Exercises for Tutorial 2: Differential Amplifiers

1. Problem 4.18 in the course book (Only for Fig. 4.38. Assume $\gamma=0$. For Fig. 4.38(a) assume $r_{o} \gg R_{1}$ and $r_{o} \gg 1 / g_{m}$. Also in Fig. 4.38(e), assume $\lambda=0$).
a)

$$
\begin{aligned}
& V_{\text {out }}\left(g_{m 3}+\frac{1}{r_{1}}+\frac{1}{r_{\text {o3 }}}+\frac{2}{R_{1}}\right)=-g_{m 1} V_{\text {in }} \leftrightarrow \\
& V_{\text {out }}\left(g_{m 3}+\frac{2}{R_{1}}\right)=-g_{m 1} V_{\text {in }} \leftrightarrow V_{\text {out }}\left(2+g_{m 3} R_{1}\right)=-g_{m 1} R_{1} V_{\text {in }} \\
& A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m 1} R_{1}}{2+g_{m 3} R_{1}} \text { or } A_{v}=\frac{g_{m 1} R_{1}}{2+g_{m 3} R_{1}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& g_{m 3} V_{y}+\frac{V_{y}}{R_{1}}+\frac{V_{y}-V_{o u t}}{r_{o 3}}=0 \leftrightarrow V_{y}\left(g_{m 3}+\frac{1}{r_{o 3}}+\frac{1}{R_{1}}\right)=V_{o u t} \frac{1}{r_{o 3}} \\
& g_{m 1} V_{\text {in }}-g_{m 3} V_{y}+\frac{V_{o u t}}{r_{o 1}}+\frac{V_{o u t}-V_{y}}{r_{o 3}}=0 \leftrightarrow \\
& V_{\text {out }}\left(\frac{1}{r_{o 1}}+\frac{1}{r_{o 3}}\right)-V_{y}\left(g_{m 3}+\frac{1}{r_{o 3}}\right)=-g_{m 1} V_{\text {in }}
\end{aligned}
$$

(1) in (2):

$$
\begin{aligned}
& V_{o u t} \frac{\left(\frac{1}{r_{o 1}}+\frac{1}{r_{o 3}}\right)\left(g_{m 3}+\frac{1}{r_{o 3}}+\frac{1}{R_{1}}\right)-\frac{1}{r_{o 3}}\left(g_{m 3}+\frac{1}{r_{o 3}}\right)}{g_{m 3}+\frac{1}{r_{o 3}}+\frac{1}{R_{1}}}=-g_{m 1} V_{i n} \leftrightarrow \\
& A_{v}=\frac{V_{o u t}}{V_{\text {in }}}=-g_{m 1} \frac{r_{o 1}\left(r_{o 3}+R_{1}+g_{m 3} r_{o 3} R_{1}\right)}{r_{o 1}+\left(r_{o 3}+R_{1}+g_{m 3} r_{o 3} R_{1}\right)}=-g_{m 1}\left(r_{o 1} \|\left(r_{o 3}+R_{1}+g_{m 3} r_{o 3} R_{1}\right)\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{V_{\text {out }}}{r_{o 1}\left\|r_{o 3}\right\| \frac{R_{1}}{2}}=-g_{m 1} V_{\text {in }} \\
& \mathrm{A}_{\mathrm{V}}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\mathrm{in}}}=-\mathrm{g}_{\mathrm{m} 1}\left(\mathrm{r}_{\mathrm{o} 1}\left\|\mathrm{r}_{\mathrm{o} 3}\right\| \frac{\mathrm{R}_{1}}{2}\right)
\end{aligned}
$$

d)

$$
\frac{V_{\text {out }}}{r_{o 1}\left\|r_{o 3}\right\| R_{1}}=-g_{m 1} V_{\text {in }} \leftrightarrow A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=-g_{m 1}\left(r_{o 1}\left\|r_{o 3}\right\| R_{1}\right)
$$

e)

$$
\begin{align*}
& g_{m 1} V_{\text {in }}+\frac{V_{x}-V_{\text {out }}}{R_{1}}=0 \leftrightarrow V_{x}=-g_{m 1} R_{1} V_{\text {in }}+V_{\text {out }} \\
& g_{\mathrm{m} 3} \mathrm{~V}_{\mathrm{x}}+\frac{\mathrm{V}_{\text {out }}-\mathrm{V}_{\mathrm{x}}}{\mathrm{R}_{1}}=0 \leftrightarrow \mathrm{~V}_{\text {out }}=\left(1-\mathrm{g}_{\mathrm{m} 3} \mathrm{R}_{1}\right) \mathrm{V}_{\mathrm{x}}(2) \tag{2}
\end{align*}
$$

