm{rad} / \mathrm{s}] \\
\omega_{4}=4000[\mathrm{rad} / \mathrm{s}] \\
A_{\min }=50[\mathrm{~dB}] \\
A_{\text {max }}=3[\mathrm{~dB}]
\end{array}\right.
$$

First we transform the BS-specification to an LP-specification. According to page 67 in "Tabell och Formelsamlingen" we get:

$$
\left(\begin{array}{c}
\omega_{1}^{2}=\omega_{1} \omega_{2}=\omega_{3} \omega_{4}=1600 \cdot 2000=32 \cdot 10^{6} \\
\Omega_{2}=\frac{\omega_{1}^{2}}{\omega_{4}-\omega_{3}}=\frac{32 \cdot 10^{5}}{3200}=1 \cdot 10^{3}[\mathrm{rad} / \mathrm{s}] \\
\Omega_{3}=\frac{\omega_{1}^{2}}{\omega_{2}-\omega_{1}}=\frac{32 \cdot 10^{5}}{400}=8 \cdot 10^{3}[\mathrm{rad} / \mathrm{s}]
\end{array}\right.
$$

Nomogram, (the requirement on the attenuation is the same as for the BS specification) and the transformed frequencies gives the filter order $\mathrm{N}=3$. We now get the normalized element values from table ($\mathrm{r}=1$) and we de normalized them according to page 22 in "Tabell och Formelsamlingen" $\left(R_{0}=100, \omega_{0}=\Omega_{2}\right)$:

$$
\left(\begin{array} { l }
{ R = 1 } \\
{ L _ { 1 } = 1 } \\
{ L _ { 3 } = 1 } \\
{ C _ { 2 } = 2 }
\end{array} \quad \text { denormalization } \left(\begin{array}{l}
R=100 \Omega \\
L_{1}=0,1 \mathrm{H} \\
L_{3}=0,1 \mathrm{H} \\
C_{2}=20 \mu \mathrm{~F}
\end{array}\right.\right.
$$

Now we can transform our LP-filter back to the specified BP-filter according to page 67 in

	No	Rev	Date	Repo/Course	Page
LinkÖping University	0024	P4A	2012-02-29	ANTIK	88 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	89 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.11. A doubly resistive terminated ladder network

25. A doubly resistive terminated ladder network.

The solution is much the same as for Exercise 1.3, but since it is not specified which filter type to use it could be interesting to se how the filter order differs between the different filter types. First we transform the BS-specification to an LP-specification according to:

```
( }\mp@subsup{\omega}{\textrm{I}}{2}=4\mp@subsup{\pi}{}{2}\cdot0,9\cdot9\cdot1\mp@subsup{0}{}{6}\quad\mathrm{ Now we can use either a nomogram or some computer based program, e.g, Matlab to derive the different filter orders.
\(\Omega_{2}=2 \pi \cdot 10^{3}[\mathrm{rad} / \mathrm{s}] \quad\) The following Matlab code can be used to derive the filter orders for a Butterworth-, Chebyshev I-, and a Cauer-type filter.
\% Filter specification
Wc = 2*pi*le3;
Ws \(=6 \star \mathrm{pi}\) *le3;
Amax \(=1\);
Amin \(=40\);
\% Filter order for a Butterworth-type filter
NEW \(=\) buttord \(\left\langle W C, W_{B}\right.\), Amax, Amin, 'B' \(\rangle\)
> NBW \(=5\)
\% Filter order for a Chebyshev I-type filter
NCI \(=\) cheblord (Wc, Ws, Amax, Amin,'s')
\(>\operatorname{NCI}=4\)
\& Filter order for a Cauer-type filter
NCA = ellipord(Wc, Ws, Amax, Amin,'s')
\(>\mathrm{NCA}=3\)
```

Here we can see that for the given specification the Cauer-type filter gives the lowest filter order ($\mathrm{N}=3$) followed by the Chebyshev I-type filter ($\mathrm{N}=4$) and finally the Butterworth-type filter ($\mathrm{N}=5$).
2.10 - Switched Capacitor Circuits

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	90 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

7.12. First-order GmC filter (Ex. 15.2 J\&M)

\times Covered by the main course book. The solutions are found via the course web page.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	91 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.13. Second-order GmC filter (Ex. 15.3 J\&M)

x Covered by the main course book. The solutions are found via the course web page.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	92 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.14. Active filters (K11)

Analog Discrete-Time Integrated Circuits, TSTE80

Exercise K11
Realize the filter having the transfer function

$$
H(s)=\frac{1 \times 10^{6}}{s^{2}+3 \times 10^{5} \cdot s+6 \times 10^{6}}
$$

We rewrite the function as

$$
Y(s) \cdot\left[s^{2}+3 \times 10^{5} \cdot s+6 \times 10^{6}\right]=1 \times 10^{6} \cdot X(s)
$$

Or

$$
Y(s)=-\frac{3 \times 10^{5}}{s} Y(s)-\frac{6 \times 10^{6}}{s^{2}} Y(s)+\frac{1 \times 10^{6}}{s^{2}} X(s)
$$

The flow graph is transformed. $A=-6 \times 10^{6}$,
$B=-3 \times 10^{5}$ and $D=-1 \times 10^{6}$. Note the insertion of the inverter. This can now be used to implement the

active filter.
(Note that there is no inversion included in the active RC filter implementation). Now the component values have to be determined. Assume all capacitances to be equal. We can see that the intermediate node can be written as

$$
V_{M}=\frac{A}{s} \cdot Y(s)+\frac{D}{s} \cdot X(s)
$$

Identifying this from the active implementation, we have

$$
V_{M}=-\frac{1}{s R_{A} C} \cdot Y(s)-\frac{1}{s R_{C} C} \cdot X(s)
$$

This gives

$$
A=-\frac{1}{R_{A} C}=-6 \times 10^{6} \text { and } D=-\frac{1}{R_{D} C}=-1 \times 10^{6}
$$

We also see that the output can be written as

$$
Y(s)=\frac{1}{s} \cdot V_{M}+\frac{B}{s} \cdot X(s)
$$

Identifying this from the active implementation, we have

$$
B=-\frac{1}{R_{B} C}=-3 \times 10^{5}
$$

We also see that the implementation above is impossible. The intermediate node V_{M} is not transformed correctly. In fact, we have to inverse the voltage with a buffer.

	No	Rev	Date	Repo/Course	Page
LinkÖping University	0024	P4A	$2012-02-29$	ANTIK	93 of 165
Title	ANTIK Exercises 2012		ID	jacwi50	

Then we identify

$$
\frac{1}{s Z C}=\frac{1}{s} \text { or } Z=\frac{1}{C}
$$

Sct the capacitance to say $C=1 \mu \mathrm{~F}$.
The equations give

$$
\begin{aligned}
& R_{A}=\frac{1}{6}, R_{D}=\frac{1}{1}, R_{B}=\frac{10}{3} \text { and } \\
& Z=R=1 \times 10^{6} .
\end{aligned}
$$

We do some notations. The structure could be changed by letting A be positive using an inverting buffer on the output signal instead. This decreases the number of opamps with one. We thereby also conclude that we do not find the simplest structure by forcing all input arguments to the summation nodes to be negative. We also see that we can use the inverting buffers to scale signal levels and relaxing the size on Z. There are numerous way to implement the filter. One can also soon realize that R_{A}, R_{D} and Z can dependently be scaled and still maintain true transfer function, see next exercise.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	94 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.15. Active filters (K12)

Lesson 7 Analog Discrete-Time Integrated Circuits, TSTE80

Exercise K12
Realize the filter having the transfer function

$$
H(s)=\frac{-1 \times 10^{6}(s-1)}{s^{2}+3 \times 10^{5} \cdot s+6 \times 10^{6}}
$$

The function is rewritten in the same manner as in the previous exercise. In this case we however have a slightly different structure.

$$
Y(s)=-\frac{3 \times 10^{5}}{s} Y(s)-\frac{6 \times 10^{6}}{s^{2}} Y(s)-\frac{1 \times 10^{6}}{s} X(s)+\frac{1 \times 10^{6}}{s^{2}} X(s)
$$

We assume that we feed back the positive output (constant A) and we construct with a negative intermediate node, $-V_{M}$.

With

$$
A=6 \times 10^{6}, B=-3 \times 10^{5}, D=1 \times 10^{6} \text { and }
$$

$$
E=-1 \times 10^{6}
$$

In this implementation we will follow the signal flow graph

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	95 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

7.16. Active filters (K13)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	96 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

7.17. Active filters (K14)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	97 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.18. Leapfrog filters (K15)

Exercise K15

Pass Band: $0<f<3.5 \mathrm{kHz}$ and $A_{\max }=1 \mathrm{~dB}$
Stop Band $f>10 \mathrm{kHz}$ and $A_{\text {min }}=20 \mathrm{~dB}$
Passive Butterworthfilter, order is found in table to be $N=3$.

We choose a voltage driven π-net with reflection
$r=1$ for symmetry. Resistances are chosen to be

$$
R_{i}=R_{L}=R_{0}=1 k \Omega
$$

Component values are found in table to be:

$$
C_{3 n}=1, L_{2 n}=2 \text { and } C_{1 n}=1
$$

These values are denormalized according table to

$$
C=\frac{C_{n}}{\omega_{0} R_{0}}, L=\frac{R_{0} L_{n}}{\omega_{0}} \text {, with } \omega_{0}=\omega_{c} \varepsilon^{-1 / N}=\omega_{c}\left[\sqrt{10^{0.1 A_{\max }}-1}\right]^{-1 / N} \approx 27.55 \mathrm{krad} / \mathrm{s} .
$$

This gives

$$
C_{1}=C_{3}=36.3 n F \text { and } L_{2}=72.6 \mathrm{mH}
$$

A number of filter components have been found. Create a signal flow chart for the circuit. The nodal volt-
 ages for the circuit is found to be (normalized with R):

$$
\begin{array}{ll}
I_{0}=\frac{E-V_{1}}{R_{i}} & R I_{0}=\frac{R}{R_{i}}\left(E-V_{1}\right) \\
V_{1}=\frac{1}{s C_{1}}\left(I_{0}-I_{2}\right) & V_{1}=\frac{1}{s C_{1} R}\left(R I_{0}-R I_{2}\right) \\
I_{2}=\frac{V_{1}-V_{3}}{s L_{2}} & R I_{2}=\frac{R}{s L_{2}}\left(V_{1}-V_{3}\right) \\
V_{3}=\frac{1}{s C_{3}}\left(I_{2}-I_{4}\right) & V_{3}=\frac{1}{s R C_{3}}\left(R I_{2}-R I_{4}\right) \\
I_{4}=\frac{V_{3}}{R_{L}} & R I_{4}=\frac{R}{R_{L}} V_{3}
\end{array}
$$

From these equations we find:

68

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	98 of 165
	Title	ANTIK Exercises 2012		ID	jacwi50

Analog Discrete-Time Integrated Circuits, TSTE80

Modify the graph by propagating the inverters and denote negative voltage nodes:

We now have a number of integrators, $K \frac{1}{5}$. Realized with operational amplifiers we have a
structure according to

We now have to determine the component values for this realization, This is done by comparing the signal flow chart with the OPamp net:

Leapfrog
Signal flow graph
Result

$$
\begin{array}{lll}
{\left[-V_{1}\right]_{E}=-\frac{1}{s C_{4}} \frac{E}{R_{4}}} & {\left[-V_{1}\right]_{E}=\frac{R}{R_{i}} \cdot-\frac{E}{s R C_{1}}=-\frac{E}{s R_{i} C_{1}} \quad C_{4} R_{4}=C_{1} R_{i}} \\
{\left[-V_{1}\right]_{-V_{1}}=-\frac{1}{s C_{4}} \cdot \frac{V_{1}}{R_{5}}} & {\left[-V_{1}\right]_{-V_{1}}=\frac{R}{R_{i}} \cdot-\frac{-V_{1}}{s R C_{1}}=-\frac{-V_{1}}{s R_{i} C_{1}} C_{4} R_{5}=C_{1} R_{i}} \\
{\left[-V_{1}\right]_{-R I_{2}}=-\frac{1}{s C_{4}} \frac{-R I_{2}}{R_{6}}} & {\left[-V_{1}\right]_{-R I_{2}}=-\frac{1}{s R C_{1}}\left(-R I_{2}\right)} & C_{4} R_{6}=C_{1} R \\
{\left[-R I_{2}\right]_{-V_{1}}=-\frac{(-1)}{s C_{5}} \cdot \frac{-V_{1}}{R_{7}}} & {\left[-R I_{2}\right]_{-V_{1}}=\frac{R}{s L_{2}}\left(-V_{1}\right)} & C_{5} R_{7}=L_{2} / R \\
{\left[-R I_{2}\right]_{V_{3}}=-\frac{(-1)}{s C_{5}} \cdot \frac{V_{3}}{R_{8}}} & {\left[-R I_{2}\right]_{V_{3}}=\frac{R}{s L_{2}} V_{3}} \\
{\left[V_{3}\right]_{-R I_{2}}=-\frac{1}{s C_{6}} \frac{-R I_{2}}{R_{9}}} & {\left[V_{3}\right]_{-R I_{2}}=-\frac{1}{s R C_{3}}\left(-R I_{2}\right)} & C_{6} R_{9}=C_{2} / R \\
{\left[V_{3}\right]_{V_{3}}=-\frac{1}{s C_{6}} \frac{V_{3}}{R_{10}}} & {\left[V_{3}\right]_{V_{3}}=-\frac{1}{s R C_{3}} \frac{R}{R_{L}} V_{3}=\frac{V_{3}}{s C_{3} R_{L}} C_{6} R_{10}=C_{3} R_{L}}
\end{array}
$$

