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Lesson 7

Lesson Exercises: B15.1-3, B15.10 - B15.15, K11, K12, K16, K22

Recommended Exercises: K10, K17, K18, K19, K20, K21

Theoretical Issues: Filtersyntes med Gm-C element.

Theoretical

• Integrators. G m-C building blocks

Gm-C Element

Current flowing out of the Gm-C element id equal to the transconduct-
ance times the voltage over the input.

Ideally, the input current is zero, hence an infinite input impedance. The output impedance is
considered to be zero.

Integrator

For an integrator we use a grounded capacitance. Assuming that the
output is connected to a high impedance node, the output current
from the Gm-C is described by the two relations

and

The output voltage is then simply found by substituing and integrate

The summing integrator’s output is found in the same way

The  factor is the scaling factor for the input voltage .
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A first order section

Assume that we want to realize a single pole system
according to

The transfer function of the Gm-C circuit is

In fact the Gm-C with feedback operates as a grounded resistor. Consider:

Which gives

 with

A second order section

Assume that we want to realize a single
pole system according to

The solution to this problem is shown in
the figure. We can use two voltages
directly from the circuit, the  and .

They implement a band pass and low pass
filtering.

 and
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The two Gm-C circuits in the feedback structure function as a
grounded inductor.

Combining the equations gives

or

 with

• Leapfrog filters (Gyrator filters)

Ladder Filters

The ladder filter structure with capacitances and
inductors. We let the source and load have resist-
ances.

We also now have a floating inductor, that has to
be considered.

Floating inductors

The floating inductor can be realized by using the
following structure:

For the inductor, naturally, . This forces .

Compare this with a true inductor

By identifying the terms we see that
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and that the simulated inductor value is

We see however that we also have to implement a floating
resistor with Gm-C elements. Compare with the first order
section as well. This is done by using the following struc-
ture.

We directly see that

We have to guarantee that  as well.

The currents are equal when  when

Elliptic filters

For the elliptic filter we have a slightly
different situation. We have a floating
inductor in parallel with a floating capac-
itance. A simple, but naive, implementa-
tion is to simply use a capacitance.
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State-Variable Filters

For on-chip implementations it is how-
ever more suitable to use grounded
capacitances (less parasitic capaci-
tances).

We do the same transformation as in
the previous lesson. A pair of voltage
sources is introduced in the net.

Using Norton equivalents, this
is transformed into

The inductor is still imple-
mented with a gyrator.

The capacitances,

and  are still

grounded. We have to realize
the current sources. This can be done by using operational amplifiers together with the GmC
element.
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Exercises

Exercise K10

The equations for the circuit are given by

 where

With this circuit we can perform an addition and an integration.

Exercise K11

Realize the filter having the transfer function

We rewrite the function as

Or

The flow graph is transformed. ,

 and . Note the insertion of
the inverter. This can now be used to implement the
active filter.

A second order section can be used. From
the theory we know that

We can directly identify the values from by
comparing the equations. Choose for
example all capacitors equal, e.g.
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Exercise K12

Realize the filter having the transfer function

The function is rewritten in the same manner as in the
previous exercise. In this case we however have a
slightly different structure.

We assume that we feed back the positive output
(constant ) and we construct with a negative

intermediate node, .

With

, ,  and

In this implementation we will follow the signal
flow graph

Exercise K16

Synthesize an active elliptic leapfrog filter. Termi-
nation resistances are . Specification gives:

Pass band: krad/s, dB

Stop band: krad/s, dB

Order is found with table to be .

This gives following filter structure. Component
values are found to be

,  och

, and ,

.

Denormalized values are given by

 and  give , ,
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Exercise B15.10

Extended to the exercise: .

Note that there is a constant current, , flowing through  and . Assume that they are

operating in their saturation region, that they have the same transconductance parameter,
, and that they have the same threshold voltage, , hence

The source voltage at  may naturally be written as  and correspondingly

for the source voltage at . Therefore, the voltage across  must be

The current through  must be given by (the transistor is working in its triode region)

This is approximately

The conductance is given by

We see that the current through  must be  and the current is mirrored to the output

and therefore,  must flow through  as well. This indicates that  and we

see from the equations that the  of the total circuit is given by
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It may be rewritten

or

The threshold voltage  is given by

This gives that we can rewrite as

Values taken from page 78 in the text book give

b) Simply use the values:

c) We cannot allow the approximation of the current through . In this case

By differenting we find

etc.

Exercise B15.12

, V, and V

We first have to consider the CMOS pair that is described on pages 608-609. When cascoding
a NMOS and PMOS transistor with same drain current flowing through both devices we can
consider them as one transistor with certain properties. Consider

 and
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Let further

 and

hence

We now see that the drain current can be written as

In figure 15.30

Then the  is given by

Use the values from page 78 to find the result.

vGS pn, vGS n, vSG p,+ vT n, vT p,–( )
iD

Kn K p+
----------------------------+= =

vT pn, vT n, vT p,–= 1

K pn

------------- 1

Kn K p+
----------------------------=

vGS pn, vT pn, iD K pn⁄+=

iD K pn vGS pn, vT pn,–( )2⋅=

i1 K pn VC 1, vin– vT pn,–( )2⋅=

i2 K pn vin VC 2,– vT pn,–( )2⋅ K pn vin VC 1, vT pn,–+( )2⋅= =

i1 i2– K pn VC 1,
2 vin

2 vT pn,
2 2VC 1, vin– 2VC 1, vT pn,– 2vinvT pn,+ + +( )⋅ –=

K pn– vin
2 VC 1,

2 vT pn,
2 2VC 1, vin 2VC 1, vT pn,– 2vinvT pn,–+ + +( )⋅ =

K pn 4VC 1, vin 4vT pn, vin–( )⋅ 4K pn VC 1, vT pn,–( ) vin⋅ ⋅= =

Gm

Gm

i1 i2–

vin
-------------- 4K pn VC 1, vT pn,–( )⋅= =