(1) in (2) $V_{\text {out }}\left(1-\left(1+g_{m 3} R_{1}\right)\right)=-g_{m 3} R_{1} V_{\text {out }}=-g_{m 1} R_{1}\left(1-g_{m 3} R_{1}\right) V_{\text {in }}$

$$
A_{V}=\frac{V_{\text {out }}}{V_{\text {in }}}=-g_{m 1} R_{1} \frac{1-g_{m 3} R_{1}}{g_{m 3} R_{1}}=-g_{m 1} \frac{1-g_{m 3} R_{1}}{g_{m 3}}=-\frac{g_{m 1}}{g_{m 3}}\left(1-g_{m 3} R_{1}\right)
$$

2. Problem 4.22 in the course book.

KCL:

$$
\begin{align*}
& g_{m}\left(V_{\text {in } 1}-V_{x}\right)+\frac{V_{\text {out } 1}-V_{x}}{R_{p}}+\frac{V_{\text {out } 1}}{R_{D}}=0 \leftrightarrow V_{x}\left(g_{m}+\frac{1}{R_{P}}\right)=g_{m} V_{\text {in } 1}+\left(\frac{1}{R_{P}}+\frac{1}{R_{D}}\right) V_{\text {out } 1} \\
& g_{m}\left(V_{\text {in } 2}-V_{x}\right)+\frac{V_{\text {out } 2}}{R_{D}}=0 \leftrightarrow V_{\text {out } 2}=-g_{m} R_{D} V_{\text {in }}+g_{m} R_{D} V_{x} \tag{2}
\end{align*}
$$

(1) in (2):

$$
\begin{aligned}
& V_{\text {out } 2}=-g_{m} R_{D} V_{\text {in } 2}+\frac{g_{m} R_{D}}{g_{m}+\frac{1}{R_{P}}}\left(g_{m} V_{\text {in } 1}+\left(\frac{1}{R_{O}}+\frac{1}{R_{D}}\right) V_{\text {out } 1}\right) \leftrightarrow \\
& \left(g_{m} R_{P}+1\right) V_{\text {out } 2}-\left(g_{m} R_{P}+g_{m} R_{D}\right) V_{\text {out } 1}=g_{m}^{2} R_{P} R_{D}\left(V_{\text {in } 1}-V_{\text {in } 2}\right)-g_{m} R_{D} V_{\text {in } 2}
\end{aligned}
$$

Let $V_{\text {out } 1}+V_{\text {out } 2}=0$ and $V_{\text {out }}=V_{\text {out } 1}-V_{\text {out } 2} \leftrightarrow V_{\text {out } 1}=\frac{V_{\text {out }}}{2}, V_{\text {out } 2}=-\frac{V_{\text {out }}}{2}$ and $V_{i n 2}=\frac{V_{i n 1}+V_{i n 2}}{2}-\frac{V_{i n 1}-V_{i n 2}}{2}$

$$
\begin{aligned}
& \left(g_{m} R_{p}+\frac{1}{2}+\frac{g_{m} R_{D}}{2}\right) V_{\text {out }}=-g_{m} R_{D}\left(g_{m} R_{P}+\frac{1}{2}\right)\left(V_{\text {in } 1}-V_{\text {in } 2}\right)+\frac{g_{m} R_{D}}{2}\left(V_{\text {in } 1}+V_{\text {in } 2}\right) \leftrightarrow \\
& \left(\frac{1}{R_{D}}+\frac{1}{2 R_{P}}+\frac{1}{2 g_{m} R_{P} R_{D}}\right) V_{\text {out }}=-\left(g_{m}+\frac{1}{2 R_{P}}\right)\left(V_{\text {in } 1}-V_{\text {in }}\right)+\frac{V_{\text {in } 1}+V_{\text {in } 2}}{2 R_{P}}
\end{aligned}
$$

3. Problem 5.3(a) in the course book for $\gamma=0$. Assume all the transistors are in the saturation region and $\mu_{n} C_{o x}=4 \mu_{p} C_{o x}=200 \mu A / V^{2}, V_{t n}=\left|V_{t p}\right|=0.5 \mathrm{~V}$ and $V_{D D}=2.5 \mathrm{~V}$.