Now we have several equations. Choose all capacitors to be equally large, maybe:

$$
C_{4}=C_{5}=C_{6}=30 \mathrm{nF}
$$

The values are chosen to be approximately equal to those found in the ladder filter realization, which would give reasonable resistance values. From the equations we also find:

$$
R_{4}=R_{5}=\frac{C_{1} R_{i}}{C_{4}}=\frac{36.3 n F \cdot 1 k \Omega}{30 n F}=1.21 k \Omega \text { och } R_{10}=\frac{C_{3} R_{L}}{C_{6}}=1.21 k \Omega
$$

And this also gives

$$
R_{6}=R_{9}=\frac{C_{1} R}{C_{4}} \text { and } R_{7}=R_{\mathrm{g}}=\frac{L_{2}}{C_{5} R}
$$

For symmetry, $R_{6}=R_{7}=R_{8}=R_{9}$ are chosen to be equal, which gives:

$$
R^{2}=\frac{L_{2} C_{4}}{C_{1} C_{5}} \Rightarrow R=\sqrt{L_{2} / C_{1}}=1000 \sqrt{72.6 / 36.3} \approx 1.41 \mathrm{k} \Omega
$$

Finally, we have

$$
R_{6}=R_{7}=R_{8}=R_{9}=1.21 \cdot 1.41 \mathrm{k} \Omega \approx 1.71 \mathrm{k} \Omega
$$

The final value that has to be determined is the resistor value used in the invering buffer, r. Choose r to be equal to anyone of the other resistances, i.e., :

$$
r=R_{6}=1.71 \mathrm{k} \Omega
$$

7.19. Leapfrog filters (K16)

Exercise K16

Synthesize an active elliptic leapfrog filter. Termination resistances are $1 k \Omega$. Specification gives:

Pass band: $0<\omega<2 \pi \mathrm{krad} / \mathrm{s}, A_{\text {max }}=0.1 \mathrm{~dB}$
Stop band: $\omega>4 \pi \mathrm{krad} / \mathrm{s}, A_{\text {min }}>20 \mathrm{~dB}$
Order is found with table to be $N=3$.
This gives following filter structure. Component values are found to be

$$
\begin{aligned}
& C_{1}^{\prime}=C_{3}^{\prime}=0.8740, C_{2}^{\prime}=0.2411 \text { and } \\
& L_{2}^{\prime}=0.9083, \quad \text { and } \quad R_{i}=R_{L}=1 k \Omega \\
& \kappa^{2}=1
\end{aligned}
$$

Denormalized values are given by

$$
C=\frac{C_{n}}{\omega_{0} R_{0}} \text { and } L=\frac{R_{0}}{\omega_{0}} L_{n} \text { give } C_{1}=C_{3} \approx 139.1 n F, C_{2} \approx 38.4 n F, L_{2} \approx 144.6 \mathrm{mH}
$$

Sct up the equations:

$$
\begin{array}{ll}
I_{0}=\frac{E-V_{1}}{R_{i}} & R I_{0}=\frac{R}{R_{i}}\left(E-V_{1}\right) \\
V_{1}=\frac{1}{s C_{1}}\left(I_{0}-I_{2}\right) & V_{1}=\frac{1}{s R C_{1}}\left(R I_{0}-R I_{2}\right) \\
I_{2}=\frac{1}{L_{2} \| C_{2}}\left(V_{1}-V_{3}\right) & R I_{2}=\frac{R}{s L_{2} /\left(1+s^{2} L_{2} C_{2}\right)}\left(V_{1}-V_{3}\right) \\
V_{3}=\frac{1}{s C_{3}}\left(I_{2}-I_{4}\right) & V_{3}=\frac{1}{s R C_{3}}\left(R I_{2}-R I_{4}\right) \\
I_{4}=\frac{V_{3}}{R_{L}} & R I_{4}=\frac{R}{R_{L}} V_{3}
\end{array}
$$

Introuduce a current, I_{2}, through the inductor. The equations are modified:

$$
R I_{2}=R I_{2}^{\prime}+s R C_{2}\left(V_{1}-V_{3}\right) \text { and } R I_{2}^{\prime}=\frac{R}{s L_{2}}\left(V_{1}-V_{3}\right)
$$

The $R I_{2}$ expression can be eliminated, and gives:

$$
\begin{aligned}
& \qquad \begin{aligned}
& V_{1}=\frac{1}{s R C_{1}}\left(R I_{0}-R I_{2}^{\prime}-s R C_{2}\left(V_{1}-V_{3}\right)\right) \Rightarrow \\
& V_{1}=\frac{1}{s R\left(C_{1}+C_{2}\right)}\left(R I_{0}-R I_{2}^{\prime}\right)+\frac{C_{2}}{C_{1}+C_{2}} V_{3} \\
& \text { And correspondingly }
\end{aligned} \text { }
\end{aligned}
$$

Linköping University INSTITUTE OF TECHNOLOGY	No	Rev	Date	Repo/Course	Page
	0024	P4A	2012-02-29	ANTIK	101 of 165
	Title	ANTIK Exercises 2012			ID jacwi50

Lesson 6

$$
V_{3}=\frac{1}{s R\left(C_{2}+C_{3}\right)}\left(R I_{2}^{\prime}-R I_{4}\right)+\frac{C_{2}}{C_{2}+C_{3}} V_{1}
$$

This gives the structure with a pair of
"helping" voltage sources.
The equations are written as:

$$
R I_{0}=\frac{R}{R_{i}}\left(E-V_{1}\right)
$$

$V_{1}=\frac{1}{s R\left(C_{1}+C_{2}\right)}\left(R I_{0}-R I_{2}{ }^{\prime}\right)+\frac{C_{2}}{C_{1}+C_{2}} V_{3}$
$R I_{2}{ }^{\prime}=\frac{R}{s L_{2}}\left(V_{1}-V_{3}\right)$
$V_{3}=\frac{1}{s R\left(C_{2}+C_{3}\right)}\left(R I_{2}^{\prime}-R I_{4}\right)+\frac{C_{2}}{C_{2}+C_{3}} V_{1}$
$R I_{4}=\frac{R}{R_{L}} V_{3}$
The signal flow chart is given by

Realization
The $a_{i j}$ terms can be realized by using capacitors instead of resistances. This realizes a negative and scaled signal flow.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	102 of 165
	Title	ANTI	ses 2012		ID jacwi50

Component values are found using the same manner as for the previous exercise. The resistances can be implemented by using transistors.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	103 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

7.20. Leapfrog filters (K17)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	104 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

7.21. Leapfrog filters (K18)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	105 of 165
INsTITUTE OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

7.22. Gyrators (K19)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	106 of 165
INSTITUTE OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

7.23. \quad Gm-C filters (K2O)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	107 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

7.24. Gm-C filter parasitics (K21)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	108 of 165
Institute OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

7.25. Gm-C filters (K22)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	109 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

EXERCISE SECTION 8: SWITCHED CAPACITOR CIRCUITS

8.1. Switched capacitor accumulator 1

26. Switched capacitor circuit.
a) Here we use the charge analysis. The SC circuit is shown for both clock phases in Figure 54.

Figure 54: The SC circuit in both clock phases.
Using the charge analysis in the circuit starting at time t (clock phase 1)

$$
\begin{align*}
& q_{1}(t)=\left(V_{1}(t)-0\right) C_{1} \tag{26.1}\\
& q_{2}(t)=\left(V_{2}(t)-0\right) C_{2} \tag{26.2}
\end{align*}
$$

At time $t+\tau$ (clock phase 2)

$$
\begin{align*}
& q_{1}(t+\tau)=(0-0) C_{1} \tag{26.3}\\
& q_{2}(t+\tau)=\left(V_{2}(t+\tau)-0\right) C_{2} \tag{26.4}
\end{align*}
$$

At time $t+2 \tau$ (clock phase I)

$$
\begin{align*}
& q_{1}(t+2 \tau)=\left(V_{1}(t+2 \tau)-0\right) C_{1} \tag{26.5}\\
& q_{2}(t+2 \tau)=\left(V_{2}(t+2 \tau)-0\right) C_{2} \tag{26.6}
\end{align*}
$$

Another equation is required to be able to compute the transfer function. This equation comes from the charge conservation. In clock phase 2 the charge of the two capacitors can not disappear since the charge can not be discharged through the opamp input terminals. This means that the charge on the capacitors at the end of clock phase 1 is equal to the charge of the capacitors during the whole clock phase 2 .

$$
\begin{equation*}
q_{1}(t)+q_{2}(t)=q_{1}(t+\tau)+q_{2}(t+\tau) \tag{26.7}
\end{equation*}
$$

The charge of C_{2} at the time $t+\tau$ is equal to the charge of C_{2} at time $t+2 \tau$ since no charge can be given by the opamp input.

$$
\begin{equation*}
q_{2}(t+\tau)=q_{2}(t+2 \tau) \tag{26.8}
\end{equation*}
$$

Inserting the above equations into Eq. (26.7) gives

$$
\begin{equation*}
V_{1}(t) C_{1}+V_{2}(t) C_{2}=V_{2}(t+\tau) C_{2}=V_{2}(t+2 \tau) C_{2} \tag{26.9}
\end{equation*}
$$

To compute the transfer function we have to take the Z-transform of both sides.

$$
\begin{equation*}
V_{1}(z) C_{1}+V_{2}(z) C_{2}=V_{2}(z) z C_{2} \tag{26.10}
\end{equation*}
$$

Solving for $V_{2}(z) / V_{1}(z)$ gives

$$
\begin{equation*}
\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}}{C_{2} z-1}=\frac{C_{1}}{C_{2}} \frac{z^{-1}}{1-z^{-1}} \tag{26.11}
\end{equation*}
$$

This is a non inverting discrete-time accumulator (compare continuous-time integrator) with
a delay of one clock period $T=2 \tau$.
b) Each switch and capacitor has parasitic capacitances connected to ground. In Figure 55 the

Figure 55: A non inverting accumulator with parasitics.
parasitics are shown.
$C_{p a}$ is connected between the ideal input and ground and will not change the transfer function.
$C_{p b}$ is connected between ground and ground and thereby not change the transfer function.
$C_{p c}$ is connected between the ideal input and ground or shorted to ground. No effect on the transfer function.
$C_{p d}$ Connected to ground. No effect on the transfer function.
$C_{p e}$ is connected between ground and virtual ground thereby not changing the transfer function.
$C_{p f}$ is connected to the ideal operational amplifier and ground not changing the transfer function.
$C_{p g}$ is connected to either ground or virtual ground and thereby not changing the transfer function.

The transfer function is not sensitive to parasitics.

8.2. Switched capacitor accumulator 2

27. Switched capacitor circuit.
a) Here we use the charge analysis. The SC circuit is shown for both clock phases in Figure 56.

