

Exercises for Tutorial 2: Differential Amplifiers

- 1. Problem 4.18 in the course book (Only for Fig. 4.38. Assume $\gamma=0$. For Fig. 4.38(a) assume $r_o\gg R_1$ and $r_o\gg 1/g_m$. Also in Fig. 4.38(e), assume $\lambda=0$).
- 2. Problem 4.22 in the course book.
- 3. Problem 5.3(a) in the course book for $\gamma=0$. Assume all the transistors are in the saturation region and $\mu_n C_{ox}=4\mu_p C_{ox}=200~\mu A/V^2$, $V_{tn}=\left|V_{tp}\right|=0.5~V$ and $V_{DD}=2.5~V$.
- 4. Calculate the small-signal voltage gain of the cascade differential pair shown in Figure 3.Assume $\gamma=0$.

Figure 3 A differential amplifier.

5. Consider the differential amplifier shown in Figure 4. Due to a manufacturing defect, a large parasitic resistance has appeared between the drains of M_1 and M_4 . Assume $\lambda=\gamma=0$. Calculate the small-signal gain, common-mode gain, and CMRR. Assume that ${W/L \choose 1}_1={W/L \choose 2}_2$ and ${W/L \choose 3}_3={W/L \choose 4}_4$.

Figure 4 A differential amplifier.

2015 2/8

6. A simple current mirror is shown in Figure 5. Calculate the value of V_{bias} in order to have $V_N = \frac{V_{DD}}{2}$. Using this value calculate the error percentage of mirroring. Error percentage can be defined as $E(\%) = \frac{|I_{ref} - I_{out}|}{I_{ref}} \times 100$.

$$\mu_n C_{ox} = 200 \frac{\mu A}{V^2}$$

$$\mu_p C_{ox} = 50 \frac{\mu A}{V^2}$$

$$V_{DD} = 3 V$$

$$\left(\frac{W}{L}\right)_3 = 4 \left(\frac{W}{L}\right)_1 = 4 \left(\frac{W}{L}\right)_2 = 20$$

$$R = 1 k\Omega$$

$$V_{tn} = |V_{tp}| = 0.5 V$$

$$\lambda_n = |\lambda_p| = 0.1 V^{-1}$$

Figure 5 Simple current mirror.

2015 3/8