Calculate V_{P} :

$$
\begin{aligned}
& V_{G S}=\sqrt{\frac{2 I_{D 1}}{\mu_{n} C_{o x} \frac{W}{L}}}+V_{t n}=\sqrt{\frac{5 I_{r e f}}{\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{N}}}+V_{t n} \approx 0.85 \mathrm{~V} \\
& V_{P}=V_{i n, C M}-V_{G S} \approx 1.3 \mathrm{~V}-0.85 \mathrm{~V}=0.45 \mathrm{~V}
\end{aligned}
$$

Calculate diode-connected PMOS's drain voltages
Mirror:

$$
V_{D}=V_{D D}-\left|V_{G S 1}\right|=V_{D D}-\left|\sqrt{\frac{4 I_{r e f}}{\mu_{p} C_{o x}\left(\frac{W}{L}\right)_{P}}}+V_{t p}\right| \approx 1.37 \mathrm{~V}
$$

Load:
$V_{D}=V_{D D}-\left|V_{G S 1}\right|=V_{D D}-\left|\sqrt{\frac{2 I_{D}}{\mu_{p} C_{o x}\left(\frac{W}{L}\right)_{P}}}+V_{t p}\right|=V_{D D}-\left|\sqrt{\frac{2\left(\frac{5}{2} I_{r e f}-2 I_{r e f}\right)}{\mu_{p} C_{o x}\left(\frac{W}{L}\right)_{P}}}+V_{t p}\right| \approx 1.68 \mathrm{~V}$
4. Calculate the small-signal voltage gain of the cascade differential pair shown in Figure 3.

Assume $\gamma=0$.

We use the equivalent half-circuit since the circuit is symmetric.
The Norton equivalent amplifier is a current source in parallel with an output impedance, its gain is $\frac{V_{\text {out }}}{V_{\text {in }}}=G_{m} R_{\text {out }}$ where $G_{m}=\frac{I_{\text {out }}}{V_{\text {in }}}$
We find G_{m} by connecting $V_{\text {out }}$ to ground and finding $I_{\text {out }}$.

$$
\begin{aligned}
& I_{o u t}=-g_{m 3} V_{x}-\frac{V_{x}}{r_{o 3}}=-\left(g_{m 3}+\frac{1}{r_{o 3}}\right) V_{x} \leftrightarrow V_{x}=-\frac{I_{o u t}}{g_{m 3}+\frac{1}{r_{o 3}}}=-\left(\frac{1}{g_{m 3}} \| r_{o 3}\right) I_{o u t} \\
& I_{o u t}=g_{m 1} V_{\text {in }}+\frac{V_{x}}{r_{o 1}} \leftrightarrow V_{x}=\left(I_{o u t}-g_{m 1} V_{\text {in }}\right) r_{o 1} \text { (2) }
\end{aligned}
$$

(1) in (2):

$$
\begin{aligned}
& \left(I_{o u t}-g_{m 1} V_{\text {in }}\right) r_{o 1}=-\left(\frac{1}{g_{m 3}} \| r_{o 3}\right) I_{o u t} \leftrightarrow I_{o u t}\left(r_{o 1}+\left(\frac{1}{g_{m 3}} \| r_{o 3}\right)\right)=g_{m 1} r_{o 1} V_{i n} \leftrightarrow \\
& G_{m}=\frac{I_{o u t}}{V_{\text {in }}}=\frac{g_{m 1} r_{o 1}}{r_{o 1}+\frac{1}{g_{m 3}} \| r_{o 3}} \approx \frac{g_{m 1} r_{o 1}}{r_{o 1}}=g_{m 1}
\end{aligned}
$$

Figure 3 A differential amplifier.
5. Consider the differential amplifier shown in Figure 4. Due to a manufacturing defect, a large parasitic resistance has appeared between the drains of M_{1} and M_{4}. Assume $\lambda=\gamma=0$.
Calculate the small-signal gain, common-mode gain, and CMRR. Assume that $(W / L)_{1}=$ $(W / L)_{2}$ and $(W / L)_{3}=(W / L)_{4}$.

First do an KCL for the ground nodes, remember that $g_{m 1}=g_{m 2}$ since $V_{G S 1}=V_{G S}$ and $\frac{W}{L_{1}}=\frac{W}{L_{2}}$:

$$
\frac{V_{\text {out } 1}}{R_{D}}+\frac{V_{\text {out } 2}}{R_{D}}+g_{m 1} \Delta V_{\text {in }}-g_{m 1} \Delta V_{\text {in }}=0 \leftrightarrow V_{\text {out } 1}=-V_{\text {out } 2}
$$

Then do a KCL at $V_{\text {out1 }}$:

$$
\frac{V_{\text {out } 1}}{R_{D}}-g_{m 3} V_{x}=0 \leftrightarrow V_{x}=\frac{V_{\text {out } 1}}{g_{m 3} R_{D}}
$$