Figure 56: The SC circuit in both clock phases.o
Using the charge analysis in the circuit starting at time t (clock phase 1)

$$
\begin{align*}
& q_{1}(t)=\left(V_{1}(t)-0\right) C_{1} \tag{27.1}\\
& q_{2}(t)=\left(V_{2}(t)-0\right) C_{2} \tag{27.2}
\end{align*}
$$

At time $t+\tau$ (clock phase 2)

$$
\begin{align*}
& q_{1}(t+\tau)=(0-0) C_{1} \tag{27.3}\\
& q_{2}(t+\tau)=\left(V_{2}(t+\tau)-0\right) C_{2} \tag{27.4}
\end{align*}
$$

At time $t+2 \tau$ (clock phase l)

$$
\begin{align*}
& q_{1}(t+2 \tau)=\left(V_{1}(t+2 \tau)-0\right) C_{1} \\
& q_{2}(t+2 \tau)=\left(V_{2}(t+2 \tau)-0\right) C_{2} \tag{27.6}
\end{align*}
$$

Another equation is required to be able to compute the transfer function. This equation comes from the charge conservation. In clock phase $1, t+2 \tau$, the charge of the two capacitors can not disappear since the charge can not be discharged through the opamp input terminals. This means that the charge on the capacitors at the end of clock phase $2, t+\tau$, is equal to the charge of the capacitors during the whole clock phase $1, t+2 \tau$.

$$
\begin{equation*}
q_{1}(t+\tau)+q_{2}(t+\tau)=q_{1}(t+2 \tau)+q_{2}(t+2 \tau) \tag{27.7}
\end{equation*}
$$

The charge of C_{2} at the time t is equal to the charge of C_{2} at time $t+\tau$ since no charge can be given by the opamp input.

$$
\begin{equation*}
q_{2}(t)=q_{2}(t+\tau) \tag{27.8}
\end{equation*}
$$

Inserting the above equations into Eq. (27.7) gives

$$
\begin{equation*}
V_{2}(t+\tau) C_{2}=V_{2}(t+2 \tau) C_{2}+V_{1}(t+2 \tau) C_{1} \tag{27.9}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2}(t)=V_{2}(t+\tau) \tag{27.10}
\end{equation*}
$$

To compute the transfer function we have to take the Z-transform of both sides.

$$
\begin{equation*}
V_{2}(z) C_{2}=V_{2}(z) z C_{2}+V_{1}(z) z C_{1} \tag{27.11}
\end{equation*}
$$

Solving for $V_{2}(z) / V_{1}(z)$ gives

$$
\begin{equation*}
\frac{V_{2}(z)}{V_{1}(z)}=-\frac{C_{1}}{C_{2}} \frac{z}{z-1}=\frac{C_{1}}{C_{2}} \frac{1}{1-z^{-1}} \tag{27.12}
\end{equation*}
$$

This is an inverting discrete-time accumulator (compare continuous-time integrator) with no delay.
b) Each switch and capacitor has parasitic capacitances connected to ground. In Figure 57 the

Figure 57: An inverting accumulator with parasitics.
parasitics are shown.
$C_{p a}$ is connected between the ideal input and ground and will not change the transfer function.
$C_{p b}$ is connected between ground and ground and thereby not change the transfer function.
$C_{p c}$ is connected between the ideal input and ground or shorted to ground. No effect on the transfer function
$C_{p d^{\prime}}$ Connected to ground. No effect on the transfer function.
$C_{p e}$ is connected between ground and virtual ground thereby not changing the transfer function.
$C_{p f}$ is connected to the ideal operational amplifier and ground not changing the transfer function.
$C_{p g}$ is either connected to the virtual ground, ground or ground and ground. Hence, the transfer function of the circuit is not changed.

The transfer function is not sensitive to parasitics.

8.3. Switched capacitor circuit 1

28. Switched capacitor circuit.
a) Here we use the charge analysis. The SC circuit is shown for both clock phases in Figure 58.

Figure 58: The SC circuit in both clock phases.
Using the charge analysis in the circuit starting at time t (clock phase 1)

$$
\begin{align*}
& q_{1}(t)=\left(V_{1}(t)-0\right) C_{1} \tag{28.1}\\
& q_{2}(t)=\left(V_{2}(t)-0\right) C_{2} \tag{28.2}\\
& q_{3}(t)=\left(0-V_{1}(t)\right) C_{3} \tag{28.3}
\end{align*}
$$

At time $t+\tau$ (clock phase 2)

$$
\begin{align*}
& q_{1}(t+\tau)=\left(V_{1}(t+\tau)-0\right) C_{1} \tag{28.4}\\
& q_{2}(t+\tau)=\left(V_{2}(t+\tau)-0\right) C_{2} \tag{28.5}\\
& q_{3}(t+\tau)=(0-0) C_{3} \tag{28.6}
\end{align*}
$$

At time $t+2 \tau$ (clock phase 1)

$$
\begin{align*}
& q_{1}(t+2 \tau)=\left(V_{1}(t+2 \tau)-0\right) C_{1} \tag{28.7}\\
& q_{2}(t+2 \tau)=\left(V_{2}(t+2 \tau)-0\right) C_{2} \tag{28.8}\\
& q_{3}(t+2 \tau)=\left(0-V_{1}(t+2 \tau)\right) C_{3} \tag{28.9}
\end{align*}
$$

Other equations are required to be able to compute the transfer function. These equations come from the charge conservation. In clock phase 2 the charge of the three capacitors can not disappear since the charge can not be discharged through the opamp input terminals. This means that the charge on the capacitors at the end of clock phase 1 is equal to the charge of the capacitors during the whole clock phase 2 .

$$
\begin{equation*}
q_{1}(t)+q_{2}(t)+q_{3}(t)=q_{1}(t+\tau)+q_{2}(t+\tau)+q_{3}(t+\tau) \tag{28.10}
\end{equation*}
$$

The charge of C_{1} and C_{2} at the time $t+\tau$ are equal to the charge of C_{1} and C_{2} at time $t+2 \tau$ since no charge can be given by the opamp input.

$$
\begin{equation*}
q_{1}(t+\tau)+q_{2}(t+\tau)=q_{1}(t+2 \tau)+q_{2}(t+2 \tau) \tag{28.11}
\end{equation*}
$$

Inserting the above equations into Eq. (28.10) gives

$$
\begin{equation*}
V_{1}(t) C_{1}+V_{2}(t) C_{2}-V_{1}(t) C_{3}=V_{1}(t+\tau) C_{1}+V_{2}(t+\tau) C_{2} \tag{28.12}
\end{equation*}
$$

Inserting equation Eq. (28.11) into Eq. (28.12) gives

$$
\begin{equation*}
V_{1}(t) C_{1}+V_{2}(t) C_{2}-V_{1}(t) C_{3}=V_{1}(t+2 \tau) C_{1}+V_{2}(t+2 \tau) C_{2} \tag{28.13}
\end{equation*}
$$

To compute the transfer function we make a Z-transformation of both sides.

$$
\begin{equation*}
V_{1}(z)\left(C_{1}-C_{3}-z C_{1}\right)=V_{2}(z)\left(z C_{2}-C_{2}\right) \tag{28.14}
\end{equation*}
$$

Solving for $V_{2}(z) / V_{1}(z)$ gives

$$
\begin{equation*}
\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}-C_{3}-z C_{1}}{z C_{2}-C_{2}}=\frac{C_{1}}{C_{2}} \frac{1+z}{z-1}=-\frac{C_{1}}{C_{2}} \frac{1+z^{-1}}{1-z^{-1}} \tag{28.15}
\end{equation*}
$$

This is a bilinear inverting discrete-time accumulator (compare continuous-time integrator).
b) Each switch and capacitor has parasitic capacitances connected to ground. In Figure 59 the

Figure 59: A bilinear inverting accumulator with parasitics.
parasitics are shown.
$C_{p a}$ is connected between the ideal input and ground and will not change the transfer function.
$C_{p b}$ is connected between ground and ground and thereby not change the transfer function.
$C_{p c}$ The parasitic capacitor is in parallel with C_{3} and thereby it will change the transfer function according to
$\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}-C_{3}-C_{p c}-z C_{1}}{z C_{2}-C_{2}}=-\frac{C_{1}}{C_{2}} \frac{1+z}{z-1}-\frac{C_{p c}}{C_{2}} \frac{1}{z-1}=-\frac{C_{1}}{C_{2}} \frac{1+z^{-1}}{1-z^{-1}}-\frac{C_{p c}}{C_{2}} \frac{z^{-1}}{1-z^{-1}}$
$C_{p d^{\prime}}$ is connected between ground and virtual ground thereby not changing the transfer function.
$C_{p e}$ is connected to the ideal operational amplifier and ground not changing the transfer function.

The transfer function is sensitive to parasitics.

8.4. Switched capacitor circuit 2

29. Switched capacitor circuit.
a) The the two different clock phases of the circuit is shown Figure 60.

clock phase 1

clock phase 2

Figure 60: The circuit in the two different clock phases.
Starting in the clock phase 1 at time t :

$$
\begin{align*}
& q_{1}(t)=\left(V_{1}(t)-0\right) C_{1} \tag{29.1}\\
& q_{2}(t)=\left(V_{1}(t)-0\right) C_{2} \tag{29.2}
\end{align*}
$$

At time $t+\tau$

$$
\begin{align*}
& q_{1}(t+\tau)=V_{2}(t+\tau) C_{1} \tag{29.3}\\
& q_{2}(t+\tau)=0 \tag{29.4}
\end{align*}
$$

At time $t+2 \tau$

$$
\begin{align*}
& q_{2}(t+2 \tau)=\left(V_{1}(t+2 \tau)-0\right) C_{1} \tag{29.5}\\
& q_{2}(t+2 \tau)=\left(V_{1}(t+2 \tau)-0\right) C_{2} \tag{29.6}
\end{align*}
$$

The last equation comes from the charge conservation. The charge at the end of clock phase t is equal to the charge during clock phase $t+\tau$ since no charge can vanish into the operational amplifier.

$$
\begin{equation*}
q_{1}(t)+q_{2}(t)=q_{1}(t+\tau)+q_{2}(t+\tau) \tag{29.7}
\end{equation*}
$$

Inserting the above equations into Eq. (29.7) gives.

$$
\begin{equation*}
V_{1}(t) C_{1}+V_{1}(t) C_{2}=V_{2}(t+\tau) C_{1}+0 \tag{29.8}
\end{equation*}
$$

performing z -transformation on both sides gives

$$
\begin{equation*}
V_{1}(z)\left(C_{1}+C_{2}\right)=z^{1 / 2} V_{2}(z) C_{1} \tag{29.9}
\end{equation*}
$$

which gives the following transfer function

$$
\begin{equation*}
\frac{V_{2}(z)}{V_{z}(z)}=z^{-1 / 2} \frac{C_{1}+C_{2}}{C_{1}}=z^{-1 / 2}\left(1+\frac{C_{2}}{C_{1}}\right) \tag{29.10}
\end{equation*}
$$

The factor $z^{-1 / 2}$ is just a time delay from the input to the output, it means that when the input is sampled at time t, the output will not be available until the time $t+\tau$.
b) There will be parasitic capacitances at both sides of each switch and the input and output of the operational amplifier as shown in Figure 61.
$C_{p a}$ is connected between the ideal input and ground. Not changing the transfer function

Figure 61: The SC-circuit with all parasitic capacitances.
thereby not interacting with the transfer function.
$C_{p d}$ is connected between ideal input and ground or the ideal output of the opamp and ground and thereby no change in the transfer function will appear
$C_{p e}$ is connected between the virtual ground and ground not causing any change in the transfer function.
$C_{p f}$ is connected between the ideal output of the opamp and ground and thereby not changing the transfer function.

Hence, the circuit is insensitive of capacitive parasitics with respect to the transfer function.
c) To handle the offset voltage it is assumed to be a function of time with the properties, $V_{o s}(t+n \cdot \tau)=V_{o s}(t) \forall n$ and the Z-transform of $V_{o s}(t)$ equals $V_{o s}(z)$.
At time $t, t+2 \tau, t+4 \tau$ and so on, the potential at the negative input of the operational amplifier, V_{x}, will be equal to

$$
\begin{equation*}
V_{x}(t+n \tau)=\frac{A}{1+A} V_{o s}(t) \tag{29.11}
\end{equation*}
$$

At time $t+\tau, t+3 \tau, t+5 \tau$ and so on, the potential at the negative input of the operational amplifier will be equal to

$$
\begin{equation*}
V_{x}(t+(n+1) \tau)=V_{o s}(t)-\frac{V_{2}(t+(n+1) \tau)}{A} \tag{29.12}
\end{equation*}
$$

Using charge analysis gives:

$$
\begin{align*}
& q_{1}(t)=\left(V_{1}(t)-\frac{A}{1+A} V_{o s}(t)\right) C_{1} \tag{29.13}\\
& q_{2}(t)=\left(V_{1}(t)-\frac{A}{1+A} V_{o s}(t)\right) C_{2} \tag{29.14}\\
& q_{1}(t+\tau)=\left(V_{2}(t+\tau)-V_{x}(t+\tau)\right) C_{1}= \\
& \quad=\left(V_{2}(t+\tau)\left(1+\frac{1}{A}\right)-V_{o s}(t)\right) C_{1} \tag{29.15}
\end{align*}
$$

8.5. Switched capacitor circuit 3

30. Switched capacitor circuit.

The circuit is shown in Figure 62.

