1. See Tutarial 1, problem4
2. Small signal model
a)

Small signal nader for Bin.

$$
i_{x}=g_{m} \cdot V_{x} \quad R_{i n}=\frac{V_{x}}{i_{x}}=\frac{1}{g_{m}}
$$

b) Gain from point x : $\begin{aligned} \quad \frac{V_{\text {out }}-V_{x}}{R_{F}} & +8 \text { in. } V_{x}=0 \\ & \Leftrightarrow\end{aligned}$

$$
\frac{V_{a c t}}{V_{x}}=1-\sin \cdot R_{F}
$$

$$
\begin{aligned}
& V x=\frac{1 / s m}{1 / s m+R_{s}} \cdot V_{\text {in }} \Rightarrow A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\frac{1}{\operatorname{sm}}}{1 / s_{n}+R_{s}} \cdot\left(1-8 m \cdot R_{F}\right) \\
& =\frac{1}{2}\left(1-\frac{R_{F}}{R_{S}}\right) . \quad R_{F}=2 T R_{S} \Rightarrow A_{S}=\frac{1}{2}\left(1-\frac{25}{1}\right)=-12
\end{aligned}
$$

c) $\overline{V_{n, \text { out }}^{2}}=4 k T R_{S} \cdot A_{v}^{2}=4 k T R_{s} \cdot \frac{1}{4}\left(1-\frac{R_{F}}{R_{s}}\right)^{2}$

If $R_{F}=25 R_{s} \Rightarrow \overline{V_{n, \text { ant, }}^{2}}=4 . k T R_{s}(-12)^{2}=576 \mathrm{kT} R_{s}$

If $V_{R F}=A_{R F} \cos \left(\omega_{R F} t\right)$, then by ignoring the higher order terms:

$$
\begin{aligned}
& V_{\text {out }}(t)=\frac{4}{\pi} g_{m 3} R A_{R F} \cos \left(\omega_{R F} t\right) \cos \left(\omega_{L O} t\right) \\
& \rightarrow V_{I F}=\frac{2}{\pi} g_{m 3} R A_{R F} \cos \left(\left(\omega_{R F}-\omega_{L O}\right) t\right)
\end{aligned}
$$

Therefore the conversion gain is:
$G_{C}=\frac{V_{I F}}{A_{R F}}=\frac{2}{\pi} g_{m 3} R$

See the Razavi course book, Example 8.14 and Figure 8.26. Here instead we have Q=5 @ 2.45 GHz => Q*(L1+L2) ${ }^{*} \omega=154 \Omega$. ($\mathrm{L} 1=\mathrm{L} 2=1 \mathrm{nH}$ each!)
g_{m} for the transistors $>154 / 2=77 \Omega-1$.
5.

Similar to Fig 9.30 in the course book and eq. 9.17-9.19.
The solution can also be written as:
Open loop transfer functions of the system is:

$$
\begin{gathered}
H_{o}(s)=K_{P F D} Z_{L P F}(s) \frac{K_{V C O}}{s}=\frac{I_{o}}{2 \pi}\left(\frac{1}{s C_{p}}+R\right) \frac{K_{V C O}}{s} \\
H_{o}(s)=\frac{I_{0} K_{V C O}}{2 \pi C_{p}} \frac{1+s R C_{p}}{s^{2}}=k \frac{1+s R C_{p}}{s^{2}}, \text { where } k=\frac{I_{0} K_{V C O}}{2 \pi C_{p}}
\end{gathered}
$$

The close-loop transfer function is then:

$$
H(s)=\frac{H_{0}(s)}{1+H_{0}(s)}=k \frac{1+s R C_{p}}{s^{2}+s R C_{p} k+k}
$$

6. a) 24 dBm average, $P A P R=5 \mathrm{~dB}$, netwrok losses $=1.5 \mathrm{~dB} \Rightarrow 24+5+1.5=30.5 \mathrm{dBm}$ peat power.

$$
30.5 \mathrm{dbm}(\approx 1 \mathrm{w})=\underline{\underline{122 \mathrm{mw}}}
$$

b) $P=\frac{U_{p}^{2}}{2 R_{L}}$ where $U_{p} \approx V_{D D}$ c simplest approx.)

$$
\begin{array}{ll}
\Leftrightarrow & R_{L}=\frac{V_{P}^{2}}{2 P} \\
& V_{P}=V_{D D}=1.8 \mathrm{~V} \\
\Rightarrow & R_{L}=1.122 \mathrm{w}
\end{array}
$$

[Transformation ratio $=\frac{50 \Omega}{1.4 \Omega}=35 x$, not So easy to do, generally ratio should not be larger than (0.]
C) Cascode gives possibility of higher Supply voltage.
Linear $P A \Rightarrow V_{x}$ mag reach $2 x U_{P D}$ 65 nm CMOS (as an example): each transistor.. can safely handle $-1.8 \mathrm{~V} \Rightarrow$ cascode (although usually not evenly distributed oventhe two transistors).
7. Please provide short answers (no motivations are needed) to the following questions:
a) For RF-circuits, a design aspect is associated with the names Stern or Rollett. What design aspect?

Stability, i.e. lack of self-oscillations. Book section 5.1 mentions Stern. But most commonly the stability factor is referred to as Rollett's stability factor.
b) If changing the circuit topology from a single-balanced to a double-balanced mixer, what happens with the conversion gain? (0.5 p)

It stays the same. Book Examples 6.6 and 6.7.
c) Can the fringe (grid) capacitor used in advanced CMOS processing be used as a varactor? (0.5 p)

No, it is a fixed capacitance structure. It is a metal-plate capacitor with silicon dioxide or combinations of passivation material between the metal layers. Book section 7.6.2.
d) Circuit types/names like Clapp, Colpitt, and Hartley are associated with a certain type of radio building blocks. What type? (0.5 p)

Oscillators ("three-point oscillators"). Book section 8.4.