And a KCL at V_{x} :

$$
\begin{aligned}
& g_{m 3} V_{x}+g_{m 1} \Delta V_{\text {in }}-\frac{V_{\text {out } 2}-V_{x}}{R_{P}}=0 \leftrightarrow V_{\text {out } 2}\left(\frac{1}{R_{P}}\right)=V_{x}\left(g_{m 3}+\frac{1}{R_{P}}\right)+g_{m 1} \Delta V_{\text {in }} \leftrightarrow \\
& V_{\text {out } 2}=\frac{V_{\text {out }} R_{P}}{g_{m 3} R_{D}}\left(g_{m 3}+\frac{1}{R_{P}}\right)+g_{m 1} R_{P} \Delta V_{\text {in }} \leftrightarrow V_{\text {out } 1}\left(1+\frac{R_{P}}{R_{D}}+\frac{1}{g_{m 3} R_{D}}\right)=-g_{m 1} R_{P} \Delta V_{\text {in }} \leftrightarrow \\
& \frac{V_{\text {out } 1}}{\Delta V_{\text {in }}}=-\frac{g_{m 1} R_{P}}{1+\frac{R_{P}}{R_{D}}+\frac{1}{g_{m 3} R_{D}}}
\end{aligned}
$$

Figure 4 A differential amplifier.
6. A simple current mirror is shown in Figure 5. Calculate the value of $V_{\text {bias }}$ in order to have $V_{N}=V_{D D} / 2$. Using this value calculate the error percentage of mirroring. Error percentage can be defined as $E(\%)=\frac{\left|I_{\text {ref }}-I_{\text {out }}\right|}{I_{\text {ref }}} \times 100$.

$$
\begin{gathered}
\mu_{n} C_{o x}=200 \frac{\mu A}{V^{2}} \\
\mu_{p} C_{o x}=50 \frac{\mu A}{V^{2}} \\
V_{D D}=3 \mathrm{~V} \\
\left(\frac{W}{L}\right)_{3}=4\left(\frac{W}{L}\right)_{1}=4\left(\frac{W}{L}\right)_{2}=20 \\
R=1 \mathrm{k} \Omega \\
V_{t n}=\left|V_{t p}\right|=0.5 \mathrm{~V} \\
\lambda_{n}=\left|\lambda_{p}\right|=0.1 \mathrm{~V}^{-1}
\end{gathered}
$$

Compute $V_{\text {bias }}$ so that $V_{N}=\frac{V_{D D}}{2}$. Assume saturation.
M3: $I_{\text {ref }}=\frac{1}{2} \mu_{p} C_{o x}\left(\frac{W}{L}\right)_{3}\left(V_{D D}-V_{\text {bias }}-\left|V_{t p}\right|\right)^{2}\left(1+\left|\lambda_{p}\right|\left(V_{D D}-V_{N}\right)\right)$
M1: $I_{\text {ref }}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}\left(V_{N}-V_{t n}\right)^{2}\left(1+\lambda_{n} V_{N}\right)(2)$
Divide (1) by (2):

$$
\begin{aligned}
& 1=\frac{\mu_{p} C_{o x}\left(\frac{W}{L}\right)_{3}}{\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}} \frac{\left(V_{D D}-V_{\text {bias }}-\left|V_{t p}\right|\right)^{2}}{\left(V_{N}-V_{t n}\right)^{2}} \frac{\left(1+\left|\lambda_{p}\right|\left(V_{D D}-V_{N}\right)\right)}{1+\lambda_{n} V_{N}} \leftrightarrow \\
& 1=\left(\frac{V_{D D}-V_{b i a s}-\left|V_{t p}\right|}{V_{N}-V_{t n}}\right)^{2} \leftrightarrow V_{\text {bias }}=V_{D D}-V_{N}+V_{t n}-\left|V_{t p}\right|=V_{D D}-V_{N}=\frac{V_{D D}}{2}
\end{aligned}
$$

Compute the error percentage $E(\%)=\frac{\left|I_{\text {ref }}-I_{\text {out }}\right|}{I_{\text {ref }}}$

$$
\begin{aligned}
& I_{\text {out }}=\frac{1}{2} \mu_{n} C_{p x}\left(\frac{W}{L}\right)_{2}\left(V_{N}-V_{t n}\right)^{2}\left(1+\lambda_{n}\left(V_{D D}-I_{\text {out }} R\right)\right) \leftrightarrow \\
& I_{\text {out }}\left[1+\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(V_{N}-V_{t n}\right)^{2} \lambda_{n} R\right]=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(V_{N}-V_{t n}\right)^{2}\left(1+\lambda_{n} V_{D D}\right) \leftrightarrow \\
& I_{\text {out }}=\frac{\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(V_{N}-V_{t n}\right)^{2}\left(1+\lambda_{n} V_{D D}\right)}{1+\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(V_{N}-V_{t n}\right)^{2} \lambda_{n} R} \\
& \frac{1}{I_{\text {out }}}=\frac{1+\lambda_{n} V_{D D}}{1+\lambda_{n} V_{N}} \frac{1}{1+\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(V_{N}-V_{t n}\right)^{2} \lambda_{n} R} \approx 1.0766 \\
& E(\%) \approx 7.66 \%
\end{aligned}
$$

Figure 5 Simple current mirror.