Figure 62: The SC circuit with parasitic capacitances
V_{n} is the input voltage of the amplifier. The transfer function can be derived by using charge analysis.
t

$$
\begin{align*}
& q_{1}(t)=C_{1}\left(V_{1}(t)-V_{n}(t)\right) \tag{30.1}\\
& q_{2}(t)=C_{2}\left(V_{2}(t)-V_{n}(t)\right) \tag{30.2}\\
& q_{3}(t)=C_{3}\left(-V_{n}(t)\right) \\
& q_{1}(t+\tau)=C_{1} V_{2}(t+\tau) \tag{30.4}\\
& q_{2}(t+\tau)=q_{2}(t) \tag{30.5}\\
& q_{3}(t+\tau)=C_{3}\left(V_{2}(t+\tau)-V_{n}(t+\tau)\right) \tag{30.6}
\end{align*}
$$

$\mathrm{t}+\boldsymbol{\tau}$:
$\mathrm{t}+2 \mathrm{\tau}$:

$$
\begin{align*}
& q_{1}(t+2 \tau)=C_{1}\left(V_{1}(t+2 \tau)-V_{n}(t+2 \tau)\right) \tag{30.7}\\
& q_{2}(t+2 \tau)=C_{2}\left(V_{2}(t+2 \tau)-V_{n}(t+2 \tau)\right) \tag{30.8}\\
& q_{3}(t+2 \tau)=-C_{3} V_{n}(t+2 \tau) \tag{30.9}
\end{align*}
$$

Charge redistribution

$$
\begin{align*}
& q_{2}(t)+q_{3}(t)=q_{2}(t+\tau)+q_{3}(t+\tau) \tag{30.10}\\
& q_{1}(t+2 \tau)+q_{2}(t+2 \tau)+q_{3}(t+2 \tau)= \\
& q_{1}(t+\tau)+q_{2}(t+\tau)+q_{3}(t+\tau) \tag{30.11}
\end{align*}
$$

We also know that $V_{2}=A\left(V_{p}-V_{n}\right)$ where V_{p} and V_{n} is the positive and negative input node of the OTA respectively. An offset voltage of the OTA is modelled by a voltage source at
the positive input. Solve for V_{n}.

$$
\begin{equation*}
V_{n}(t)=-\frac{V_{2}}{A}+V_{o s}(t), \text { where } V_{o s}(t+n \cdot \tau)=V_{o s}(t) \forall n \tag{30.12}
\end{equation*}
$$

Eq. (30.10) gives that

$$
\begin{equation*}
-C_{3} V_{n}(t)=C_{3}\left(V_{2}(t+\tau)-V_{n}(t+\tau)\right) \tag{30.13}
\end{equation*}
$$

Solving this equation gives

$$
\begin{equation*}
V_{2}(t+\tau)=\frac{V_{2}(t)}{(A+1)} \tag{30.14}
\end{equation*}
$$

Inserting all necessary equations in Eq. (30.11) gives the following transfer function:

$$
\begin{equation*}
V_{2}(z)=\frac{C_{1}}{C_{2}+\frac{1}{A}\left(C_{1}+C_{2}+C_{3}\right)} \frac{\left(z V_{1}(z)-V_{o s}(z)\right)}{z-1+\frac{C_{1}}{A+1}} \tag{30.15}
\end{equation*}
$$

b) Yes it is insensitive to parasitics.

Parasitics:
$C_{p a}$ is connected to an ideal voltage source is will not affect the transfer function.
$C_{p b}$ is connected between ground and virtual ground or ground and ground so it will not affect the transfer function.
$C_{p c}$ is connected between ground and virtual ground so it will not affect the transfer function
$C_{p d}$ is either connected to the output of the OTA or it will not be connected so it will not affect the transfer function.
$C_{p e}$ is connected to the output of the OTA and thereby not change the transfer function.

8.6. Switched capacitor circuit 4

31. Switched capacitor circuit.
a) See solution c)
b) Yes it is insensitive to parasitics. All parasitics are shown in Figure 63.

Parasitics:

$C_{p a}$ are connected to an ideal voltage source is will not be affected.
$C_{p b}$ are connected between ground and virtual ground so it will not be affected.
$C_{p c}$ are connected to the output of the ideal OTA, so it will not be affected.
$C_{p d}$ are either connected to the output of the OTA or a node which has a constant voltage. Hence, it will not affect the transfer function.

Figure 63: The SC circuit with parasitics.
c) The output from the SC-circuit is shown in Figure 64. Every other output

Figure 64: The output voltage as a function of the time.
($\mathrm{T} / 2$) the output voltage will be $V_{\text {os }}$.
d) The circuit is insensitive to parasitics so the transfer function will not change. The speed of the circuit will decrease since a larger load is applied to the output of the amplifier.
e) Assume that at time t the circuit is in the state as shown in Figure 65.

During time $\mathrm{t}, \mathrm{t}+2 \tau, \mathrm{t}+4 \tau$ and so on, vi see that

$$
\begin{align*}
& V_{2}(t+2 n \tau)=\left(V_{o s}(t)-V_{n}(t+2 n \tau)\right) A \tag{31.1}\\
& V_{2}(t+(2 n+1) \tau)=\left(V_{o s}(t)-V_{2}(t+(2 n+1) \tau)\right) A \tag{31.2}
\end{align*}
$$

Eq. (31.1) gives

$$
\begin{equation*}
V_{n}(t+2 n \tau)=V_{o s}(t)-\frac{V_{2}(t+2 n \tau)}{A} \tag{31.3}
\end{equation*}
$$

Eq. (31.2) gives

$$
\begin{equation*}
V_{n}(t+(2 n+1) \tau)=\frac{V_{o s}(t)}{1+\frac{1}{A}} \tag{31.4}
\end{equation*}
$$

Use charge redistribution analysis

During time t :

$$
\begin{align*}
& q_{1}(t)=C_{1}\left(0-V_{o s}(t)+\frac{V_{2}(t)}{A}\right) \tag{31.5}\\
& q_{2}(t)=C_{2}\left(V_{1}(t)-V_{o s}(t)+\frac{V_{2}(t)}{A}\right) \tag{31.6}\\
& q_{3}(t)=C_{3}\left(V_{2}(t)-V_{o s}(t)+\frac{V_{2}(t)}{A}\right) \tag{31.7}
\end{align*}
$$

During time $t+\tau\left(V_{o s}(t+\tau)=V_{o s}(t)\right)$:

$$
\begin{align*}
& q_{1}(t+\tau)=C_{1}\left(V_{1}(t+\tau)-\frac{V_{o s}(t)}{1+\frac{1}{A}}\right) \tag{31.8}\\
& q_{2}(t+\tau)=C_{2}\left(V_{1}(t+\tau)-\frac{V_{o s}(t)}{1+\frac{1}{A}}\right) \tag{31.9}\\
& q_{3}(t+\tau)=q_{3}(t) \tag{31.10}
\end{align*}
$$

The charge across capacitor 3 is constant from time t to $t+\tau$ since it is not connected anywhere.
During time $t+2 \tau\left(V_{o s}(t+2 \tau)=V_{o s}(t)\right):$

$$
\begin{align*}
& q_{1}(t+2 \tau)=C_{1}\left(0-V_{o s}(t)+\frac{V_{2}(t+2 \tau)}{A}\right) \tag{31.11}\\
& q_{2}(t+2 \tau)=C_{2}\left(V_{1}(t+2 \tau)-V_{o s}(t)+\frac{V_{2}(t+2 \tau)}{A}\right) \tag{31.12}\\
& q_{3}(t+2 \tau)=C_{3}\left(V_{2}(t+2 \tau)-V_{o s}(t)+\frac{V_{2}(t+2 \tau)}{A}\right) \tag{31.13}
\end{align*}
$$

Charge conservation:
$q_{1}(t+\tau)+q_{2}(t+\tau)+q_{3}(t+\tau)=q_{1}(t+2 \tau)+q_{2}(t+2 \tau)+q_{3}(t+2 \tau)$
Inserting the above equations in the charge conservation equation and then a Z-transformation gives the transfer function (Z-transform of $V_{o s}(t)=V_{o s}(z)$)

$$
\begin{align*}
& V_{2}(z)=\frac{1}{C_{3}\left(1+\frac{1}{A}\right)+\frac{C_{1}+C_{2}}{A}} . \\
& \frac{\left(\left(C_{1}+C_{2}\right) z^{\frac{1}{2}}-C_{2} z\right) V_{1}(z)+V_{o s}(z) \frac{C_{1}+C_{2}}{1+A}}{z-\frac{C_{3}\left(1+\frac{1}{A}\right)}{C_{3}\left(1+\frac{1}{A}\right)+\frac{C_{1}+C_{2}}{A}}} \tag{31.14}
\end{align*}
$$

The solution for exercise a) is obtained by letting $A \rightarrow \infty$

$$
\begin{equation*}
V_{2}(z)=\frac{1}{C_{3}} \frac{\left(C_{1}+C_{2}\right) z^{\frac{1}{2}}-C_{2} z}{z-1} V_{1}(z) \tag{31.15}
\end{equation*}
$$

Figure 65: The switched capacitor circuit.

Linköping University INSTITUTE OF TECHNOLOGY	No	Rev	Date	Repo/Course	Page
	0024	P4A	2012-02-29	ANTIK	123 of 165
	Title	ANTIK Exercises 2012			ID jacwi50

8.7. Switched capacitor circuit 5

32. Switched capacitor circuit.
a) The SC circuit in the different clock phases are shown in Figure 66. We do a charge redis-

Phase 1 at time t

Phase 2 at time $\mathrm{t}+\mathrm{T} / 2$

Phase 2 at time $\mathrm{t}+3 \mathrm{~T} / 2$

Figure 66: Switched capacitor circuit in different phases
tribution analysis. First we state the initial conditions of the circuit.
Phase 1 at time t

$$
\begin{align*}
& q_{1}(t)=v_{\text {out }}(t) \cdot C_{1} ; \tag{32.1}\\
& q_{2}(t)=0 \tag{32.2}\\
& q_{2 K}(t)=0 \tag{32.3}\\
& q_{1 K}(t)=v_{\text {in }}(t) \cdot K \cdot C_{1} \tag{32.4}
\end{align*}
$$

Phase 2 at time $t+T / 2$

$$
\begin{align*}
& q_{1}(t+T / 2)=v_{\text {out }}(t+T / 2) \cdot C_{1} \tag{32.5}\\
& q_{2}(t+T / 2)=v_{\text {out }}(t+T / 2) \cdot C_{2} \tag{32.6}\\
& q_{2 K}(t+T / 2)=v_{\text {in }}(t+T / 2) \cdot K \cdot C_{2} ; \tag{32.7}\\
& q_{1 K}(t+T / 2)=v_{\text {in }}(t+T / 2) \cdot K \cdot C_{1} \tag{32.8}
\end{align*}
$$

The charge on the negative input node of the $\mathrm{OP}\left(q_{1}(t)+q_{1 K}(t)\right)$ is distributed between all four capacitances, i.e,

$$
\begin{align*}
q_{1}(t)+q_{1 K}(t)= & q_{1}(t+T / 2)+q_{2}(t+T / 2)+\ldots \\
& \ldots+q_{1 K}(t+T / 2)+q_{2 K}(t+T / 2) \tag{32.9}
\end{align*}
$$

Phase 1 at time $t+T$

$$
\begin{align*}
& q_{1}(t+T)=v_{\text {out }}(t+T) \cdot C_{1} ; q_{2}(t+T)=0 \tag{32.10}\\
& q_{1 K}(t+T)=v_{\text {in }}(t+T) \cdot C_{1} \cdot K ; q_{2 K}(t+T)=0 \tag{32.11}
\end{align*}
$$

and we get a charge conservation because no charge can leave the negative input node of the OP.

$$
\begin{equation*}
q_{1}(t+T)+q_{1 K}(t+T)=q_{1}(t+T / 2)+q_{1 K}(t+T / 2) \tag{32.12}
\end{equation*}
$$

Phase 2 at time $t+3 T / 2$

$$
\begin{align*}
& q_{1}(t+3 T / 2)=v_{\text {out }}(t+3 T / 2) \cdot C_{1} \\
& q_{2}(t+3 T / 2)=v_{\text {out }}(t+3 T / 2) \cdot C_{2} \tag{32.13}\\
& q_{2 K}(t+3 T / 2)=v_{\text {in }}(t+3 T / 2) \cdot K \cdot C_{2} ; \\
& q_{1 K}(t+3 T / 2)=v_{\text {in }}(t+3 T / 2) \cdot K \cdot C_{1} \tag{32.14}
\end{align*}
$$

