Exercises for Tutorial 3: Frequency Response

1) Problem 6.6. in the course book.

a)
$$Z_{in} = \frac{g_{m1} + sC_1}{sg_{m1}C_1}$$

b) $Z_{in} = \frac{sC_1C_2r_0 + C_1 + C_2 + g_mr_0C_2}{sC_1C_2(1 + g_mr_0)}$ $(g_m = g_{m1} + g_{m2}, r_0 = r_{o1} \parallel r_{o2})$
c) $Z_{in} = \frac{sC_2 + g_{m1}}{sC_2(g_{m1} + g_{mb1})}$

2) Problem 6.8(e) in the course book.

We define
$$C_1 = C_{gs1} + C_{sb1} + C_{db2} + C_{gd2}$$
, $C_2 = C_{gs2} + C_{sb2} + C_{db1} + C_{gd1}$

$$H(s) = \frac{V_{out}}{V_{in}} = \frac{g_{m1}}{s^2 C_1 C_2 R_S + s ((1 + g_{m1} R_S) C_2 + g_{m2} C_1 R_S) + g_{m2}}$$

$$Z_{in} = \frac{g_{m2} + sC_2}{s^2 C_1 C_2 + s (g_{m1} C_2 + g_{m2} C_1)}$$

3) Problem 6.9(b) in the course book.

At low frequencies:
$$A_V \approx -g_{m1}r_{o3} \rightarrow \infty$$
 if $\lambda = 0$
At high frequencies: $A_V \approx -g_{m1}(r_{o1} \parallel r_{o3}) \rightarrow \infty$ if $\lambda = 0$

4) Problem 6.10(b) in the course book. Assume $r_{03} \gg R_2$.

At low frequencies:
$$A_V \approx -g_{m1}R_2$$
 At high frequencies: $A_V \approx -\frac{g_{m1}g_{m6}R_1R_2}{2+g_{m6}R_1}$

5) Figure 6 shows an amplifier schematic. For simplicity we can ignore all parasitics of M_1 and M_2 and we assume that the dominant pole occurs at the output node. Also, we assume $g_m\gg 1/r_0$. Find the product $|A_0|\omega_{-3dB}$, where A_0 is the DC gain and ω_{-3dB} is the 3 dB cutoff frequency. Assume $\gamma=0$.

$$|A_0| \times \omega_{3dB} = \frac{g_{m2}}{C}$$

2015 6/14

Analog CMOS Integrated Circuits TSEK37

Linköping University Martin Nielsen-Lönn

Integrated Circuits and Systems, ISY

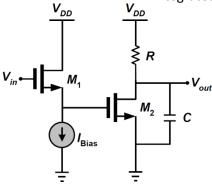


Figure 6 An amplifier schematic.

6) Figure 7 shows an amplifier schematic. For simplicity we can ignore all parasitics of M_1-M_4 and we assume that the dominant pole occurs at the output node. If the input signal has an angular frequency of $\omega_i=10^9~rad/s$, determine the AC gain of the amplifier. Assume $g_{m1}=g_{m3}=4~mA/V$, $g_{m2}=g_{m4}=1~mA/V$, C=1~pF, $g_m\gg 1/r_0$ and $\gamma=0$.

$$|A_{ac}| = 2\sqrt{2}$$

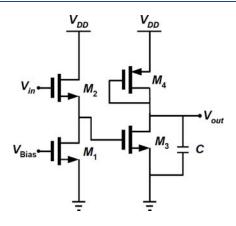


Figure 7 An amplifier schematic.

2015 7/14