The charge on the negative input node of the OP is distributed between all four capacitances, i.e,

$$
\begin{align*}
q_{1}(t+T)+q_{1 K}(t+T) & =q_{1}(t+3 T / 2)+q_{2}(t+3 T / 2)+\ldots \\
\ldots & +q_{1 K}(t+3 T / 2)+q_{2 K}(t+3 T / 2) \tag{32.15}
\end{align*}
$$

By combining Eq. (32.12) with Eq. (32.15) we get

$$
\begin{gather*}
q_{1}(t+T / 2)+q_{1 K}(t+T / 2)=q_{1}(t+3 T / 2)+q_{2}(t+3 T / 2)+\ldots \\
\ldots+q_{1 K}(t+3 T / 2)+q_{2 K}(t+3 T / 2) \tag{32.16}
\end{gather*}
$$

which is equal to

$$
\begin{align*}
& v_{\text {out }}(t+T / 2) \cdot C_{1}+v_{\text {in }}(t+T / 2) \cdot C_{1} \cdot K=v_{\text {out }}(t+3 T / 2) \cdot C_{1}+ \\
& \left(v_{\text {out }}(t+3 T / 2) \cdot C_{2}+v_{\text {in }}(t+T / 2) \cdot C_{2} \cdot K+v_{\text {in }}(t+T / 2) \cdot C_{1} \cdot K\right) \tag{32.17}
\end{align*}
$$

by using the z-transform we finally get the transfer function

$$
\begin{equation*}
\frac{V_{o u t}(z)}{V_{i n}(z)}=\frac{K\left(z\left(C_{2}+C_{1}\right)-C_{1}\right)}{-\left(z\left(C_{2}+C_{1}\right)-C_{1}\right)}=-K \tag{32.18}
\end{equation*}
$$

, i.e., an inverting amplifier.
b) To see if the circuit is sensitive to parasitics we examine all the parasitic capacitances and
check whether they can destroy the operation.

$C_{p 1} \ldots$ will not affect the transfer function because it is always connected to the input node.
$C_{p 2} \ldots$ is shorted between ground a virtual ground.
$C_{p 3} \ldots$ will not affect the transfer function because it is always connected to the output node.
$C_{p 4} \ldots$ is either shorted or connected to the output node and will never contribute to the output.
$C_{p 5} \ldots$ is either shorted to ground or virtual ground.
$C_{p 6} \ldots$ is either shorted or connected to the input node and will never contribute to the output.
, i.e., the circuit is insensitive to parasitics.
c) If the switch transistors would have a non-negligible on-resistance the charging/discharging through them would not be instantaneously. This affects the speed of the circuit and not the transfer function. To compensate for this problem one have to make sure that we are using non-overlapping switching signals and that they are slow enough so that the circuit has time to settle properly.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	126 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

8.8. SC circuit (K25)

Example Charge I (K25)

Derive the transfer function and discuss the sensitivity of the circuit. Values are

$$
C_{1}=C_{2} \text { and } C_{1}=1.12 C_{2}
$$

Consider the start-up conditions at time t. The charge at C_{1} and C_{2} is

$$
q_{1}(t)=0 \text { and } q_{2}(t)=C_{2} v_{2}(t)
$$

C_{1} is coupled between ground and virtual ground (OPamp input). The charge must be zero.
Time $t+\tau$. Switches have changed.
C_{1} is charged by the voltage $v_{1}(t+\tau)$ and the output of the OPamp, v_{2}, that adds extra charge. The charge at C_{1} becomes

$$
q_{1}(t+\tau)=C_{1}\left[v_{1}(t+\tau)-v_{2}(t+\tau)\right]
$$

Note the chosen sign of the charge. For C_{2} we have

$$
q_{2}(t+\tau)=C_{2} v_{2}(t+\tau)
$$

On the negative plate, the charge is stored.

$$
q_{2}(t+\tau)=q_{2}(t) \text { dvs } v_{2}(t+\tau)=v_{2}(t)
$$

(No charge can disappear from the input of the OPamp if it is unconnected).

At time $t+2 \tau$ the switches are closed. C_{1} is again connected to ground and virtual ground, which empties C_{1}. The positive charge leaks down to ground, the negative charge is redistributed to the negative plate of C_{2}. The extra charge needed to compensate the positive plate of C_{2} is taken from the OPamp output.

The charge at C_{1} and C_{2} must be

$$
q_{1}(t+2 \tau)=0 \text { and } q_{2}(t+2 \tau)=C_{2} v_{2}(t+2 \tau)
$$

Charge conservation gives (at the negative plate of C_{2})

$$
-q_{2}(t+2 \tau)=-q_{2}(t+\tau)+\left(-q_{1}(t+\tau)\right)=-q_{2}(t)-q_{1}(t+\tau)
$$

This gives

$$
C_{2} v_{2}(t+2 \tau)=C_{2} v_{2}(t)+C_{1}\left[v_{1}(t+\tau)-v_{2}(t+\tau)\right]=
$$

$$
=C_{2} v_{2}(t+\tau)+C_{1}\left[v_{1}(t+\tau)-v_{2}(t+\tau)\right]
$$

We also see that

84

$$
v_{2}(t+2 \tau)=v_{2}(t+3 \tau)
$$

which gives

$$
C_{2} v_{2}(t+3 \tau)-C_{2} v_{2}(t+\tau)+C_{1} v_{2}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

z-transform, with $t=k T$ and $2 \tau=T$

$$
\left[C_{2} z^{3 / 2}-C_{2} z^{1 / 2}+C_{1} z^{1 / 2}\right] V_{2}(z)=C_{1} z^{1 / 2} V_{1}(z)
$$

which gives the transfer function

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}}{C_{2}} \cdot \frac{z^{1 / 2}}{z^{3 / 2}-\left(1-C_{1} / C_{2}\right)}=\frac{C_{1}}{C_{2}} \cdot \frac{1}{z-\left(1-C_{1} / C_{2}\right)}
$$

If the capacitances are equally large, $C_{1}=C_{2}$, the circuit is a simple delay element, (sample-and-hold)

$$
H(z)=z^{-1}
$$

In the second case, $C_{1}=1.12 C_{2}$, the transfer function becomes

$$
H(z)=\frac{1.12}{z+0.12}
$$

This is used to compensate for the sine weighting of the signal.

Example parasitics I

The parasitic capacitances are associated with all nodes in the circuit. Consider the parasitic capacitances, C_{a} through $C_{h_{1}}$. They are the parasitic capacitances associated with the switches as discussed carlier.
During clock phase ϕ_{2}, C_{b}, C_{c} and C_{d} are coupled in parallel. The same is true for C_{f}, C_{g} and $C_{k} . C_{a}$ is connected to the output of the OPamp. C_{e} is connected to the input signal. The previous charge at the capacitances coupled in parallel will redistribute to C_{2}.
During clock phase ϕ_{1}, C_{a}, C_{b} and C_{c} are coupled in parallel. The same is true for C_{e}, C_{f} and $C_{g} . C_{d}$ is coupled to virtual ground at the OPamp input. C_{h} is connected to ground. The parallel capacitances will be charged and during next clock phase this charge redistribute and affect the transfer function.
Note that C_{h} and C_{d} always are connected to ground or virtual ground and will therefore not affect the transfer function. While the input signal is directly connected to C_{1} the capacitances

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	128 of 165
INSTITUTE OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

8.9. SC circuit (K26)

$C_{e}, C_{f}, C_{g}, C_{h}$ will not affect the transfer function.

Example Charge II (K26)

Consider time t. Charge at C_{1} and C_{2} is

$$
q_{1}(t)=C_{1} v_{2}(t) \text { and } q_{2}(t)=C_{2} v_{2}(t)
$$

At $t+\tau C_{1}$ is charged with $v_{1}(t)$

$$
q_{1}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

C_{2} conserves its charge

$$
q_{2}(t)=C_{2} v_{2}(t)=q_{2}(t+\tau)=C_{2} v_{2}(t+\tau)
$$

At time $t+2 \tau \quad C_{1}$ is switched

$$
q_{1}(t+2 \tau)=C_{1} v_{2}(t+2 \tau)
$$

The charge at C_{1} is redistributed between C_{2} and C_{1} in such a way that the total charge is conserved

$$
q_{1}(t+2 \tau)+q_{2}(t+2 \tau)=q_{1}(t+\tau)+q_{2}(t+\tau)
$$

$$
C_{1} v_{2}(t+2 \tau)+C_{2} v_{2}(t+2 \tau)=
$$

$$
=C_{1} v_{1}(t+\tau)+C_{2} v_{2}(t+\tau)=\left(C_{1}+C_{2}\right) v_{2}(t+2 \tau)
$$

At time $t+3 \tau$. The charge at C_{2} is conserved.

$$
v_{2}(t+3 \tau)=v_{2}(t+2 \tau)
$$

This is concluded into

$$
\left(C_{1}+C_{2}\right) v_{2}(t+3 \tau)-C_{2} v_{2}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

Let $t=k T$ and $T=2 \tau$, z-transform

$$
\left(z^{3 / 2}\left(C_{1}+C_{2}\right)-z^{1 / 2} C_{2}\right) V_{2}(z)=C_{1} z^{1 / 2} V_{1}(z)
$$

This gives the transfer function

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}}{z\left(C_{1}+C_{2}\right)-C_{2}}=\frac{C_{1} /\left(C_{1}+C_{2}\right)}{z-C_{2} /\left(C_{1}+C_{2}\right)}
$$

C_{1} must be much larger than $C_{2}, C_{1} » C_{2}$, to achieve a sample-and-hold cirucit

$$
H(z)=z^{-1}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	129 of 165
TE	Title	ANTI	ses 2012		ID jacwi50

Example parasitics II

Consider the parasitic capacitances C_{a} through C_{h}.
During clock phase ϕ_{2}, C_{b}, C_{c} and C_{d} are coupled in parallel.
The same is true for C_{f}, C_{g} and $C_{h} . C_{a}$ is short and C_{e} is connected to the input signal.
The charge on the parallel capacitances will redistribute to C_{2}. During clock phase ϕ_{1}, C_{a}, C_{b} and C_{c} are coupled in parallel. The same is true for C_{e}, C_{f} and $C_{g} . C_{d}$ is coupled to the input of the OPamp. C_{h} is connected to the output of the OPamp.

Now note that C_{a}, C_{b}, C_{c} and C_{d} always are connected to ground or virtual ground, hence always short and will not affect the transfer function. The charge on C_{1} 's plate connected to the input of the OPamp determines the transfer function. While the input signal is directly connected to C_{1} neither will the capacitances C_{e}, C_{f}, C_{g}, or C_{h} affect the transfer function.

	No	Rev	Date	Repo/Course	Page
Linkoping University	0024	P4A	2012-02-29	ANTIK	130 of 165
	Title	ANTI	ses 2012		ID jacwi50

8.10. SC circuit (K27)

Exercise K27

At time t the charge is discribed by

$$
\begin{aligned}
& q_{1}(t)=C_{1} v_{1}(t) \\
& q_{2}(t)=C_{2} v_{2}(t) \\
& q_{3}(t)=C_{3} v_{2}(t)
\end{aligned}
$$

At time $t+\tau$:
Charge at C_{1} and C_{2}
$q_{1}(t+\tau)=q_{1}(t)$
$q_{2}(t+\tau)=q_{2}(t)$
C_{3} is charged with the input voltage

$$
q_{3}(t+\tau)=C_{3} v_{1}(t+\tau)
$$

At time $t+2 \tau$:
Total charge on the three capacitances is

$$
q_{1}(t+2 \tau)+q_{2}(t+2 \tau)+q_{3}(t+2 \tau)
$$

where

$$
\begin{aligned}
& q_{1}(t+2 \tau)=C_{1} v_{1}(t+2 \tau) \\
& q_{2}(t+2 \tau)=C_{2} v_{2}(t+2 \tau) \\
& q_{3}(t+2 \tau)=C_{3} v_{2}(t+2 \tau)
\end{aligned}
$$

The total charge must be conserved, no charge disappears from the input of the OPamp:

$$
\begin{aligned}
& q_{1}(t+2 \tau)+q_{2}(t+2 \tau)+q_{3}(t+2 \tau)= \\
& \quad=q_{1}(t+\tau)+q_{2}(t+\tau)+q_{3}(t+\tau)= \\
& \quad=q_{1}(t)+q_{2}(t)+q_{3}(t+\tau)
\end{aligned}
$$

Use the charge expression, and we have

$$
\left(C_{2}+C_{3}\right) v_{2}(t+2 \tau)+C_{1} v_{1}(t+2 \tau)=C_{1} v_{1}(t)+C_{2} v_{2}(t)+C_{3} v_{1}(t+\tau)
$$

which gives

$$
v_{2}(t+2 \tau)-\frac{C_{2}}{C_{2}+C_{3}} v_{2}(t)=\frac{C_{1}}{C_{2}+C_{3}}\left[v_{1}(t)+\frac{C_{3}}{C_{1}} v_{1}(t+\tau)-v_{1}(t+2 \tau)\right]
$$

Let $t=k T$ and $T=2 \tau$. z-transform

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}}{C_{2}+C_{3}} \frac{1+\frac{C_{3}}{C_{1}} z^{1 / 2}-z}{z-\frac{C_{2}}{C_{2}+C_{3}}}=-\frac{C_{1}}{C_{2}+C_{3}} \frac{z-\left(1+\frac{C_{3}}{C_{1}} z^{1 / 2}\right)}{z-\frac{C_{2}}{C_{2}+C_{3}}}
$$

	No	Rev	Date	Repo/Course	Page
Linkoping University	0024	P4A	2012-02-29	ANTIK	131 of 165
	Title	ANTI	ses 2012		ID jacwi50

Lesson 8
Analog Discrete-Time Integrated Circuils, TSTE8O

We now see that the output signal is affected by the input signal at each half clock period. Two ways can be used to design a first-order all pass filter.

1) Eliminate $z^{1 / 2}$ by assuming $v_{1}(t)=v_{1}(t+\tau)$ which gives $z^{1 / 2} V_{1}(z)=V_{1}(z)$
2) Eliminate $z^{1 / 2}$ by assuming $v_{1}(t+\tau)=v_{1}(t+2 \tau)$ which gives $z^{1 / 2} V_{1}(z)=z V_{1}(z)$
this gives

$$
H_{1}(z)=-\frac{C_{1}}{C_{2}+C_{3}} \cdot \frac{z-\frac{C_{1}+C_{3}}{C_{1}}}{z-\frac{C_{2}}{C_{2}+C_{3}}} \text { or } H_{2}(z)=-\frac{C_{1}}{C_{2}+C_{3}} \cdot\left(1-\frac{C_{3}}{C_{1}}\right) \frac{z-\frac{1}{1-C_{3} / C_{1}}}{z-\frac{C_{2}}{C_{2}+C_{3}}}
$$

For an all pass filter, if the pole is given by $z=p$, the zero is given by $z=1 / p$. This gives

$$
\frac{C_{1}+C_{3}}{C_{1}}=\frac{C_{2}+C_{3}}{C_{2}} \Rightarrow C_{2}=C_{1} \text { or } 1-\frac{C_{3}}{C_{1}}=\frac{C_{2}}{C_{2}+C_{3}} \Rightarrow C_{1}=C_{2}+C_{3}
$$

	No	Rev	Date	Repo/Course	Page
Linkoping University	0024	P4A	2012-02-29	ANTIK	132 of 165
	Title	ANTI	ses 2012		ID jacwi50

8.11. SC circuit (K28)

Analog Discrete-Time Integrated Circuits, TSTE80

Exercise K28

At time t the lower C_{1} is charged

$$
q_{N 1}(t)=C_{1} v_{1}(t)
$$

The upper is shorted.

$$
q_{U 1}(t)=0
$$

At time $t+\tau$ the upper C_{1} is charged

$$
q_{U 1}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

The lower is shorted. The charge will however redistribute to the negative plate at C_{2}. The positive plate at C_{2} will get extra charge from the output of the OPamp. The charge at C_{2} is written as

$$
\begin{aligned}
& q_{2}(t+\tau)=C_{2} v_{2}(t+\tau)=q_{2}(t)+q_{N 1}(t)= \\
& \quad=C_{2} v_{2}(t)+C_{1} v_{1}(t)
\end{aligned}
$$

At time $t+2 \tau$ the operation is practical the same due to the symmetrical capacitances.

$$
q_{2}(t+2 \tau)=C_{2} v_{2}(t+2 \tau)=q_{2}(t+\tau)+q_{U 1}(t+\tau)=C_{2} v_{2}(t+\tau)+C_{1} v_{1}(t+\tau)
$$

We see that the input signal is delayed and switched to the output at every half clock cycle. We have

$$
v_{2}(t+2 \tau)=v_{2}(t)+\frac{C_{1}}{C_{2}}\left[v_{1}(t+\tau)+v_{1}(t)\right]
$$

And the transfer function is

$$
H(z)=\frac{C_{1}}{C_{2}} \cdot \frac{z^{1 / 2}+1}{z-1}
$$

If we now once again assume that $v_{1}(t)=v_{1}(t+\tau)$ or $v_{1}(t+\tau)=v_{1}(t+2 \tau)$, then

$$
H(z)=\frac{C_{1}}{C_{2}} \cdot \frac{2 z^{-1}}{1-z^{-1}} \text { or } H(z)=\frac{C_{1}}{C_{2}} \cdot \frac{1+z^{-1}}{1-z^{-1}}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	133 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

8.12. Clock feedthrough (K29)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	134 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

8.13. Switch sharing (K30)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	135 of 165
INSTITUTE OF TECHNOLocr	Title	ANTIK Exercises 2012		ID jacwi50	

8.14. SC circuit (K37)

Exercise K37

At time t. The upper capacitor is shorted between ground and virtual ground and the lower capacitor is charged with the input voltage:

$$
q_{1 u}(t)=0 \text { and } q_{1 n}(t)=C_{1} v_{1}(t)
$$

C_{2} has the charge:

$$
q_{2}(t)=C_{2} v_{2}(t)
$$

At time $t+\tau$. The upper capacitor is charged.

$$
q_{1 u}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

The lower capacitor is shorted, all charge is lost to the ground.

$$
q_{1 n}(t+\tau)=0
$$

The charge in C_{2} is conserved since no charge can disappear from the input of the OPamp.

$$
q_{2}(t+\tau)=q_{2}(t) \operatorname{dvs} C_{2} v_{2}(t+\tau)=C_{2} v_{2}(t) \mathrm{dvs} v_{2}(t+\tau)=v_{2}(t)
$$

Time $t+2 \tau$. The upper capacitor is discharged, but its charge will be redistributed over the lower capacitor and C_{2}. The redistribution is determined by the input voltage. We have

$$
q_{1 u}(t+2 \tau)=0, q_{1 n}(t+2 \tau)=C_{1} v_{1}(t+2 \tau), q_{2}(t+2 \tau)=C_{2} v_{2}(t+2 \tau)
$$

and

$$
-q_{1 n}(t+2 \tau)+\left(-q_{2}(t+2 \tau)\right)=-q_{1 u}(t+\tau)+\left(-q_{2}(t+\tau)\right)
$$

Which gives

$$
C_{1} v_{1}(t+2 \tau)+C_{2} v_{2}(t+2 \tau)=C_{1} v_{1}(t+\tau)+C_{2} v_{2}(t+\tau)=C_{1} v_{1}(t+\tau)+C_{2} v_{2}(t)
$$

The input signal is sampled-and-held as

$$
v_{1}(t+\tau)=v_{1}(t)
$$

which gives

$$
C_{1} v_{1}(t+2 \tau)+C_{2} v_{2}(t+2 \tau)=C_{1} v_{1}(t)+C_{2} v_{2}(t)
$$

z-transform

$$
C_{1} \cdot(z-1) \cdot V_{1}(z)=C_{2} \cdot(1-z) \cdot V_{2}(z)
$$

and

$$
H(z)=\frac{V_{1}(z)}{V_{2}(z)}=-\frac{C_{2}}{C_{1}} \cdot \frac{z-1}{z-1}=-\frac{C_{2}}{C_{1}}
$$

The circuit is an inverting amplifier. Practically, however, a pole on the unit circle can not be cancelled by a zero. The circuit has to be used in a feedback loop.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	136 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

8.15. Signal switching (K39)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	137 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

8.16. Sampled noise (K24)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Link	Linking University	0024	P4A	2012-02-29	ANTIK

EXERCISE SECTION 9: SC FILTERS

	No	Rev	Date	Repo/Course	Page
Linkoping University	0024	P4A	2012-02-29	ANTIK	139 of 165
	Title	ANTI	ses 2012		ID jacwi50

9.1. SC filter building blocks (K36)

Exercises

Exercise K36

Derive the transfer function $H(z)$.
At time t the charge at the transistors is written as

$$
\begin{aligned}
& q_{1}(t)=C_{1} v_{1}(t) \\
& q_{2}(t)=C_{2} v_{2}(t) \\
& q_{\alpha 1}(t)=\alpha C_{1} v_{1}(t) \\
& q_{\alpha 2}(t)=\alpha C_{2} v_{2}(t)
\end{aligned}
$$

At $t+\tau, \alpha C_{1}$ and αC_{2} are completely shorted. The total charge on C_{1} and C_{2} must however be conserved, while no charge can disappear from the input of the OPamp. Changes of the input signal will determine how the charge is distributed between C_{1} and C_{2} :

$$
q_{1}(t+\tau)+q_{2}(t+\tau)=q_{1}(t)+q_{2}(t)
$$

$$
q_{\alpha 1}(t+\tau)=q_{\alpha 2}(t+\tau)=0
$$

At $t+2 \tau$ we use the same result. No charge disappears from the OPamp input. It has to redistribute to the other (previously discharged) capacitances:

$$
\begin{aligned}
& q_{1}(t+\tau)+q_{2}(t+\tau)= \\
& \quad=q_{1}(t+2 \tau)+q_{2}(t+2 \tau)+ \\
& +q_{\alpha 1}(t+2 \tau)+q_{\alpha 2}(t+2 \tau) \\
& =q_{1}(t)-q_{2}(t)
\end{aligned}
$$

This gives

$$
C_{1} v_{1}(t)+C_{2} v_{2}(t)=(1+\alpha) C_{1} v_{1}(t+2 \tau)+(1+\alpha) C_{2} v_{2}(t+2 \tau)
$$

Let $t=k T$ and $2 \tau=T$. z-transform and the transfer function is

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=-\frac{C_{1}}{C_{2}} \cdot \frac{(1+\alpha) z-1}{(1+\alpha) z-1}=-\frac{C_{1}}{C_{2}} \cdot \frac{z-\frac{1}{1+\alpha}}{z-\frac{1}{1+\alpha}}=-\frac{C_{1}}{C_{2}}
$$

which is an inverting amplifier. The pole is cancelled by the zero.

88

9.2. Bilinear integrator (K38)

Exercise K38

General transfer function for bilinear integrator

$$
H(z)=K \cdot \frac{z-1}{z+1}
$$

At time t the charge distribution is

$$
\begin{aligned}
& q_{1}(t)=C_{1} v_{1}(t) \\
& q_{2}(t)=C_{2} v_{2}(t) \\
& q_{3}(t)=0 \text { (shorted) }
\end{aligned}
$$

At time $t+\tau C_{3}$ is coupled in parallel with C_{1} and
will take charge from C_{2} and C_{1} :

$$
\begin{aligned}
& q_{1}(t+\tau)=C_{1} v_{1}(t+\tau) \\
& q_{2}(t+\tau)=C_{2} v_{2}(t+\tau) \\
& q_{3}(t+\tau)=C_{3} v_{1}(t+\tau)
\end{aligned}
$$

The charge distribution will be

$q_{1}(t+\tau)+q_{2}(t+\tau)+q_{3}(t+\tau)=q_{1}(t)+q_{2}(t)$
At time $t+2 \tau$ the total charge at C_{1} and C_{2} is conserved. It will though redistribute due to the change of input voltage.

$$
q_{1}(t+\tau)+q_{2}(t+\tau)=q_{1}(t+2 \tau)+q_{2}(t+2 \tau)
$$

Concludingly, we have

$$
\begin{aligned}
& q_{1}(t)+q_{2}(t)=q_{3}(t+\tau)+q_{1}(t+2 \tau)+q_{2}(t+2 \tau), \text { i.c., } \\
& C_{1} v_{1}(t)-C_{1} v_{1}(t+2 \tau)-C_{3} v_{1}(t+\tau)=C_{2}\left[v_{2}(t+2 \tau)-v_{2}(t)\right]
\end{aligned}
$$

which gives

$$
v_{2}(t+2 \tau)-v_{2}(t)=-\frac{C_{1}}{C_{2}}\left[v_{1}(t+2 \tau)+\frac{C_{3}}{C_{1}} v_{1}(t+\tau)-v_{1}(t)\right]
$$

Suppose $v_{1}(t)=v_{1}(t+\tau)$, hence a sample-and-hold circuit at the input, which eliminated the $z^{1 / 2}$-term in the transfer function. Let $t=k T$ and $2 \tau=T$. z-transform

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=-\frac{C_{1}}{C_{2}} \cdot \frac{z+\left(C_{3} / C_{1}-1\right)}{z-1}
$$

Choosece $C_{3}=2 C_{1}$ and we have

$$
H(z)=-\frac{C_{1}}{C_{2}} \cdot \frac{1+z^{-1}}{1-z^{-1}}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	141 of 165
INSTITUTE OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

9.3. LDI transform (K31)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	142 of 165
Tintitute OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

9.4. LDI transform (K32)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	143 of 165
Iitle	ANTIK Exercises 2012		ID jacwi50		

9.5. SC filter 1

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	144 of 165
Title	ANTIK Exercises 2012		ID jacwi50		

9.6. Filter scaling (K23)

TBD Solutions to be added.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	145 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

9.7. LDI SC filter (K33)

Lesson 9
Analog Discrete-Time Integrated Circuits, TSTE80

Exercise K33
The order is found to be $N=3$. Values are $C_{3 n}=1, L_{2 n}=2, C_{1 n}=1$ and $R_{i}=R_{L}=1 k \Omega$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	146 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

9.8. SC elliptic filter (K34)

Exercise K34

Duc to the fact that

$$
R=R_{i}=R_{L}
$$

we know that the de gain is $1 / 2$
You can also see that the filter is realizing a third order elliptic low pass filter. Suppose that the maximum output value is given by de voltage. This implies that we directly can choose the scaling parameter k_{1} in such a way that all nodes in the net become scaled with a factor two, hence $k_{1}=2$.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	147 of 165
INSTITUTE OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

9.9. SC filter (K35)

Lesson 9 Analog Discrete-Time Integrated Circuits, TSTE80

Exercises

Exercise K35
Third order low pass filter with an elliptic reference filter. The specification gives

$$
\begin{aligned}
& f_{c}=3.4 \mathrm{kHz}, A_{\max }=0.02 \mathrm{~dB}, \\
& f_{\text {sample }}=128 \mathrm{kHz},
\end{aligned}
$$

Normalized values from table are:

$$
R_{i}=R_{0}=1 k \Omega, C_{1, n}=C_{3, n}=0.5275, C_{2, n}=0.1921, L_{2, n}=0.7700
$$

LDI transformation gives

$$
s=s_{0} \cdot \frac{1-z^{-1}}{z^{-1 / 2}} \text { where } s_{0}=\frac{\omega_{a c}}{2 \sin \left(\omega_{c} T / 2\right)}
$$

Denormalize the values.
Compensate for the LDI transformation errors.
Find the flow graph
Use standard SC integrators.
Identify the values

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	148 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

9.10. SC filter (K40)

Analog Discrete-Time Integrated Circuits, TSTE80

Example Exercise K40
Synthesize an LDI filter. Transformation give

$$
s=s_{0} \frac{z-1}{z^{1 / 2}}
$$

The specification on the reference filter angular cut-off frequency is chosen to be

$$
\omega_{c}=2 \pi \cdot 1500 \mathrm{rad} / \mathrm{s}
$$

Since sampling frequency is $f_{s}=40 \mathrm{kHz}$ we have the discrete-time cut-off frequency as

$$
\Omega_{c}=\frac{1.5 k}{40 k} \cdot 2 \pi \approx 0.2356
$$

and the discrete-time stop-band frequency as

$$
\Omega_{s}=\frac{2.5 k}{40 k} \cdot 2 \pi \approx 0.3927
$$

From this we have s_{0}

$$
\begin{aligned}
s_{0} & =\frac{\omega_{c}}{2 \sin \left(\Omega_{c} / 2\right)}= \\
& =\frac{3000 \pi}{2 \sin (0.2356 / 2)} \approx 40.093 \mathrm{krad} / \mathrm{s}
\end{aligned}
$$

We find the ω_{s}

$$
\omega_{0}=2 s_{0} \sin \left(\Omega_{s} / 2\right) \approx
$$

$\approx 2 \cdot 40.093 \cdot \sin (0.3927 / 2) \approx$

$$
\approx 15.643 \mathrm{krad} / \mathrm{s}
$$

Design an elliptic filter. Order is found to be $N=3$. Suppose the resistors are equal, or

$$
\kappa^{2}=1 \text { and choose } R_{i}=R_{0}=1 k \Omega
$$

The normated values on the components are

$$
C_{1 n}=C_{3 n}=1.9314, C_{2 n}=0.3781 \text { and } L_{2 n}=0.7571
$$

These are denormalized with

$$
L_{i}=\frac{R_{0}}{\omega_{0}} L_{i n} \text { and } C_{i}=\frac{1}{\omega_{0} R_{0}} C_{i n}
$$

Which gives

$$
\begin{aligned}
& C_{1}=C_{3}=204.9 n F \\
& L_{2}=80.3 \mathrm{mH} \\
& C_{2}=40.1 n F
\end{aligned}
$$

The filter is transformed. The constant used in the figure is given by

$$
\alpha_{1}=C_{1}+C_{2}=C_{2}+C_{3}
$$

Setting up the wellknown equations for currents and voltages in the filter, we have

$$
R I_{0}=R I_{i}-\frac{R}{R_{i}} V_{1}
$$

$$
V_{1}=\frac{1}{s R C_{1}}\left(R I_{0}-R I_{2}\right), R I_{2}=\frac{R}{\left(s L_{2}\right) \|\left(1 / s C_{2}\right)}\left(V_{1}-V_{3}\right)
$$

$$
V_{3}=\frac{1}{s R C_{3}}\left(R I_{2}-R I_{4}\right), R I_{4}=\frac{R}{R_{0}} V_{3}=\frac{R}{R_{0}} V_{L}
$$

etc. With this the signal flow graph becomes

LDI transform by setting

$$
s=s_{0} \cdot \frac{z-1}{z^{1 / 2}}
$$

	No	Rev	Date	Repo/Course	Page
H. Linköping University INSTITUTE OF TECHNOLOGY	0024	P4A	2012-02-29	ANTIK	150 of 165
	Title	ANTIK Exercises 2012			ID jacwi50

Elminate $z^{-1 / 2}$ in the integrators by propagating backwards.

We now though have $z^{-1 / 2}$ terms in the outer feedback amplifiers. This is practically not possible to implement. One way to implement this is simply to remove the $z^{-1 / 2}$ term in the expression:

$$
\frac{R}{R_{L}} \cdot z^{-1 / 2}
$$

We could assume that the original R_{L} and R_{i} have the expressions

$$
R_{L}=R_{L} \cdot z^{-1 / 2} \text { and } R_{i}=R_{i} \cdot z^{-1 / 2}
$$

As discussed earlier, $z^{-1 / 2}$ naturally contains valuable frequency information

$$
z^{-1 / 2}=-j \frac{\omega}{2 s_{0}}+\sqrt{1-\left(\frac{\omega}{2 s_{0}}\right)^{2}}
$$

Thereby

$$
\begin{aligned}
& R_{L} \cdot z^{-1 / 2}=R_{L}\left[-j \frac{\omega}{2 s_{0}}+\sqrt{1-\left(\frac{\omega}{2 s_{0}}\right)^{2}}\right]= \\
& \quad=R_{L} \sqrt{1-\left(\frac{\omega}{2 s_{0}}\right)^{2}}-j \omega \frac{R_{L}}{2 s_{0}}=R_{L}(\omega)-j \omega L_{L}
\end{aligned}
$$

Which is realized by a frequency dependent resistance in series
with an inductance, or more useful in this filter implemenation, as a frequency dependet resistance in parallel with a capacitor.

$$
\begin{aligned}
& R_{L} \cdot z^{-1 / 2}=\frac{\left(R_{L}(\omega)-j \omega L_{L}\right)\left(R_{L}(\omega)+j \omega L_{L}\right)}{R_{L}(\omega)+j \omega L_{L}}= \\
& \quad=\frac{R_{L}^{2} \cdot 1}{R_{L} \sqrt{1-\left(\omega / 2 s_{0}\right)^{2}}+j \omega R_{L} / 2 s_{0}}= \\
& =\frac{1}{\frac{1}{R_{L} / \sqrt{1-\left(\omega / 2 s_{0}\right)^{2}}}+\frac{1}{R_{L} /\left(j \omega / 2 s_{0}\right)}}=R_{L}(\omega) \| C_{L}
\end{aligned}
$$

Suppose that C_{L} is coupled in parallel with C_{3} and correspondingly
for the inner source resistance C_{i} is in parallel with C_{1}. This is corrected by letting the components have the values

$$
\begin{aligned}
& C_{1}^{\prime}=C_{1}-C_{i}=C_{1}-\frac{1}{2 s_{0} R_{i}}=C_{1}-\frac{1}{\omega_{0} R_{i}} \sin \left(\frac{\Omega_{0} T}{2}\right) \text { and } \\
& C_{3}^{\prime}=C_{3}-C_{L}=C_{3}-\frac{1}{2 s_{0} R_{L}}=C_{3}-\frac{1}{\omega_{0} R_{L}} \sin \left(\frac{\Omega_{0} T}{2}\right)
\end{aligned}
$$

We still have an error that is caused by the fact that we will not implement a frequency dependent resistance. This error is considered to be aceeptable. The realization of the filter is given by the flow graph

The two integrators (inverting amplifiers with and without delay) are replaced with their corresponding SC circuits.
The transfer function of the summing integrator is given by

$$
V_{3}(z)=\frac{z^{-1}}{1-z^{-1}} \cdot\left[\frac{C_{1}}{C_{3}} \cdot V_{1}(z)+\frac{C_{2}}{C_{3}} \cdot V_{2}(z)\right]
$$

Check: No direct signal path from input to the output.
The transfer function of the summing and inverting integrator is given by

$$
V_{3}(z)=-\frac{1}{1-z^{-1}} \cdot\left[\frac{C_{1}}{C_{3}} \cdot V_{1}(z)+\frac{C_{2}}{C_{3}} \cdot V_{2}(z)\right]
$$

Check: Direct signal path from input to the output.
(Charge that is directed to C_{3} is given by a linear combination of the input signals $v_{1}(t)$ and $v_{2}(t)$.)

Integrators are used in the realization. The sizes of the capacitors
have to be identified. This is done by comparing signal paths in the SC realization with those of the signal flow graph:

$$
\begin{aligned}
& \text { SC filter } \\
& \text { Signal Flow Graph } \\
& {\left[-V_{1}\right]_{E}=-\frac{C_{4}}{C_{7}} \frac{z^{-1 / 2}}{1-z^{-1}}} \\
& {\left[-V_{1}\right]_{E}=-\frac{1}{s_{0} R \alpha_{1}} \cdot \frac{z^{-1 / 2}}{1-z^{-1}}} \\
& \frac{C_{4}}{C_{7}}=\frac{1}{{ }_{s_{0} R \alpha_{1}}} \\
& {\left[-V_{1}\right]_{-R I_{2}^{\prime}}=\frac{C_{6}}{C_{7}} \frac{1}{1-z^{-1}}} \\
& {\left[-V_{1}\right]_{-K l_{i}{ }^{2}}=-\frac{1}{s_{0} R \alpha_{1}}} \\
& \frac{C_{6}}{C_{7}}=\frac{1}{s_{0} R \alpha_{1}} \\
& {\left[-V_{1}\right]_{-V_{1}}=\frac{C_{3}}{C_{7}} \frac{1}{1-z^{-1}}} \\
& {\left[-V_{1}\right]_{-V_{1}}=-\frac{1}{s_{0} R \alpha_{1}} \frac{R}{R_{i}}=-\frac{1}{s_{0} R_{i} \alpha_{1}{ }^{\prime}}} \\
& \frac{C_{5}}{C_{7}}=\frac{1}{s_{0} R_{i} \alpha_{1}{ }^{\prime}} \\
& {\left[-R I_{2}{ }^{\prime}\right]_{-V_{1}}=\frac{C_{8}}{C_{10}} \frac{z^{-1}}{C_{9}-z^{-1}}} \\
& {\left[-R I_{2}\right]_{-V_{1}}=\frac{R}{s_{0} L_{2} 1-z^{-1}}} \\
& \frac{C_{3}}{C_{10}}=\frac{R}{s_{0} L_{2}} \\
& {\left[-R I_{2}{ }^{\prime}\right]_{V_{3}}=\frac{C_{9}}{C_{10}} \frac{z^{-1}}{1-z^{-1}}} \\
& {\left[-R I_{2}{ }^{\prime}\right]_{V_{3}}=\frac{R}{s_{0} L_{2}} \frac{z^{-1}}{1-z^{-1}}} \\
& {\left[V_{3}\right]_{-k z_{i}^{\prime}}=-\frac{C_{11}}{C_{13}} \cdot \frac{1}{1-z^{-1}}} \\
& {\left[V_{3}\right]_{-R I_{2}^{\prime}}=-\frac{R}{R_{L}} \cdot \frac{1}{s_{0} R C_{3}} \cdot \frac{1}{1-z^{-1}}} \\
& \frac{C_{9}}{C_{10}}=\frac{R}{s_{0} L_{2}} \\
& {\left[V_{3}\right]_{V_{1}}=-\frac{C_{12}}{C_{13}} \frac{1}{1-z^{-1}}} \\
& {\left[V_{3}\right]_{V_{3}}=-\frac{R}{R_{L}} \cdot \frac{1}{s_{0} R C_{3}} \cdot \frac{1}{1-z^{-1}}} \\
& \frac{C_{11}}{C_{13}}=\frac{1}{s_{0} R_{L} \alpha_{3}} . \\
& \text { For the feedback we have: } \\
& {\left[-V_{1}\right]_{V_{x}}=\frac{C_{14}}{C_{7}}} \\
& {\left[-V_{1}\right]_{V_{x}}=-\frac{C_{2}}{\alpha_{1}{ }^{\prime}}} \\
& \frac{C_{14}}{C_{7}}=\frac{C_{2}}{\alpha_{1}{ }^{\prime}} \\
& {\left[V_{3}\right]_{-V_{1}}=\frac{C_{15}}{C_{13}}} \\
& {\left[V_{3}\right]_{-V_{1}}=-\frac{C_{2}}{\alpha_{3}{ }^{\prime}}} \\
& \frac{C_{15}}{C_{13}}=\frac{C_{2}}{\alpha_{3}{ }^{\prime}}
\end{aligned}
$$

We assume that

$$
R_{i}=R_{L}=R
$$

Further, the correction term gives

$$
s_{0}=\frac{\omega_{c}}{2 \sin \left(\Omega_{c} / 2\right)} \text { and } C_{i}^{\prime}=C_{i}-1 / 2 s_{0} R
$$

Which yields

$$
\begin{aligned}
& \frac{C_{4}}{C_{7}}=\frac{C_{5}}{C_{7}}=\frac{C_{6}}{C_{7}}=\left[\frac{\omega_{c} R\left(C_{1}+C_{2}\right)}{2 \sin \left(\Omega_{c} / 2\right)}-\frac{R}{2 R}\right]^{-1}, \frac{C_{11}}{C_{13}}=\frac{C_{12}}{C_{13}}=\left[\frac{\omega_{c} R\left(C_{3}+C_{2}\right)}{2 \sin \left(\Omega_{c} / 2\right)}-\frac{R}{2 R}\right]^{-1} \\
& \frac{C_{8}}{C_{10}}=\frac{C_{9}}{C_{10}}=\frac{2 R \sin \left(\Omega_{c} / 2\right)}{\omega_{c} L_{2}} \\
& \frac{C_{14}}{C_{13}}=\frac{C_{2}}{C_{2}+C_{1}-\frac{\sin \left(\Omega_{c} / 2\right)}{R_{i} \omega_{c}}} \text { and } \frac{C_{15}}{C_{13}}=\frac{C_{2}}{C_{2}+C_{3}-\frac{\sin \left(\Omega_{c} / 2\right)}{R_{L} \omega_{c}}}
\end{aligned}
$$

With values we have

$$
\begin{aligned}
& \frac{C_{4}}{C_{7}}=\frac{C_{5}}{C_{7}}=\frac{C_{6}}{C_{7}}=\frac{C_{11}}{C_{13}}=\frac{C_{12}}{C_{13}}=\left[\frac{2 \pi \cdot 1500 \cdot 1000 \cdot(204.9 n+40.1 n)}{2 \sin (0.2356 / 2)}-\frac{1}{2}\right]^{-1} \approx 0.1072 \\
& \frac{C_{8}}{C_{10}}=\frac{C_{9}}{C_{10}}=\frac{2 \cdot 1000 \cdot \sin (0.2356 / 2)}{3000 \pi \cdot 80.3 m} \approx 0.3106 \\
& \frac{C_{14}}{C_{13}}=\frac{C_{15}}{C_{13}}=\frac{40.1 n}{40.1 n+204.9 n-\frac{\sin (0.2356 / 2)}{1000 \cdot 3000 \pi}} \approx 0.1725
\end{aligned}
$$

Choose the integrators' capacitors all equal

$$
C_{7}=C_{10}=C_{13}=47 \mathrm{nF}
$$

From this we have the values of all other capacitors
Scaling:

Scale the filter so that the relation between the OPamp outputs and the input signal is unity (L_{∞}-norm). We are scaling the filter to keep the signal levels at wanted levels. The principle of scaling can be described by dividing the net into subnets. The subnets have a number of inputs and outputs. If the inputs are scaled with a constant k_{i} all nodes of the subnet will be scaled with a factor k_{i}, as well as we have to scale all outputs with $1 / k_{i}$.

In this case the signal after the first node is scaled to $k_{1} X_{1}$, the second with $k_{2} k_{1} X_{2}$ and finally the third (the output) with $k_{3} k_{2} k_{1} X_{3}$. By changing the values of the capacitances we now can realize the scaling. At C_{4} we use $k_{1} C_{4}$ instead. For $C_{6} \rightarrow C_{6} / k_{2}, C_{8} \rightarrow C_{8} \cdot k_{2}$, $C_{14} \rightarrow \frac{C_{14}}{k_{2} k_{3}}, C_{15} \rightarrow C_{15} \cdot k_{2} k_{3}, C_{9} \rightarrow C_{9} / k_{3}, C_{11} \rightarrow C_{11} \cdot k_{3}$ ctc.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	155 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

EXERCISE SECTION 10: DATA CONVERTERS, FUNDAMENTAL

\times Covered by the main course book. The solutions are found via the course web page.
x

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	156 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

10.1. D/A swing (Q 11.1 J\&M)

For a unipolar D/A converter, all the levels are represented by one single output, i.e., we do not have negative values. The code is offset binary.

A 10-bit converter, will have 2^{10} levels starting from 0 and ending at $2^{N}-1$. This means that the maximum output must be:

$$
\begin{equation*}
V_{\text {out }, \max }=V_{L S B} \cdot\left(2^{N}-1\right)=1023 \cdot 1 \mathrm{mV}=1.023 \mathrm{~V} \tag{20}
\end{equation*}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	157 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

10.2. SNR (Q 11.2 J\&M)

x (Similar to Quiz 5 in the ANIK course 2012).
For any N-bit converter we can write the SNR as

$$
\begin{equation*}
\mathrm{SNR}=6.02 \cdot N+4.77-\mathrm{PAR} \tag{21}
\end{equation*}
$$

where $\mathrm{PAR}=P_{p k} / P_{\text {sig }}$ is the peak to average ratio for the signal. For a full-scale sinusoidal, this value is 2 (linear scale), i.e., 3 dB . The ADC range is now $V_{\text {ref }}=3 \mathrm{~V}$, which means that the peak power is

$$
\begin{equation*}
P_{p k}=\left(\frac{V_{r e f}}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \tag{22}
\end{equation*}
$$

In the exercise, a sinusoid of 1 Vpp is applied, which means that the signal power is

$$
\begin{equation*}
P_{s i g}=\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}=\frac{1}{8} \tag{23}
\end{equation*}
$$

The SNR is thus

$$
\begin{equation*}
\mathrm{SNR}=6.02 \cdot N+4.77-10 \cdot \log _{10} \frac{P_{p k}}{P_{s i g}}=6.02 \cdot 12+4.77-10 \cdot \log _{10} \frac{9 / 4}{1 / 8} \approx 64 \mathrm{~dB} \tag{24}
\end{equation*}
$$

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	158 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

10.3.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	159 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

10.4.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	160 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

10.5.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	161 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

10.6.

	No	Rev	Date	Repo/Course	Page
LinkÖping University	0024	P4A	2012-02-29	ANTIK	162 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

10.7. INL/DNL (Q 11.7 J\&M)

Measured values are given by:
$-0.01,1.03,2.02,2.96,3.95,5.02,6.00,7.08 \mathrm{~V}$
and ideal values should be
$0.00,1.00,2.00,3.00,4.00,5.00,6.00,7.00 \mathrm{~V}$

Approach 1:

The INL is directly given by the difference between the measured and ideal values, which means that INL is equal to:

$$
-0.01,0.03,0.02,-0.04,-0.05,0.02,0.00, \underline{\mathbf{0} .08}
$$

The DNL is the difference in ideal step between two consecutive values compared to the ideal step (1.00 V):

$$
\begin{aligned}
& 1.03-(-0.01)-1.00=0.04 \\
& 2.02-1.03-1.00=-0.01 \\
& 2.96-2.02-1.00=-0.06 \\
& 3.95-2.96-1.00=-0.01 \\
& 5.02-3.95-1.00=0.07 \\
& 6.00-5.02-1.00=-0.02 \\
& 7.08-6.00-1.00=\underline{\mathbf{0 . 0 8}}
\end{aligned}
$$

The worst-case INL and DNL are given by the absolute max of the values above.

Approach 2: Compensation for gain and offset error

We can compensate for offset and gain error to align the lowest and highest values. The gain error (ideally this should be 0) is

$$
\begin{equation*}
G=\underbrace{\frac{7.08-(-0.01)}{1}}_{\text {Real gain }}-\underbrace{\frac{7}{1}}_{\text {Ideal gain }}=0.09 \tag{25}
\end{equation*}
$$

and we find a small offset in the first code, so the offset error is

$$
\begin{equation*}
O=-0.01 \tag{26}
\end{equation*}
$$

We can now compensate each value with the gain and offset error according to:

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	163 of 165
INSTITUTE OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

$$
\begin{equation*}
V_{k}=V_{\text {meas }}-O-G \cdot \frac{k}{2^{N}-1} \tag{27}
\end{equation*}
$$

Now we will get:
0.000, 1.027, 2.004, 2.931, 3.909, 4.966, 5.933, 7.000

With INL

$$
0.000,0.027,0.004,-0.069, \underline{\mathbf{- 0 . 0 9 1}},-0.034,-0.067,0.000
$$

and DNL

$$
0.027,-0.023, \underline{\mathbf{- 0}} \mathbf{0 . 0 7 3},-0.022,0.057,0.033,0.067 .
$$

The worst-case INL and DNL are given by the absolute max of the values above.

Approach 3: Best-fit compensation

We can assume that offset and gain error can be neglected in some applications. In that case, we want to align according to a best fit line, i.e., not assume that the end values are the correct ones. This implies also that the actual step size is not 1 V anymore.

In this case, the offset and gain errors become

$$
G=0.0056 \text { and } O=-0.0133
$$

and the compensated values become

$$
\begin{array}{llllllll}
0.0033 & 1.0377 & 2.0221 & 2.9565 & 3.9410 & 5.0054 & 5.9798 & 7.0542
\end{array}
$$

with DNL and INL (referring to the compensated LSB step size, which is $1+G=1.0056$).

$$
\begin{array}{llllllll}
\text { DNL }=0.0344 & -0.0156 & -0.0656 & -0.0156 & 0.0644 & -0.0256 & \underline{\mathbf{0 . 0 7 4 4}} & \\
\text { INL }=0.0033 & 0.0377 & 0.0221 & -0.0435 & \underline{\underline{0.0590}} & 0.0054 & -0.0202 & 0.0542
\end{array}
$$

The worst-case INL and DNL are given by the absolute max of the values above.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	164 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

EXERCISE SECTION 11: DATA CONVERTERS, DAC

\times Covered by the main course book. The solutions are found via the course web page.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	165 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

11.1.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	166 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

11.2.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	2012-02-29	ANTIK	167 of 165
	Title	ANTIK Exercises 2012		ID jacwi50	

11.3.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	168 of 165
INSTITUTE OF TECHNOLOGY	Title	ANTIK Exercises 2012		ID jacwi50	

11.4. R-2R ladder DAC (Q 12.11 J\&M)

\times Missing in the manual is that the R_{A} is the left-most vertical resistor, and R_{B} is the left-most horizontal resistor. R_{C} is the right-most vertical resistor.

	No	Rev	Date	Repo/Course	Page
Linköping University	0024	P4A	$2012-02-29$	ANTIK	169 of 165
Litle	ANTIK Exercises 2012		ID jacwi50		

EXERCISE SECTION 12: DATA CONVERTERS, ADC

\times Covered by the main course book. The solutions are found via the course web page.

[^0]: ES, ISY, Linköpings universitet

